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Abstract—The calculation of the SIR distribution at the typical
receiver (or, equivalently, the success probability of transmissions
over the typical link) in Poisson bipolar and cellular networks
with Rayleigh fading is relatively straightforward, but it only
provides limited information on the success probabilities of the
individual links.

This paper focuses on the meta distribution of the SIR, which
is the distribution of the conditional success probability Ps given
the point process, and provides bounds, an exact analytical
expression, and a simple approximation for it. The meta distri-
bution provides fine-grained information on the SIR and answers
questions such as “What fraction of users in a Poisson cellular
network achieve 90% link reliability if the required SIR is 5 dB?”.
Interestingly, in the bipolar model, if the transmit probability p

is reduced while increasing the network density λ such that the
density of concurrent transmitters λp stays constant as p → 0,
Ps degenerates to a constant, i.e., all links have exactly the same
success probability in the limit, which is the one of the typical
link. In contrast, in the cellular case, if the interfering base
stations are active independently with probability p, the variance
of Ps approaches a non-zero constant when p is reduced to 0 while
keeping the mean success probability constant.

Index Terms—Stochastic geometry, Poisson point process, in-
terference, SIR, coverage, cellular network, HetNets.

I. INTRODUCTION

A. Motivation

Stochastic geometry provides the tools to analyze wireless

networks with randomly placed nodes. A key quantity of inter-

est in interference-limited networks is the success probability

ps(θ) , P(SIR > θ) of the transmission over the typical

link, which corresponds to the complementary cumulative

distribution (ccdf) of the signal-to-interference ratio (SIR). The

calculation of ps involves spatial averaging, i.e., the evaluation

of a certain expectation over the point process. While this

expected value is certainly important, it does not reveal how

concentrated the link success probabilities are. For example,

in one network model, all links (or users) could have success

probabilities between 0.85 and 0.95, while in another, some

links may have 0.5 and some may have 0.99. In both cases,

we may find ps = 0.9, but the performances of the two

networks in terms of connectivity, end-to-end delay, or quality-

of-experience would differ greatly. Hence it is important to

quantify the variability of the link reliabilities around ps.
To this end, our focus in this paper are random variables of

the form

Ps(θ) , P(SIR > θ | Φ), (1)
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where the conditional probability is taken over the fading and

the channel access scheme (if random) of the interferers given

the point process. The goal is to find (or bound) the ccdf of

Ps, defined as

F̄Ps(x) , P
!t(Ps(θ) > x), x ∈ [0, 1], (2)

where P
!t denotes the reduced Palm measure of the point

process, given that there is an active transmitter at a prescribed

location, and the SIR is measured at the receiver of that

transmitter1. Ps(θ) is the conditional probability (given Φ) that

the random fading and random channel access results in an SIR

at that receiver that exceeds θ.

Since F̄Ps is the (complementary) distribution of a condi-

tional probability, we call it the meta distribution of the SIR.

Using this notation, the standard success probability is the

mean

ps(θ) = E
!t(Ps(θ)) =

∫ 1

0

F̄Ps(x)dx.

While a direct calculation of the ccdf (2) seems infeasible,

we shall see that the moments of Ps(θ) can be expressed in

closed-form, which allows the derivation of an exact analytical

expression and simple bounds. The b-th moment of Ps(θ) is

denoted by Mb, i.e., we define

Mb(θ) , E
!t(Ps(θ)

b) =

∫ 1

0

bxb−1F̄Ps(x)dx.

Hence we have ps(θ) ≡ M1(θ).

B. Contributions

The contributions of the paper are:

• We give a closed-form expression for the moments Mb for

Poisson bipolar networks with ALOHA and for Poisson

cellular networks, both for Rayleigh fading.

• We provide an analytical expression for the exact meta

distribution for the two types of networks.

• We propose the beta distribution as a highly accurate

approximation.

• We show that, remarkably, in the limit of very dense

bipolar networks with small transmit probability, all links

have the same success probability. This is not the case in

cellular networks with random (interfering) base station

activity, since the variance M2 − M2
1 is bounded away

from zero when the probability of a base station being

active goes to 0.

• We give the conditions on the SIR threshold θ and the

transmit probability p for a finite mean local delay.

1In the cellular case, it is sensible to condition on the location of a user
(receiver) instead since the link distances are random—see Sec. III.
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C. Related work

For Poisson bipolar networks, the calculation of the (mean)

success probability ps(θ) is provided in [1] but can be traced

back to [2]. The concept of the meta distribution first appears

in [3], where the authors focus on the distribution of the

(conditional) link success probabilities for the case without

MAC scheme (i.e., p = 1, so all nodes always transmit).

They calculated the moments Mb and obtained bounds on the

distribution for this case.

For Poisson cellular models, where the typical user is

associated with the nearest base station (strongest base station

on average), the result was derived in [4] and extended to the

multi-tier Poisson case (HIP model) in [5].

The joint success probability of multiple transmissions

in Poisson bipolar networks is calculated in [6]. Similarly,

[7] determined the joint success probabilities of multiple

transmissions (or transmissions over multiple resource blocks)

for Poisson cellular networks. As we shall see, these joint

probabilities are related to the integer moments Mk of the

conditional success probabilities.

D. The meta distribution

In this section, we formally introduce the concept of a

meta distribution, which is the distribution of the conditional

distribution Ps.

Definition 1 (Meta distribution) The meta distribution of

the SIR is the two-parameter distribution function

F̄ (θ, x) , F̄Ps(θ, x) = P
!t(Ps(θ) > x), θ ∈ R

+, x ∈ [0, 1].

