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Abstract—The interference in wireless networks is temporally
correlated, since the node or user locations are correlatedover
time and the interfering transmitters are a subset of these
nodes. For a wireless network where (potential) interferers form
a Poisson point process and use ALOHA for channel access,
we calculate the joint success and outage probabilities ofn
transmissions over a reference link. The results are based on the
diversity polynomial, which captures the temporal interference
correlation. The joint outage probability is used to determine
the diversity gain (as the SIR goes to infinity), and it turns
out that there is no diversity gain in simple retransmission
schemes, even with independent Rayleigh fading over all links.
We also determine the complete joint SIR distribution for two
transmissions and the distribution of the local delay, which is
the time until a repeated transmission over the reference link
succeeds.

Index Terms—Wireless networks, interference, correlation,
outage, Poisson point process, stochastic geometry.

I. I NTRODUCTION

A. Motivation and contributions

The locations of interfering transmitters in a wireless net-
work are static or subject to a finite level of mobility. As a
result, the interference power is temporally correlated, even
if the transmitters are chosen independently at random from
the total set of nodes in each slot. The interference correlation
has been largely ignored until recently, although it can have
a drastic effect on the network performance. In this paper,
we provide a comprehensive analysis of the joint success and
outage probabilities of multiple transmissions over a reference
link in a Poisson network, where the potential interferers form
a static Poisson point process (PPP) and the actual (active)in-
terferers in each time slot are chosen by an ALOHA multiple-
access control (MAC) scheme. The results show that for some
network parameters, ignoring interference correlation leads to
significant errors in the throughput and delay performance of
the link under consideration.

The Poisson network model has served as an important
base-line model for ad hoc and sensor networks for several
decades and later also for mesh and cognitive networks.
More recently, it has also been gaining relevance for cellu-
lar systems, where base stations are increasingly irregularly
deployed, in particular in heterogeneous networks [1]. Con-
sequently, the results in this paper may find applications ina
variety of networks.
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The paper makes four contributions:

• We introduce the diversity polynomial and provide a
closed-form expression for the joint success probability
of n transmissions in a Poisson field of interferers with
independent Rayleigh fading and ALOHA channel access
(Section III).

• We show that there is no temporal diversity gain
(due to retransmission), irrespective of the number of
retransmissions—in stark contrast to the case of inde-
pendent interference (Section III.D).

• We provide the complete joint SIR distribution for the
case of two transmissions and show that the probability
of succeeding at least once isminimized if the two
transmissions occur at the same rate (Section IV).

• We determine the complete distribution of the local delay,
which is the time it takes for a node to transmit a packet
to a neighboring node if a failed transmission is repeated
until it succeeds (Section V).

B. Related work

The first paper explicitly addressing the interference corre-
lation in wireless networks is [2], where the spatio-temporal
correlation coefficient of the interference in a Poisson network
is calculated. It is also shown that transmission success events
and outage events are positively correlated, but their joint
probability is not explicitly calculated. In [3], the temporal
interference correlation coefficient is determined for more gen-
eral network models, including the cases of static and random
node locations that are known or unknown, channels without
fading and fading with long coherence times, and different
traffic models. In [4], the loss in diversity is established for
a multi-antenna receiver in a Poisson field of interference.
The probability that the SIR atn antennas jointly exceeds
a thresholdθ is determined in closed form. This result is a
special case of the main result in this paper, where the focusis
on temporal correlation. More recently, [5] studied the benefits
of cooperative relaying in correlated interference, for both
selection combining and maximum ratio combining (MRC),
while [6] analyzed on the impact correlated interference has
on the performance of MRC at multi-antenna receivers.

A separate line of work focuses on thelocal delay, which
is the time it takes for a node to connect to a nearby neighbor.
The local delay, introduced in [7] and further investigatedin
[8], [9], is a sensitive indicator of correlations in the network.
In [10] the two lines of work are combined and approximate
joint temporal statistics of the interference are used to de-
rive throughput and local delay results in the high-reliability
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regime. In [11], the mean local delay for ALOHA and
frequency-hopping multiple access (FHMA) are compared,
and it is shown that FHMA has comparable performance in the
mean delay but is significantly more efficient than ALOHA in
terms of the delay variance.

II. SYSTEM MODEL

We consider a link in aPoisson field of interferers, where
the (potential) interferers form a uniform Poisson point process
(PPP)Φ ⊂ R

2 of intensityλ. The receiver under consideration
is located at the origino, and it attempts to receive messages
from a desired transmitter at locationz, where‖z‖ = r, which
is not part of the PPP. Time is slotted, and the transmission
over the link fromz to o is subject to interference from the
nodes inΦ, which use ALOHA with transmit probabilityp.
The desired transmitter is transmitting in each time slot. The
transmit power level at all nodes is fixed to1, and the channels
between all node pairs are subject to power-law path loss with
exponentα and independent (across time and space) Rayleigh
fading.

The signal-to-interference ratio (SIR) ato in time slotk is
then given by

SIRk =
hkr−α

∑

x∈Φk
hx,k‖x‖−α

,

whereΦk ⊆ Φ is the set of active interferers in time slotk and
(hk, hk,x)k∈Z,x∈Φ is a family of independent and identically
distributed (iid) exponential random variables with mean1. In
each time slotk, Φk forms a PPP of intensityλp, but the point
processesΦk andΦi aredependentfor all k, i ∈ Z, since they
are subsets of the same PPPΦ. In the extreme case where
p = 1, Φk ≡ Φ, ∀k ∈ Z. This dependence is what makes the
following analysis non-trivial.

III. T HE DIVERSITY POLYNOMIAL AND THE JOINT

SUCCESSPROBABILITY

A. Main result

We use a standard SIR threshold model for transmission
success and denote bySk , {SIRk > θ} the transmission
success event in time slotk. We first focus on the probabilities
of the joint success events

p(n)
s , P(S1 ∩ . . . ∩ Sn).

To calculate this probability, we introduce thediversity
polynomial.

Definition 1 (Diversity polynomial). The diversity polyno-
mial Dn(p, δ) is the multivariable polynomial (inp and δ)
given by

Dn(p, δ) ,
n∑

k=1

(
n

k

)(
δ − 1

k − 1

)

pk. (1)

It is of degreen in p and degreen − 1 in δ.

The second binomial can be expressed as
(

δ − 1

k − 1

)

,
(δ − 1) · . . . · (δ − k + 1)

(k − 1)!
=

Γ(δ)

Γ(k)Γ(δ − k + 1)
.

(2)
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Fig. 1. The diversity polynomialD5(p, δ).

The first four diversity polynomials are

D1(p, δ) = p

D2(p, δ) = 2p + (δ − 1)p2

D3(p, δ) = 3p + 3(δ − 1)p2 +
1

2
(δ − 1)(δ − 2)p3

D4(p, δ) = 4p + 6(δ − 1)p2 + 2(δ − 1)(δ − 2)p3+

1

6
(δ − 1)(δ − 2)(δ − 3)p4.

Properties:
• For fixed n and δ, Dn(p, δ) is concave increasing from

0 to Dn(1, δ), for p ∈ [0, 1].
• For fixed n and p, Dn(p, δ) is convex increasing from

1 − (1 − p)n to np, for δ ∈ [0, 1].

Theorem 1 (Joint success probability). The probability that
in a Poisson field of interferers a transmission over distance
r succeedsn times in a row is given by

p(n)
s = e−∆Dn(p,δ),

where∆ = λπr2θδΓ(1 + δ)Γ(1 − δ) and δ = 2/α.

Proof. See Appendix A.
Remarks:

• The parameter∆ is related to thespatial contentionpa-
rameterγ introduced in [12], [13]. For Poisson networks,
γ = πθδΓ(1 + δ)Γ(1 − δ), hence∆ = λr2γ.

• When evaluatingp(n)
s as a function ofδ, it must be

considered that∆ is itself a function of δ, not just
Dn(p, δ).

• For n = 1, the result reduces to the well-known single-
transmission resultP(Sk) = e−∆p, for all k.

• If δ ↑ 1 (α ↓ 2), Dn(p, δ) ↑ np, which means the success
events become independent. At the same time,∆ ↑ ∞,
so p

(n)
s ↓ 0.

• If δ ↓ 0 (α ↑ ∞), Dn(p, δ) ↓ 1 − (1 − p)n, which is
the case of maximum correlation. At the same time,∆ ↓
λπr2, which is the smallest possible value.
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Fig. 2. The conditional success probability (3) forδ = 1/2 and∆ = 1/2.
The dashed line is the success probability of a single transmission e−p/2.