We have F̄ (0, x) = 1 for x < 1, limθ→∞ F̄ (θ, x) = 0 for x >
0, F̄ (θ, 0) = 1, and F̄ (θ, 1) = 0. F̄ (θ, x) is the probability

that the random node locations Φ are such that the link under

consideration has a reliability of x or higher, where the link

reliability is Ps(θ), i.e., the probability of fading and channel

access giving an SIR exceeding θ. Due to the ergodicity of

the point process, it can also be interpreted as the fraction of

links or users in each realization of Φ that achieve an SIR of θ
with probability at least x. Integrated over x, F̄ (θ, x) returns

the standard distribution of the SIR or success probability.

In the next two sections, we will calculate the meta distri-

bution and bounds for Poisson bipolar and cellular networks,

respectively.

II. POISSON BIPOLAR NETWORKS

A. System model

We consider the Poisson bipolar model [8, Def. 5.8], where

the (potential) transmitters form a Poisson point process (PPP)

Φ of intensity λ and each one has a dedicated receiver at

distance R in a random orientation. In each time slot, nodes in

Φ independently transmit with probability p, and all channels

are subject to Rayleigh fading.

We use the standard path loss model with exponent α, define

δ , 2/α, and we let C , λπR2Γ(1 − δ)Γ(1 + δ) be a

coefficient that does not depend on θ. The success probability
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Fig. 1. Realization of a Poisson bipolar network for λ = 1, R = 1/2,
p = 1/2, θ = 1, α = 4, resulting in ps = 0.54. The number next to each
link is its success probability (averaged over fading and ALOHA).

of the typical link is well known, see, e.g., [1], [8], [9], and

can be expressed as

ps(θ) , P
!t(SIR > θ) = M1(θ) = e−Cθδp.

Due to the ergodicity of the PPP, the ccdf of Ps can be

alternatively written as the limit

F̄Ps(x) = lim
r→∞

1

λpπr2

∑

y∈Φ
‖y‖<r

1(P(SIRỹ > θ | Φ) > x),

where ỹ is the receiver of transmitter y and 1(·) is the indicator

function. This shows that F̄Ps(x) denotes the fraction of links

in the network (in each realization of the point process) that,

when scheduled to transmit2, have a success probability larger

than x.

The link success probabilities for a given realization can

also be “attached” to each point of the transmitter process Φ
to form a marked point process Φ̂ = {(xi, P

xi
s )}. The meta

distribution can then be interpreted as the mark distribution,

parametrized by θ. Due to the interference correlation [10],

the marks of nearby nodes are correlated, hence Φ̂ is not an

independently marked process.

Fig. 1 shows an example realization of a Poisson bipolar

network together with the success probabilities for each link,

averaged over the fading and ALOHA. As expected, links

whose receivers are relatively isolated from interfering trans-

mitters have a high success rate, while those in crowded parts

of the network suffer from a low one.

2The received signal power is assumed zero if the desired transmitter is not
active, so the SIR is zero in this case.
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B. Moments

Let

Db(p, δ) ,
∞∑

k=1

(
b

k

)(
δ − 1

k − 1

)

pk, b ∈ C and p, δ ∈ [0, 1].

(3)

For p = 1,

Db(1, δ) =
Γ(b+ δ)

Γ(b)Γ(1 + δ)
,

which is not defined if b ∈ Z− or b + δ ∈ Z−. For δ ∈
{0, 1}, the function simplifies to Db(p, 0) = 1− (1− p)b and

Db(p, 1) = bp.

Alternatively, the function can be expressed using the Gaus-

sian hypergeometric function 2F1 as

Db(p, δ) = pb 2F1(1 − b, 1− δ; 2; p). (4)

Theorem 1 (Moments for bipolar network with ALOHA)

Given that the typical link is active, the moment Mb of the

conditional success probability is

Mb(θ) = exp
(
−CθδDb(p, δ)

)
, b ∈ C, (5)

whenever Db(p, δ) is defined.

Proof: See Appendix A.

An important and helpful observation in the proof is that the

calculation of the n-th moment for n ∈ N is the same as that

of the joint success probability of n transmissions, calculated

in [6]. In this case, Dn(p, δ) is given by the finite sum

Dn(p, δ) =

n∑

k=1

(
n

k

)(
δ − 1

k − 1

)

pk,

which is a polynomial of degree n in p and degree n− 1 in

δ and called the diversity polynomial in [6, Def. 1].

For the special case p = 1 (all potential transmitters are

always active), the moments in Thm. 1 simplify to

Mb = exp

(

−Cθδ
Γ(b + δ)

Γ(1 + δ)Γ(b)

)

, (6)

in agreement with [3, Lemma 2]. For b ∈ N, these moments

are equivalent to the joint success probability of successful

reception at n antennas of a multi-antenna receiver (i.e.,

the probability that the SIR exceeds θ at n antennas) when

interference correlation is accounted for [11].

Since (5) is valid for (essentially) any b ∈ C, we can use it

to obtain the −1-st moment as

M−1(θ) = exp(Cθδp(1− p)δ−1)

= M
−(1−p)δ−1

1 , p < 1. (7)

M−1 is the mean number of transmission attempts needed to

succeed once if the transmitter is allowed to keep transmitting

until success. This quantity is termed mean local delay and

is calculated in [12, Lemma 2]. Noteworthy is the phase

transition at p = 1. For p = 1 − ǫ, the mean local delay

is finite for all ǫ > 0. But if all nodes always transmit, it is

infinite.

An interesting question is what happens when p → 0 while

the transmitter density pλ (and thus M1) is kept constant. It

is answered in the following corollary.

Corollary 1 (Concentration as p → 0) Denoting the trans-

mitter density as τ , λp and keeping it (and thus M1) fixed

while letting p → 0, we have

lim
p→0
λp=τ

Ps(θ) = ps(θ)

in mean square (and probability and distribution).

Proof: From (5), the second moment is

M2(θ) = e−Cθδ(2p+(δ−1)p2),

and the variance, expressed in terms of M1 (which is kept

constant), is

varPs(θ) = M2
1 (M

p(δ−1)
1 − 1). (8)

It follows that

lim
p→0
λp=τ

varPs(θ) = 0.

So if Cθδp is kept constant, the variance can be adjusted by

changing p. For example, if C = 1/(10pθδ), M1 = e−1/10 ≈
0.9, and the variance can be reduced to 0 by letting p → 0.

So, counterintuitively, a small p decreases the variance and,

in the limit, all links in the network have exactly the same

success probability.

More precisely, the variance is proportional to p for small

p if M1 is kept constant:

varPs(θ) ∼ −M2
1 log(M1)(1 − δ)p, p → 0.

The concentration results can also be explained as follows:

For each realization of the PPP, shrinking and simultaneous

independent thinning produces a point process that is equal

in distribution to a PPP. Even the Bernoulli lattice process

[8, Sec. 2.4.7] tends to a PPP if the lattice density is in-

creased while reducing the retention probability p such that

the intensity of retained points stays constant. As a result, in

the limiting case p → 0, averaging over ALOHA is, in fact,

averaging over a PPP, so the conditional success probability

at each node equals the un-conditional (i.e., mean) success

probability.

The same reasoning can be applied to finite networks. In

this case, let Φ be a binomial point process [8, Def. 2.11]

with n points uniformly distributed on a region W ⊂ R2, and

focus on a receiver at location x. Then the conditional success

probability tends to the mean success probability at location

x as p → 0 while keeping np constant, i.e., limp→0 P
x
s (θ) =

pxs (θ)
The next result provides tight bounds on the moments if

p = 1 for b ∈ R+. ′.′ and ′&′ indicate upper bound and

lower bounds with asymptotic equality (here as b → ∞),

respectively.

Corollary 2 (Bounds on moments for p = 1) For b > 0,

Mb = M
Γ(b+δ)

Γ(1+δ)Γ(b)

1 & exp(−Cθδbδ), (9)
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for b ≥ 1,

Mb ≤ M bδ

1 , (10)

and for 0 < b < 1,

Mb > M bδ

1 . (11)

Proof: The lower bound (9) follows from (5) by setting

p = 1 and the asymptotic bound Γ(b+δ)/Γ(b) . bδ for b > 0.

Conversely, Γ(b+ δ)/Γ(b) ≥ bδΓ(1 + δ) for all b ≥ 1, which

yields the upper bound (10):

Mb ≤ exp(−CbδΓ(1 + δ)) = M bδ

1 , b ≥ 1.

For b < 1, Γ(b + δ)/Γ(b) < bδΓ(1 + δ), and the direction of

the inequality is reversed, yielding (11).

The third bound is tighter than the first one in the regime

where it is valid. Further, since

M bδ

1 = exp
(
−C(bθ)δ

)
,

the b-th moment is bounded by the first moment evaluated at

bθ, i.e.,

Mb(θ) ≤ M1(bθ), b ≥ 1,

and vice versa if b < 1.

C. Exact expression

An exact integral expression can be obtained from the purely

imaginary moments Mjt, t ∈ R, j ,
√
−1.

Corollary 3 (Exact integral expression) The meta distribu-

tion is given by

F̄ (θ, x) =
1

2
− 1

π

∞∫

0

e−Cθδℜ(Djt) sin(t log x+ Cθδℑ(Djt))

t
dt,

(12)

where Djt = Djt(p, δ) is given in (3) and ℜ(z) and ℑ(z)
denote the real and imaginary parts of the complex number

z, respectively.

Proof: Let X , logPs(θ). The characteristic function of

X is

ϕX(t) , EejtX = E(Ps(θ)
jt) = Mjt, t ∈ R.

where Mjt is given in (5). Then by the Gil-Pelaez theorem

[13], the ccdf of X is given by

F̄X(x) =
1

2
+

1

π

∫ ∞

0

ℑ(e−jtxMjt)

t
dt. (13)

Since P(Ps(θ) > x) = P(logPs(θ) > log x),

F̄Ps(x) =
1

2
+

1

π

∫ ∞

0

ℑ(e−jt log xMjt)

t
dt, (14)

and the result follows from Thm. 1 and some simplification.

Since |Mjt| essentially decreases exponentially with t, this

integral can be evaluated very efficiently. The curve marked

with ◦ in Fig. 2 shows the exact meta distribution F̄ (1, x) for

λp = 1/4 with different values of λ and p. As predicted by

Cor. 1, the variance of Ps is reduced when p is smaller. Next

we will derive the bounds also shown in the figure.
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Fig. 2. The exact meta distribution (12) and the Markov bounds (15) for
b = −1 and b ∈ [4], (16), and (17) for α = 4, θ = 1, R = 1/2, and
λp = 1/4. The resulting mean success probability is ps = M1 = 0.735.
The variance depends on the values of p and λ; it is proportional to p for
small p.

D. Classical bounds on the meta distribution

Simple bounds on the meta distribution can be established

using classical methods.