• If δ ↓ 0 and p = 1, Dn(1, δ) ↓ 1 for all n, so
the success events are fully correlated (despite the iid
Rayleigh fading), i.e.,

p(1)
s = p(2)

s = . . . = e−∆ = e−λπr2

,

andP(S2 | S1) = 1. This is a strict hard-core condition,
i.e., all transmissions succeed if there is no interferer
within distancer.

• If p = 1, the diversity polynomial simplifies to the one
introduced in [4] for the SIMO case, where it quantifies
the spatial diversity instead of the temporal diversity:

Dn(1, δ) =
Γ(n + δ)

Γ(n)Γ(1 + δ)

As these remarks show, the diversity polynomial characterizes
the dependence between the success events and the diversity
achievable with multiple transmissions.

An immediate important consequence of Thm. 1 is the
following result for the conditional success probability of
succeeding at timen + 1 after having succeededn times:

P(Sn+1 | S1, . . . , Sn) = e∆(Dn(p,δ)−Dn+1(p,δ)). (3)

Fig. 2 displays the conditional success probability forn =
1, 2, 3, 4. It can be seen that succeeding once or twice dras-
tically increases the success probability ifp is not too small.
This illustrates that treating interference as independent may
result in significant errors.

B. Alternative forms of the diversity polynomial

Let

fn(x) ,
n∏

k=1

(x

k
− 1
)

=
1

n!

n∏

k=1

(x − k)

be the polynomial of ordern with roots at[n] = {1, 2, . . . , n}
andfn(0) = (−1)n. Thus equipped, we can write the diversity
polynomial as

Dn(p, δ) =

n∑

k=1

(
n

k

)

fk−1(δ)p
k,

by observing that

fk−1(δ) =
Γ(δ)

Γ(k)Γ(δ − k + 1)
.

Using the Stirling numbers of the first kindSn,k, the falling
factorial1 (x)n , x(x − 1) · · · (x − n + 1) can be written as

(x)n =

n∑

k=0

Sn,kxk.

Rewriting the binomial as
(

δ − 1

k − 1

)

=
(δ − 1)k−1

Γ(k)
=

1

Γ(k)

k−1∑

j=0

Sk−1,j(δ − 1)j ,

we have

Dn(p, δ) =

n∑

k=1

(
n

k

)
pk

Γ(k)

k−1∑

j=0

Sk−1,j(δ − 1)j

=

n∑

k=1

(
n

k

)
pk

Γ(k)

k−1∑

j=0

(−1)jSk−1,j(1 − δ)j . (4)

This expansion in(1− δ) is useful sinceα ∈ (2, 4] in most
situations. Forn = 2, 3, 4, the polynomial in this form is

D2(p, δ) = 2p − p2(1 − δ)

D3(p, δ) = 3p + (−3p2 + 1
2p3)(1 − δ) + 1

2p3(1 − δ)2

D4(p, δ) = 4p + (−6p2 + 2p3 − 1
3p4)(1 − δ)+

(2p3 − 1
2p4)(1 − δ)2 − 1

6p4(1 − δ)3.

For δ ↑ 1, sinceSk−1,1 = (−1)kΓ(k − 1), k ≥ 2, we have
from (4)

Dn(p, δ) = np + (1 − δ)

n∑

k=2

(
n

k

)
(−1)k+1pk

k − 1
+ O((1 − δ)2).

This expression is useful as an approximation for generalp
if α ≤ 3 (or 1 − δ ≤ 1/3).

Alternatively,Dn(p, δ) can be expressed as a polynomial in
δ as

Dn(p, δ) =

n∑

k=1

(
n

k

)
pk

Γ(k)

k∑

j=1

Sk,jδ
j−1.

In this last expression, the term forj = 1 is 1 − (1 − p)n.
This is the polynomial inp obtained whenδ = 0. Conversely,
whenδ = 1, it is np.

C. Event correlation coefficients

Let Ak = 1(Sk) be the indicator thatSk occurs. The
correlation coefficient betweenAi andAj , i 6= j, is

ζAi,Aj (p, δ) =
P(S1 ∩ S2) − P

2(S1)

P(S1)(1 − P(S1))

=
e∆p2(1−δ) − 1

e∆p − 1
. (5)

The correlation coefficient for∆ = 5δΓ(1 + δ)Γ(1 − δ)/2 is
illustrated in Fig. 3 as a function ofp and δ. It reaches its

1(x)n is the Pochhammer notation for the falling factorial.
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Fig. 3. The correlation coefficientζ(p, δ) given in (5) forλπr2 = 1/2 and
θ = 5 as given by (5). The correlation coefficient is decreasing with δ. For
δ ≪ 1, it increases inp, but for δ ≈ 1, it is not monotonic inp.

maximum of1 at p = 1 andδ = 0. While it is decreasing in
δ, it is not monotonic inp at δ ≈ 1.

Since P(S1) = P(S2), we haveP(S̄1 ∩ S̄2) − P
2(S̄1) ≡

P(S1 ∩ S2)− P
2(S1), thus the failure events are correlated in

exactly the same way as the success events: IfĀk = 1(S̄k),
thenζĀi,Āj

(p, δ) ≡ ζAi,Aj (p, δ).

D. Joint and conditional outage probabilities

The dependence between two success events can be quan-
tified by the ratio of the probabilities of the joint event to the
probability of the same events if they were independent. We
obtain

P(S1 ∩ S2)

P2(S1)
=

e−∆D2(p,δ)

e−2∆p
= e∆(1−δ)p2

> 1,

which is consistent with the fact that the correlation coefficient
(5) is positive. The positive correlation is also apparent from
the conditional probability that the second attempt succeeds
when the first one did, which is

P(S2 | S1) =
e−∆D2(p,δ)

e−∆p
= e−∆p(1−p(1−δ)).

The probability of (at least) one successful transmission in
n attempts follows from the inclusion-exclusion formula

p1|n
s , P

(
n⋃

k=1

Sk

)

=

n∑

k=1

(−1)k+1

(
n

k

)

p(k)
s . (6)

For the joint outage it follows that

P(S̄1 ∩ S̄2) = 1 − p1|2
s = 1 − 2e−∆p + e−∆p(2−p(1−δ)).

Hence

P(S̄1 | S̄2) = 1 − e−∆p(1 − e−∆p(1−p(1−δ)))

1 − e−∆p
(7)

and

P(S̄1 ∩ S̄2)

P2(S̄1)
= 1 +

e−2∆p(e∆p2(1−δ) − 1)

(1 − e−∆p)2
> 1,

which is consistent with the previous observation that failure
events are also positively correlated.

From (7), the success probability given a failure follows as

P(S2 | S̄1) =
1 − e−∆p(1−p(1−δ))

e∆p − 1
,

which is maximized at∆ = 0, where it is 1 − p(1 − δ).2

This follows since the numerator is at most∆p(1− p(1− δ))
whereas the denominator is at least∆p, both with equality at
∆ = 0. This yields the general bound

P(S2 | S̄1) ≤ 1 − p(1 − δ),

with equality if and only if∆ = 0. Since∆ = λπr2θδΓ(1 +
δ)Γ(1− δ), ∆ → 0 is achieved by either letting the interferer
densityλ, the transmission distancer, or the SIR thresholdθ
go to 0.

Next we examine the conditional outage probability of an
outage in slotn + 1 given that outages occurred in slots1

through n. Since p
(n)
s → 1 as ∆ → 0, one would expect

this conditional outage probability to go to zero in the limit.
Interestingly, this is not the case.

Corollary 1 (Asymptotic conditional outage).

lim
∆→0

P(S̄n+1 | S̄1 ∩ . . . ∩ S̄n) = p(1 − δ/n), n ≥ 1. (8)

Proof: From (11) we know that the expansions ofp
(n+1)
o

andp
(n)
o both have non-zero linear terms in∆, thus the higher-

order terms do not matter, and the limit follows as

lim
∆→0

p
(n+1)
o

p
(n)
o

=
p

n

Γ(n + 1 − δ)

Γ(n − δ)
=

p

n
(n − δ).

This is in stark contrast to the independent case, where this
limit is obviously0. The actual asymptotic conditional outage
probability is increasing inn and reachesp asn → ∞.

Conversely, we have for the conditional success probability
given n failures

lim
∆→0

P(Sn+1 | S̄1 ∩ . . . ∩ S̄n) = 1 − p(1 − δ/n).

Fig. 4 illustrates the conditional outage probability after n
failures forδ = 1/2 and∆ = 1/2.

E. Diversity gain of retransmission scheme

Definition 2 (Diversity gain of retransmission scheme).The
diversity gain, or simply diversity, is defined as

d , − lim
SIR→∞

log p
(n)
o (SIR)

log SIR
,

whereSIR is the mean SIR (averaged over the fading).