Corollary 4 (Markov and Chebyshev bounds) For x ∈
[0, 1], the meta distribution is bounded as

1− E!t((1− Ps(θ))
b)

(1 − x)b
< F̄ (θ, x) ≤ Mb

xb
, b > 0. (15)

Let V , varPs(θ) = M2 −M2
1 . For x < M1,

F̄Ps(x) > 1− V

(x−M1)2
, (16)

while for x > M1,

F̄Ps(x) ≤
V

(x−M1)2
. (17)
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Lastly,

F̄Ps(xM1) ≥
(1− x)2

1−M
p(1−δ)
1 + (1− x)2

, x ∈ (0, 1). (18)

Proof: (15) follows from Markov’s inequality, while (16)

and (17) follow from Chebyshev’s inequality. The lower bound

(18) is the Paley-Zygmund (or Cauchy-Schwarz) bound.

For the lower (or reverse) Markov bound in (15), the integer

moments of 1−Ps(θ) are easily found using binomial expan-

sion. For b = −1, the Markov inequality also yields the lower

bound F̄Ps(x) ≥ 1− xM−1, where M−1 is given in (7).

These bounds are illustrated in the two plots in Fig. 2.

For the Markov bounds, the four lower and upper bounds

correspond to b = 1, 2, 3, 4. The lower bound for b = −1,

which is linear, is also included. It is apparent that the variance

decreases with decreasing p and that the bounds get tighter

also.

Written differently, (16) and (17) state that

F̄Ps(qM1) > 1− M δ−1
1 − 1

(1 − q)2
, 0 < q < 1,

and

F̄Ps(qM1) ≤
M δ−1

1 − 1

(1 − q)2
, 1 < q < M−1

1 .

The upper bound is useful for small M1, while the lower bound

is useful for M1 ≈ 1.

So as p → 0, P(Ps(θ) ≥ xM1) → 1 ∀x ∈ (0, 1), in

accordance with Cor. 1.

The Paley-Zygmund bound is useful to bound the fraction

of links that has at least a certain fraction of the average

performance. For example, the fraction of links having better

than half the average reliability is lower bounded as

P
!t(Ps(θ) ≥ M1/2) ≥

1/4

5/4−M
p(1−δ)
1

.

As p → 0, the lower bound approaches 1, again as expected

from the concentration result in Cor. 1.

For p = 1, [3, Thm. 1] provides the tightest upper Markov

bound (15), i.e., the upper bound Mb/x
b obtained by choosing

the optimum b as a function of x.

E. Best bounds given four moments

Here we establish the tightest possible lower and upper

bounds on the distribution given the first four moments. Gen-

erally, this problem can be formulated as follows. Letting Mk

be the class of distributions (cdfs) with moments M1, . . . ,Mk,

we would like to find

L(x) , min
F∈Mk

F (x), x ∈ (0, 1)

and

U(x) , max
F∈Mk

F (x), x ∈ (0, 1).

So for each x in the support of the distribution, we would

like to find the minimum and maximum over all distributions

with the prescribed k moments. A general method to solve

this problem is presented in [14]. While it is applicable for

arbitrary k, only numerical results can be obtained for k > 8

since no analytical solution exists for the roots of polynomials

of order 5 or higher. Here we focus on the case k = 4, which

provides a good trade-off between complexity and accuracy

and permits an analytical solution. Hence the problem is to

find the best lower and upper bounds

L(x) ≤ FY (x) ≤ U(x)

given the four moments E(Y k), k ∈ [4], for a general

continuous random variable Y .

To bound the cdf FY (x) at a target value x, first the

moments are calculated for the random variable shifted by

x so that the new target location is 0, i.e.,

mi(x) ,

∫ 1

0

(y − x)i dFY (y)

=

i∑

k=0

(
i

k

)

(−x)i−k
E(Y k), x ∈ [0, 1].

Using these shifted means, following [14], we define (omitting

the dependence on x of the shifted moments to avoid overly

cumbrous notation)

q(x) ,
[

(−m2m3 +m1m4)
2−

4(m2
2 −m1m3)(m

2
3 −m2m4)

]1/2

p0(x) ,
−m3

2 + 2m1m2m3 −m2
3 −m2

1m4 +m2m4

m2m4 −m2
3

y1(x) ,
m2m3 −m1m4 − q(x)

2(m2
2 −m1m3)

y2(x) ,
m2m3 −m1m4 + q(x)

2(m2
2 −m1m3)

p2(x) , −m2
2 −m1m3

q(x)

(

−m1−

(m3
2 − 2m1m2m3 +m2

1m4)(−m2m3 +m1m4 + q(x)

2(m2
2 −m1m3)(−m2

3 +m2m4)

)

p1(x) , 1− p0(x)− p2(x),

and the bounds follow as

L(x) =







p1(x) + p2(x) if y1(x) < 0, y2(x) < 0

p1(x) if y1(x) < 0, y2(x) > 0

0 if y1(x) > 0, y2(x) > 0

(19)

U(x) =







1 if y1(x) < 0, y2(x) < 0

p0(x) + p1(x) if y1(x) < 0, y2(x) > 0

p0(x) if y1(x) > 0, y2(x) > 0

(20)

Since q(x) > 0, it is not possible that y1(x) > 0 and y2(x) <
0.

In our application Y = Ps(θ), E(Y
k) = Mk, and since we

are working with ccdfs, we have

1− U(x) ≤ F̄ (θ, x) ≤ 1− L(x).

Fig. 3 shows these best bounds, together with the lower and

upper envelopes of the Markov upper and lower bounds for b ∈
[4] and the Paley-Zygmund lower bound. In some intervals, the

classical bounds are near-optimum, while in others, the best

bounds are significantly tighter.
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(a) λ = 1 ⇒ ps = 0.54, var(Ps) = 0.049.
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(b) λ = 1/5 ⇒ ps = 0.88, var(Ps) = 0.024

Fig. 3. The exact meta distribution (12), the best Markov bounds (15) for
b ∈ [4], and the best overall bounds per (19) and (20) (given the first four
moments) for α = 4, θ = 1, R = 1/2, and p = 1/2. The reduction of λ
from 1 to 1/5 results in a reduction of the variance of only 1/2, since p stays
the same.