This is analogous to the standard definition in noise-limited
systems, where diversity is defined as the exponent of the error
probability as the (mean) SNR increases to infinity, see,e.g.,

2Here and elsewhere in the paper, we assume that when a function f has
a removable singularity ata, its value ata is understood as the limitf(a) =
limx↓a f(x).
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transmission given that the previousn failed for δ = 1/2 and∆ = 1/2. The
dashed line is the outage probability of a single transmission 1 − e−p/2.

[14]. In our interference-limited system, the relevant quantity
is the SIR.

To calculate the diversity, we need to first establish the
connection between the mean SIR and the parameter∆. The
SIR can be increased by either increasing the received signal
power or by decreasing the interference. Either way, we find
that SIR ∝ ∆−1/δ:

• If we increase the received power by increasing the
transmit powerPt at the desired transmitter, we have
SIR ∝ Pt. Since increasingPt and decreasingθ have
the same effect on the success probabilityP(SIR > θ),
we have∆ ∝ P−δ

t ∝ SIR−δ and thusSIR ∝ ∆−1/δ.
• If we increase the received power by reducing the link

distancer, we haveSIR ∝ r−α. Since∆ ∝ r2, we obtain
SIR ∝ ∆−1/δ.

• If we reduce the interference by decreasing the intensity
λ of the PPP, we haveI ∝ λ1/δ since the interferenceI
is a stable random variable with characteristic exponent
δ [15, Cor. 5.4]. Since∆ ∝ λ andSIR ∝ I−1, we again
haveSIR ∝ ∆−1/δ.

In conclusion, lettingSIR → ∞ is the same as letting
∆−1/δ → ∞, and we can express the diversity as

d = − lim
∆−1/δ→∞

log p
(n)
o (∆)

log(∆−1/δ)
= lim

∆→0
δ
log p

(n)
o (∆)

log ∆
. (9)

Next we need a lemma that establishes expansions on the
probability of succeeding at least once inn transmissions.

Lemma 1 (Taylor expansions). We have

p1|n
s = 1 − ∆pn Γ(n − δ)

Γ(n)Γ(1 − δ)
+ O(pn+1), p → 0. (10)

and

p1|n
s = 1 − ∆pn Γ(n − δ)

Γ(n)Γ(1 − δ)
+ O(∆2), ∆ → 0. (11)

Proof: See Appendix B.

Corollary 2 (Diversity gain). We haved = δ for all n ∈ N.

Proof: From (11) we havep(n)
o = 1−p

1|n
s = ∆C+O(∆2)

for someC > 0 that does not depend on∆. It follows that

d = lim
∆→0

δ
log(∆(C + O(∆)))

log ∆
= δ.

In contrast, with independent interference, the diversitygain
would be

lim
∆→0

δ
log((1 − e−∆p)n)

log ∆
= nδ.

So, retransmissions in (static) Poisson networks provide no
diversity gain.

Conversely, fixing∆ > 0 and varyingp, we have from (10)
and the fact thatSIR ∝ p−1/δ

lim
p→0

δ
log p

(n)
o (p)

log p
= δn,

so if the SIR is increased by decreasingp, full diversity is
restored. The difference in the behavior lies in the fact that ∆
captures the static components of the network, while reducing
p reduces the dependence between the interference power in
different time slots.

Alternatively, the diversity could be defined on the basis
of ∆−1 → ∞ instead ofSIR → ∞, which would yield
diversityn in the independent case (and diversity1 in reality).
This value may be better aligned with the intuition of what
the diversity gain should be withn independent transmission
attempts.

F. Effect of bounded path gain

Here we derive the conditional success probability for the
case where the (mean) path gain is bounded,i.e., instead of
assuming a gain ofv−α for a link of distancev, we employ
a path gain ofmin{1, v−α}. Equivalently, the pathloss is
ℓ(v) = max{1, vα}.

Corollary 3 (Joint success probability for bounded path
gain). For the same setting as in Thm. 1 but with path loss
law ℓ(v) = max{1, vα}, the joint success probability ofn
transmissions over distancer is

p
(n)
s,bd = exp

(

−λπ

n∑

k=1

(−1)k+1pkBk

)

, (12)

where

Bk =

(
θ′

1 + θ′

)k

+θ′δδ
Γ(k − δ)Γ(δ)

Γ(k)
−H([k, δ], 1+δ,−1/θ′),

H is the Gauss hypergeometric function3, and θ′ = θℓ(r) =
θ max{1, rα}.
Compared with the unbounded case in Thm. 1, we have
p
(n)
s,bd > p

(n)
s if r ≥ 1.