F. Approximation with beta distribution

Since Ps(θ) is supported on [0, 1], a natural choice for a

simple approximating distribution is the beta distribution. The

probability density function (pdf) of a beta distributed random

variable X with mean µ is

fX(x) =
x

µ(β+1)−1
1−µ (1− x)β−1

B(µβ/(1− µ), β)
,

where B(·, ·) is the beta function. The variance is given by

σ2 , varX =
µ(1− µ)2

β + 1− µ
.

Matching mean and variance σ2 yields µ = M1 and

β =
µ(1− µ)2

σ2
− (1− µ) =

(µ−M2)(1− µ)

M2 − µ2
.

As illustrated in Fig. 4 (same parameters as in Figs. 2 and

3), the beta distribution provides an excellent match for the

TABLE I
COMPARISON OF MOMENTS Mk AND E(Xk) OF THE BETA

APPROXIMATION FOR THE PARAMETER SET IN FIG. 2(A).

k = −1 k = 3 k = 4 k = 5 k = 6 k = 8

Mk 1.4278 0.4418 0.3571 0.2947 0.2476 0.1820

E(Xk) 1.4333 0.4412 0.3555 0.2921 0.2440 0.1770

ratio 0.9962 1.0014 1.0044 1.0090 1.0147 1.0280
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(a) Parameters from Fig. 2 (a) and (b).
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(b) Parameters from Fig. 3 (a) and (b).

Fig. 4. The exact meta distribution and the beta distribution approximation
for the two sets of parameters considered in the plots of Figs. 2 and 3.

distribution of the link success probabilities, which is also

corroborated by the fact that the higher moments E(Xk) of the

matched beta distribution are very close to Mk. For example,

for the parameters in Fig. 2(a), the analytical −1-st and 3-

rd through 8-th moments differ by less than 3%, as shown

in Table I. So the skewness and kurtosis and the mean local

delay are approximated very accurately also.

G. Illustrations of the meta distribution

An illustration of the meta distribution is shown in Fig. 5. It

shows qualitatively that, for the chosen parameters, most links

achieve an SIR of −10 dB with probability 80%, while an SIR
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Fig. 5. Three-dimensional plot of the meta distribution F̄ (θ, x) for λ = 1,
p = 1/4, α = 4, and R = 1/2.
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(a) Meta distribution for θ = −10,−5, 0, 5, 10, 15 dB. The curve for
θ = 0 dB is marked with ◦.
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(b) Meta distribution as a function of θ for x =
0.4, 0.5, 0.6, 0.7, 0.8, 0.9.

Fig. 6. Cross-sections through the meta distribution along the x and θ axes
for λ = 1, p = 1/4, α = 4, R = 1/2.

θ [dB]

x

u=0.5

u=0.95

−10 −5 0 5 10
0
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0.8

1

Fig. 7. Contour plot of meta distribution F̄ (θ, x) for λ = 1, p = 1/4,
α = 4, and R = 1/2. The values at the curves are F̄ (θ, x) = u =
0.5, 0.6, 0.7, 0.8, 0.9, 0.95 (from top to bottom).

of 10 is achieved with probability 80% by virtually no links.

For quantitative purposes, the cross-sections and contours are

more informative, as shown in the next figures.

Fig. 6(a) enables a more precise statement about the fraction

of links achieving an SIR of −10 dB with 80% reliability—it

is 0.93. It also shows that at θ = 0 dB, 60% of the links have

a success probability of at least 80%.

As a function of θ for fixed x, the value of θ can be

determined such that at least a fraction x of users have a

success probability pmin. For example, Fig. 6(b) shows that

to achieve at least 80% success probability for 80% of the

links, a θ of at most −7.6 dB can be chosen.

The contour plot Fig. 7 visualizes the trade-off between x
and θ. It shows the combinations (θ, x) that can be achieved

by a certain fraction of links u. For example, the curve for

link fraction u = 0.95 shows that 95% of the links achieve an

SIR of −5 dB with probability 0.6 and an SIR of 5 dB with

probability 0.31.

Hence the contour plot illustrates and quantifies the trade-off

between data rate (as determined by θ) and reliability (given

by the parameter x) in bipolar networks.

III. POISSON CELLULAR NETWORKS

A. System model

In Poisson cellular networks, base stations (BSs) form a

PPP of intensity λ, while users form a stationary point process

of intensity λu. We focus on the downlink and on nearest-BS

association, i.e., each BS serves all the users in its Voronoi cell,

and first assume that all BSs are always active. An example

realization where users form a square lattice is shown in Fig. 8.

As in the bipolar case, we assume the standard path loss

law with path loss exponent α = 2/δ and Rayleigh fading.

The standard (mean) success probability (or SIR distribution)

is the success probability of the typical user, assumed at the

origin o, which is known from [4] as

ps(θ) = P
o(SIR > θ) =

1

2F1(1,−δ; 1− δ;−θ)
.
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Fig. 8. Realization of a Poisson cellular network with BS density λ = 1,
users forming a square lattice of density λu = 3, θ = 1, and α = 4, resulting
in ps = 0.56. The BSs are indicated by × and the users by ◦. The number
next to each user is its success probability (averaged over fading) or its mark,
and the dashed lines are the edges of the Voronoi cells of the BS PPP.

The probability also has a spatial interpretation: for each

realization of the BS and user point processes, it gives the

fraction of users achieving an SIR of at least θ in a given

time slot. It depends neither on the user density nor on the BS

density.

Again we define the conditional success probability

Ps(θ) , P
o(SIR > θ | Φ),

which is the probability that the SIR at the origin exceeds θ
given the BS process and given that a user is located at o. The

quantity of interest is the meta distribution of the SIR, which

is the distribution (ccdf) of Ps:

F̄ (θ, x) , F̄Ps(x) = P(Ps(θ) > x), θ ∈ R
+, x ∈ [0, 1]

It gives detailed information about the user experience by

providing the fraction of users achieving an SIR of θ with

reliability at least x.

As before, a direct calculation of this meta distribution

seems infeasible and we thus focus on the moments Mb ,
E(Ps(θ)

b) first.

B. Moments

Theorem 2 (Moments for cellular network) The moments

of the conditional success probability for Poisson cellular

networks are given by

Mb =
1

2F1(b,−δ; 1− δ;−θ)
, b ∈ C. (21)
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Fig. 9. Success probability M1 and variance M2 − M2

1
for α = 3 and

α = 4.

Proof: Let x0 = arg min{x ∈ Φ: ‖x‖} be the serving

BS of the typical user. Given the BS process Φ, the success

probability is

Ps(θ) = P

(

h > ‖x0‖αθ
∑

x∈Φ\{x0}

hx‖x‖−α
∣
∣
∣ Φ
)

=
∏

x∈Φ\{x0}

1

1 + θ(‖x0‖/‖x‖)α
.

The b-th moment follows as

Mb = E

∏

x∈Φ\{x0}

1

(1 + θ(‖x0‖/‖x‖)α)b
. (22)

Instead of calculating this expectation in two steps as usual

(first condition on ‖x0‖ then take the expectation w.r.t. it),

we use the recent result [15, Lemma 1], which requires the

calculation of only one finite integral. The lemma gives the

pgfl of the relative distance process (RDP), defined as

R , {x ∈ Φ \ {x0} : ‖x0‖/‖x‖},
when Φ is a PPP. Since (22), depends on the BS locations

only through the relative distances, we can directly apply the

pgfl of the RDP and obtain

Mb =
1

1 + 2
1∫

0

(

1− 1
(1+θrα)b

)

r−3dr

, (23)

which can be expressed as (21).

Fig. 9 shows the standard success probability M1 = ps and

the variance as a function of θ for α = 3, 4. Since the variance

necessarily tends to zero for both θ → 0 and θ → ∞, it

assumes a maximum at some finite value of θ. A numerical

evaluation shows that for α = 3, the variance is maximized

quite exactly at θ = 1, and for both values of α, the success

probability at which the variance is maximized is ps = 0.38.

Sometimes the calculation of the hypergeometric function

with negative last argument can cause numerical problems. In

such cases, the alternative form

Mb =
(1 + θ)b

2F1(b, 1; 1− δ; θ/(1 + θ))
,
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obtained through Euler’s transformation, is helpful.

For b = −1, (21) (or (23)—no “detour” using hypergeo-

metric functions needed in this case) simplifies to

M−1 =
1− δ

1− δ(1 + θ)
, θ < 1/δ − 1. (24)

As in the bipolar case, this is the mean local delay if θ <
1/δ− 1. Converseley, if θ ≥ α/2− 1, the mean local delay is

infinite due to the correlated interference in the system. This

phase transition in the mean local delay is similar to the one

observed in [6], [12], [16] for ad hoc networks. Incidentally,

the condition for finite local delay can also be expressed as

θMISR < 1, where MISR is the mean interference-to-signal

ratio of the PPP introduced in [17].

For b ∈ N, the moment Mb equals the joint success

probability of b transmissions, which was calculated in [7,

Thm. 2] using a different (less direct) method.

C. Exact expression, bounds, and beta approximation

As in the bipolar case, we obtain an exact expression for

the meta distribution from the Gil-Pelaez theorem.

Corollary 5 The SIR meta distribution for Poisson cellular

networks is given by

F̄ (θ, x) =
1

2
+

1

π

∫ ∞

0

ℑ(e−jt log xMjt)

t
dt (25)

Numerical investigations indicate that |Mjt| = Θ(t−1), t →
∞, so the integrand decays with t−2 and the integral can be

evaluated efficiently.

Fig. 10 shows the exact distribution and the classical and

best bounds for θ = 1 and θ = 1/10, respectively. Interest-

ingly, the meta distribution F̄ (1, x) has almost constant slope,

which means that the user success probabilities are essentially

uniformly distributed between 0 and 1.

Fig. 11 shows that the beta approximation provides an

excellent fit over a wide range of θ values. It also serves as

an illustration of the meta distribution showing what combi-

nations of reliability x and fraction of users can be achieved

for θ ∈ {−10, 0, 10} dB.

Lastly, Fig. 12 shows a contour plot of the meta distribution

for α = 4. An operator who is interested in the performance of

the “5% user” (the user in the bottom 5-th percentile in terms

of performance) can use the bottom curve, corresponding to

F̄ (θ, x) = 0.95, to find the performance trade-off that such a

user can achieve. For example, it can achieve an SIR of −10
dB with reliability 0.72 or an SIR of −4.3 dB with reliability

0.3.