Proof. See Appendix C.
The middle term in the expression forBk is the one for
the unbounded path gain, whereas the other two account
for the difference between the unbounded and bounded case.

3Sometimes denoted as2F1
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Fig. 5. The conditional success probability (12) forδ = 1/2, r = 1, θ = 1,
andλ = π−2 for the path loss lawℓ(u) = max{1, uα}. The parameters are
chosen so that they result in∆ = 1/2, so that the only difference to Fig. 2
is the bounded path gain.

SinceH([a, b], c, 0) = 1, the bounded and unbounded cases
coincide asθ′ → ∞, i.e., for large SIR thresholds or distances
r of the desired link. Even forθ = 1 and r = 1, the
difference is insignificant, as Fig. 5 illustrates. The figure
replicates Fig. 2 for bounded path gain and shows the same
behavior: Succeeding once or twice significantly increasesthe
success probability forp not too small. This suggests that the
conclusions and trends observed in the unbounded case also
hold in the bounded case.

IV. T HE TWO-TRANSMISSIONCASE WITH DIFFERENT SIR
THRESHOLDS

Here we explore the case ofn = 2 but with different
thresholds,i.e., we focus on the eventsS1 = {SIR1 > θ1} and
S2 = {SIR2 > θ2}. This case is of interest for two reasons:
First it leads directly to the complete joint SIR distribution,
second it is useful to provide guidance on how the rate of
transmission affects the probabilities of succeeding twice or
succeeding after a failure.

A. Main result

Theorem 2 (Joint success probability with different thresh-
olds). We have

P(S1 ∩ S2) = e−∆̂D̂(p,δ,θ1,θ2),

where∆̂ = ∆/θδ = λπr2Γ(1 + δ)Γ(1 − δ) and

D̂(p, δ, θ1, θ2) = p(θδ
1 + θδ

2) + p2 θδ
1θ2 − θδ

2θ1

θ1 − θ2
. (13)

Alternatively, lettingθ̄ =
√

θ1θ2 and ν = log
√

θ2/θ1, we
have

D̂(p, δ, θ̄e−ν, θ̄eν) = pθ̄δ

(

2 cosh(νδ) − p
sinh(ν(1 − δ))

sinh ν

)

.

(14)
Moreover, D̂(p, δ, θ̄e−ν , θ̄eν) achieves its minimum of

pθ̄δ(2 − p(1 − δ)) at ν = 0, i.e., the joint success probability
is maximized atν = 0.

Proof. See Appendix D.
Since the joint success probability is symmetric inθ1 and

θ2, the expression (14) is even inν, and it can be tightly
bounded by its quadratic Taylor expansion

D̂(p, δ, θ̄e−ν , θ̄eν) &

pθ̄δ
(

2 − p(1 − δ) + δ
[

δ +
p

6
(δ − 1)(δ − 2)

]

ν2
)

. (15)

With independent interference, we would haveD̂ = p(θδ
1+θδ

2).
As expected,

D̂(p, δ, θ̄e−ν , θ̄eν) < p(θδ
1 + θδ

2) = 2pθ̄δ cosh(νδ),

which shows that transmission success events are positively
correlated for all thresholdsθ1, θ2.

The joint SIR distributionP2(θ1, θ2) = 1 − P(S1 ∪ S2)
follows from Thm. 2 as

P2(θ1, θ2) , P(SIR1 ≤ θ1, SIR2 ≤ θ2)

= 1 − e−∆̂θδ
1p − e−∆̂θδ

2p + e−∆̂D̂(p,δ,θ1,θ2). (16)

Expressed differently,

P2(θ̄e−ν , θ̄eν) =

1 − 2 exp(−∆̂pθ̄δ cosh(νδ)) cosh(∆̂pθ̄δ sinh(νδ))+

exp

(

−∆̂pθ̄δ

[

2 cosh(νδ) − p
sinh(ν(1 − δ))

sinh ν

])

(17)

The next result shows thatν = 0 is an extremal point of
the joint outage probability.

Corollary 4 (Asymmetric probability of success). For all
p ∈ (0, 1], δ ∈ (0, 1), ∆̂ > 0, θ̄ > 0, the probabilityp1|2

s (ν) of
succeeding at least once in two transmissions with thresholds
θ̄e−ν and θ̄eν , respectively, isminimizedat ν = 0, i.e., in the
symmetric case.