D. Effect of random base station activity

Here we investigate the effect on the meta distribution if

interfering BSs were active only with probability p. This is

similar to the model studied in [4, Sec. VI], where a frequency

reuse parameter κ was introduced and each BS is assumed to

choose one of κ bands independently at random. Hence the

two models are the same if we set p = κ−1 (apart from the
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(a) θ = 1 ⇒ ps = 0.56, var(Ps) = 0.098
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(b) θ = 1/10 ⇒ ps = 0.91, var(Ps) = 0.0086

Fig. 10. The exact meta distribution (25), the best Markov bounds (15) for
b ∈ [4], the Paley-Zygmund lower bound, and the best overall bounds (given
the first four moments) for α = 4.
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Fig. 11. Exact ccdf and beta approximation for θ = 1/10, 1, 10 for α = 4.
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Fig. 12. Contour plot of meta distribution F̄ (θ, x) for α = 4. The values
at the curves are F̄ (θ, x) = u = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 (from top to
bottom).

fact that κ ∈ N, whereas no such restriction is imposed on

p−1).

Theorem 3 The b-th moment of the success probability in

a Poisson cellular network where interfering BSs are active

independently with probability p can be expressed as

Mb(p) =

(

1−
∞∑

k=1

(
b

k

)

(−pθ)k
δ

k − δ
·

2F1(k, k − δ; k + 1− δ;−θ)

)−1

. (26)

Proof: If interfering BSs are active independently with

probability p in each time slot, we have

Ps(θ) =
∏

r∈R

(
p

1 + θrα
+ 1− p

)

and thus

Mb(p) = E

∏

r∈R

(

1− pθrα

1 + θrα

)b

.

Hence we need to modify (23) to

Mb(p) =
1

1 + 2
1∫

0

(

1−
(

1− pθrα

1+θrα

)b )

r−3dr

. (27)

For general b ∈ C, letting x = rα, the integral in (27) can

be expanded as3

∞∑

k=1

(
b

k

)−(−pθ)k

α

∫ 1

0

(
x

1 + θx

)k

x−δ−1dx =

∞∑

k=1

(
b

k

)−(−pθ)k

kα− 2
2F1(k, k − δ; k + 1− δ;−θ), (28)

and we obtain the result.

3See the appendix, where a similar technique is used.
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Fig. 13. Critical probability pc (in dB) for finite mean local delay as a function
of θ for α = 3, 4 and conjectured lower and upper bounds.

For b = 1, this yields the success probability

ps(θ, p) =
1

1 + pθ δ
1−δ 2F1(1, 1− δ; 2− δ,−θ)

(29)

=
1

1− p+ p 2F1(1,−δ; 1− δ;−θ)
(30)

The first expression corresponds to [4, Eqn. (19)], while the

second one follows from the identity

θδ

1− δ
2F1(1, 1− δ; 2− δ;−θ) + 1 ≡ 2F1(1,−δ; 1− δ;−θ).

(31)

For b = −1, (27) yields

M−1 =
1

1− pθ δ
1−δ 2F1(1, 1− δ; 2− δ,−θ(1− p))

, (32)

which is valid for p ≤ pc(θ). Here pc(θ) is the critical transmit

probability denoting the phase transition from finite to infinite

mean local delay. If θ < 1/δ − 1, we know from (24) that

pc(θ) = 1. If p < 1, a larger θ can be accommodated

while maintaining a finite mean local delay. Fig. 13 shows the

critical probability pc(θ) and two conjectured bounds, which

are pc(θ) ≥ ( δ
1−δ θ)

−δ/2 and pc(θ) ≤ ( δ
1−δ θ)

−δ .

Next we provide an asymptotic result on the success prob-

ability ps(p, θ) as p → 0 while keeping pθδ constant.

Corollary 6 Let t = pθδ. As p → 0 and θ → ∞ such that t
stays constant,

ps(θ, p) ∼
1

1 + pθδ/ sinc δ
=

sinc δ

t+ sinc δ
. (33)

Proof: From Thm. 4 and Lemma 6 in [15], 2F1(1,−δ; 1−
δ;−θ) ∼ θδ/ sinc δ, θ → ∞. Inserting this in (30) and letting

p → 0 and θ → ∞ while keeping pθδ constant yields the

result.

The corollary implies that

ps(θ, p) ∼ ps(c
1/δθ, p/c), c ≥ 1.

So in the limit of small p, if p is decreased by 10 dB, θ can be

increased by 5α dB to maintain the same success probability.
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Fig. 14. Contour plot showing the combinations of θ and p (in dB) that
achieve a given target success probability pt ∈ {0.1, 0.2, . . . , 0.9, 0.95} for
α = 4. The dashed lines are the asymptotes obtained from (33).

Fig. 14 shows a contour plot indicating the combinations

of θ and p (in dB) that achieve a given target success

probability pt, together with the asymptotes obtained from

(33) by calculating t from t = (p−1
t − 1) sinc δ and then

plotting θ(p) = (t/p)1/δ , which is a line in the log-log plot.

Hence, keeping pθδ constant results asymptotically in the same

success probability, as p → 0 or θ → ∞; in contrast, in the

bipolar case, keeping pθδ constant results in exactly the same

success probability for all values of p and θ.

An important question is whether—as in the bipolar case—

the variance goes to 0 as p → 0 while keeping ps constant.

The last corollary answers that question.

Corollary 7 Given t = pθδ,

lim
p→0

θ=(t/p)1/δ

varPs(θ, p) =
sinc δ

2t+ sinc δ
−
(

sinc δ

t+ sinc δ

)2

. (34)

Expressed as a function of the target success probability pt,

lim
p→0

θ=(t/p)1/δ

varPs(θ, p) =
pt

2− pt
− p2t . (35)

Proof: The inverse of the second moment follows from

Thm. 3 and is given by

M−1
2 = 1 + 2p θ

δ

1− δ
2F1(1, 1− δ; 2− δ,−θ)

︸ ︷︷ ︸

A

−

p2 θ2
δ

2− δ
2F1(2, 2− δ; 3− δ,−θ)

︸ ︷︷ ︸

B

.