Proof: See Appendix E.
Hence the probability of succeeding at least once in two

transmissions can be increased by using asymmetric thresholds
θ1 6= θ2, corresponding toν 6= 0. Conversely, the joint outage
probabilityP2(θ̄e

−ν , θ̄eν) is maximizedat ν = 0.
Sincep

1|2
s (ν) is an even function ofν, it can be expressed

as

p1|2
s (ν) = 1 − P2(θ̄e

−ν , θ̄eν) = A + Bν2 + O(ν4),

whereA = p
1|2
s (0) andB is the second derivative atν = 0.

A andB are given by

A = 2 P(SIR1 > θ̄) − P(SIR1 > θ̄, SIR2 > θ̄)

= 2 e−∆̂ pθ̄δ − e−∆̂ pθ̄δ(2−p(1−δ)) (18)

B = ∆̂ pθ̄δδ2(∆̂ pθ̄δ − 1)e−∆̂pθ̄δ

+

1
6∆̂pθ̄δδ

(
6δ + 2p − 3pδ + pδ2

)
e−∆̂ pθ̄δ(2−p(1−δ)).

(19)

Sinceν = 0 is the global minimum, we know thatB > 0.
In Fig. 6, exact curves forp1|2

s (ν) and the quadratic ap-
proximationsA + Bν2 are shown forp = 1/2 andp = 1/4.
It can be observed that the approximation is quite accurate
(slightly optimistic, in fact) for|ν| ≤ 1, which corresponds to
θ1/θ2 ∈ [e−2, e2].
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exact
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Fig. 6. Probability of succeeding at least once in two transmissions with
general θ1 and θ2. The solid curves are the exact values ofp

1|2
s (ν) =

1 − P2(θ̄e−ν , θ̄eν), whereP2 is given in (17). The dashed curves are the
approximationsA+Bν2 , with A andB given in (18) and (19), respectively.
The transmit probabilities andp = 1/2 andp = 1/4, and the other parameters
areδ = 2/3, ∆̂θ̄δ = 2.

B. Comparison with two independent transmissions

Here we investigate three cases where actual success proba-
bilities are compared with the probabilities obtained if the two
success events were independent.

1) Joint success probability:Since transmission success
events are positively correlated, we expect that the link can
accommodate a certain level of asymmetry in the thresholds
for the two transmissions. To explore this, we find the value
of ν such that

P(SIR1 > θ̄e−ν , SIR2 > θ̄eν) = P
2(SIR1 > θ̄)

or, writing out the probabilities,

exp
(

−∆̂D̂(p, δ, θ̄e−ν , θ̄eν)
)

= e−2∆̂θ̄δp.

To find an approximate valuêν of ν for which this holds we
use (15). Taking logarithms and dividing bŷ∆θ̄δp yields

2 − p(1 − δ) + δ
[

δ +
p

6
(δ − 1)(δ − 2)

]

ν̂2 = 2,

and we obtain

ν̂2 =
p(1 − δ)

δ
[
δ + p

6 (δ − 1)(δ − 2)
] . (20)

This is the level of SIR asymmetry that can be afforded
thanks to the positive correlation. The resulting joint success
probability will be slightly higher thanP2(SIR1 > θ̄), since
(15) is a (tight) bound.

Assuming a transmission rate oflog(1 + θ) nats/s/Hz for
an SIR threshold ofθ, which can be achieved if Gaussian
signaling is employed, the positive correlation translates to a
rate gainor throughput gainsince

log(1 + θ̄e−ν) + log(1 + θ̄eν) = log(1 + 2θ̄ cosh ν + θ̄2)

is increasing in|ν|. Compared to the symmetric case, the
throughput gain is

log

(

1 +
2θ̄(cosh ν − 1)

(1 + θ̄)2

)

& log

(

1 +
θ̄ν2

(1 + θ̄)2

)

.

Fig. 7. Success probabilities after two transmissions forθ̄ = 10. Solid line:
1 − P2(θ̄e−ν , θ̄eν). Dashed line:1 − (1 − P(SIR1 > θ̄e−ν))2. The dash-
dotted line shows the minimum of the solid curve, which isp

1|2
s (0) = 0.908.

Its intersection with the dashed line is the point given by (22), whereν =
−0.649. This indicates that two transmissions at thresholdθ̄(e−ν , eν) =
(19.1, 5.23) have a probability of91% of succeeding (the value of the solid
curve at ν = −0.649). The other parameters arê∆ = 1/3, p = 1/3,
δ = 2/5.