As θ → ∞, combining (33) and (29), A = θδ/ sinc δ. For B,

we have4 B = Θ(θδ). Hence, for some constant c > 0,

lim
p→0

θ=(t/p)1/δ

M−1
2 = 1 + 2t/ sinc δ − ptc = 1 + 2t/ sinc δ.

4See, e.g., http://dlmf.nist.gov/15.8#E2.
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Fig. 15. Variance M2 − M2

1
as a function of the BS activity probability p

for target success probabilities pt ∈ {0.7, 0.8, 0.9} for α = 4. The dashed
lines are the asymptotes from (35).

The result follows from varPs = M2 −M2
1 , with M1 given

in (33).

Fig. 15 displays the variance as a function of p for different

target success probabilities. These are the variances obtained

along the corresponding contour lines in Fig. 14. The asymp-

totic variance from (35) is also shown. It can be seen that the

transmit probability has relatively little impact on the variance,

especially for higher success probabilities. So, in contrast to

the bipolar case, the disparity in the user experience cannot be

significantly reduced by random BS activation patterns. The

reason for this different behavior from the bipolar case is that

the link distance in the cellular case is random.

IV. CONCLUSIONS

While spatial averages, such as the success probability

of a transmission over the typical link (or standard SIR

distribution), are useful, they do not provide much information

about the performance of the individual links or users in a

given realization of the network. To overcome this drawback,

this paper introduces the meta distribution of the SIR, which is

the distribution of the conditional SIR distribution (or success

probability) given the point process, and provides an exact

expression, bounds, and an approximation, for Poisson bipolar

and cellular networks. Hence the complete distribution of the

conditional link success probability Ps in both types of Poisson

networks can be characterized. The complete distribution of

Ps(θ) provides much more fine-grained information than just

the mean ps(θ) that is usually considered.

The key insight is that the moments of Ps can be calculated

in closed-form. Hence standard and optimum moment-based

bounding techniques can be employed, which yield lower

and upper bounds that are reasonably tight in some regimes.

Moreover, an approximation by a beta distribution by matching

first and second moments turns out to be matching the exact

distributions extremely accurately.

Bipolar networks with ALOHA exhibit the interesting prop-

erty that the variance of Ps goes to 0 as the transmit probability

p → 0 while keeping the (mean) success probability constant.
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This is, however, not the case for cellular networks. If inter-

fering base stations are active independently with probability

p, the variance approaches a non-zero constant as p → 0,

again while keeping a constant success probability ps. So the

deployment of an ultra-dense network of small cells that are

only active with small probability (when a user requires service

in their cell) does not significantly reduce the disparity of

user experiences. On the positive side, lowering p allows an

increase of θ without affecting ps. To be precise, decreasing

p by 10 dB allows an increase of θ by 5α dB.

From a broader perspective, the results show that it is

possible in certain cases to not only derive spatial averages, but

complete spatial distributions, which constitute rather sharp

results on the network performance since they capture the

statistics of all links in a given realization of the network.

Hence it is demonstrated that stochastic geometry allows for

the calculation of (even) stronger results than spatial averages.

APPENDIX

A. Proof of Theorem 1

Proof: Given Φ, the success probability is

Ps(θ) = P(h > θ′I | Φ) = E(e−θ′I | Φ),
where θ′ = θRα and

I =
∑

x∈Φ

hx‖x‖−α
1(x ∈ Φt).

Averaging over the fading and ALOHA, it follows that

Ps(θ) =
∏

x∈Φ

p

1 + θ′‖x‖−α
+ 1− p.

Hence we have

Mb = E

[
∏

x∈Φ

(
p

1 + θ′‖x‖−α
+ 1− p

)b
]

= exp

(

−λ

∫

R2

[

1−
(

p

1 + θ′‖x‖−α
+ 1− p

)b
]

dx

)

.

This is the same integral as in [6, Appendix A] and thus for

b ∈ N, the resulting expression is the diversity polynomial

derived there.

For general (non-integer) b, the proof in [6, Appendix A]

needs to be modified. Expressing the moments as Mb =
e−λFb , we have from (29) in that paper

Fb = πδ

∫ ∞

0

[

1−
(

1− pθ′

u+ θ′

)b
]

uδ−1du.

For general b ∈ C, we replace the summation bound by ∞
since

(1− x)b ≡
∞∑

k=0

(
b

k

)

(−x)k,

and we obtain

Fb = πδ

∫ ∞

0

∞∑

k=1

(
b

k

)

(−1)k+1(pθ′)k
uδ−1

(u+ θ′)k
du

= πδ

∞∑

k=1

(
b

k

)

(−1)k+1(pθ′)k
∫ ∞

0

uδ−1

(u+ θ′)k
du.

For the integral we have
∫ ∞

0

uδ−1

(u+ θ′)k
du = θ′δ−k (−1)k+1π

sin(πδ)

Γ(δ)

Γ(k)Γ(δ − k + 1)

and thus

Fb = πθ′δ
πδ

sin(πδ)

∞∑

k=1

(
b

k

)

pk
Γ(δ)

Γ(k)Γ(δ − k + 1)

= πθδR2 πδ

sin(πδ)

∞∑

k=1

(
b

k

)(
δ − 1

k − 1

)

pk.

For the −1-st moment, we obtain

F−1 = −πR2Γ(1 + δ)Γ(1 − δ)θδp(1− p)δ−1, p < 1,

and thus

M−1 = exp(Cθδp(1− p)δ−1)

= M
−(1−p)δ−1

1 , p < 1.
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