2) Probability of succeeding at least once:Alternatively,
one may want to ensure that the probability of succeeding
at least once in two transmissions is the same as in the
independent case. This is guaranteed if

1 − P2(θ1, θ2) = 1 − (1 − P(SIR1 > θ1))
2

or, equivalently,

1 − P2(θ̄e−ν, θ̄eν) = 1 − (1 − P(SIR1 > θ̄e−ν))2. (21)

To solve this equation forν, we approximate 1 −
P2(θ̄e−ν , θ̄eν) & 1 − P2(θ̄, θ̄) = p

1|2
s (0), which is valid since

p
1|2
s (0) is the minimum ofp1|2

s (ν) per Cor. 4 and the curvature
given byB in (19) is small4. Hence an approximate solution
of (21) is given by

e−νδ =

− log

(

1 −
√

1 − p
1|2
s (0)

)

∆̂pθ̄δ
. (22)

p
1|2
s (0) is calculated in (18) and denoted byA.
In Fig. 7, the design procedure is illustrated. Atθ̄ = 10, the

probabilities1 − P2(θ1, θ2) and1− (1 − P(SIR1 > θ1))
2 are

shown in solid and dashed curves, respectively. First we ob-
serve that while independent transmission success would yield
a success probability of94% at θ̄ = 10, the actual success
probability is slightly less than91%. The two curves intersect
at ν ≈ −0.6. So if a threshold of̄θe0.6 ≈ 18.2 was used in the
independent case and thresholdsθ̄(e0.6, e−0.6) ≈ (18.2, 5.5)
were used for the two transmissions in the dependent case,

4A numerical investigation shows that the second derivativeB achieves
its maximum value of0.3248 for ∆pθ̄δ = 2.456 and δ = 1. For most
parameters,B is significantly smaller. For the ones in Fig. 6, for example,
B = 0.075 for p = 1/2 andB = 0.02 for p = 1/4.
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the success probability would be about 91% in both cases.
So the penalty in the SIR threshold due to the correlation
is aboute1.2 ≈ 3.32. This is the necessary reduction in the
threshold for the second transmission to achieve the same two-
transmission success probability as in the independent case.

Since the intersection between the solid and dashed curves
cannot be calculated in closed form, the intersection between
1 − P2(θ̄, θ̄) (the dash-dotted curve) is used instead, which
yields the slightly conservative value ofν = −0.649.

3) Conditional success probability after failure:Lastly, one
may want to choose the threshold for the second transmission
such that the conditional success probability after a failure is
still as large as the success probability in the independentcase,
i.e., the problem is to findθ2 such that

P(SIR2 > θ2 | SIR1 < θ1) = P(SIR1 > θ1).

We have

P(S2 | S̄1) = 1 − P(S̄2 | S̄1) = 1 − P2(θ1, θ2)

P(S̄1)

=
e−∆̂θδ

2p − e−∆̂D̂(p,δ,θ1,θ2)

1 − e−∆̂θδ
1
p

This should be the same asP(S1) = e−∆̂θδ
1p. The resulting

equation

e−∆̂pθδ
2 − e−∆̂D̂(p,δ,θ1,θ2) = e−∆̂pθδ

1 (1 − e−∆̂pθδ
1 )

can be numerically solved forθ2.

V. RANDOM L INK DISTANCE AND LOCAL DELAY

A. Random link distance

Now we let the transmission distance be a random variable
(which is constant over time), denoted byR. We consider the
case whereR is Rayleigh distributed with mean1/(2

√
µ),

since this is the nearest-neighbor distance distribution in a PPP
of intensityµ [16]. This situation models a network where the
receivers form a PPP of intensityµ, independently of the PPP
of (potential) transmitters of intensityλ, and each transmitter
attempts to communicate to its closest receiver. To remain
consistent with the assumption of the typical receiver residing
at the origin and its desired transmitter being active in each
time slot, we add the pointo to the receiver PPP and an always
active transmitter at distanceR. The joint success probability
over this link of random distance is denoted byp̃

(n)
s .

Corollary 5 (Joint success probability with random link
distance). If the link distance is Rayleigh distributed with
mean1/(2

√
µ), the joint success probability inn transmission

attempts is given by

p̃(n)
s =

µ

µ + λθδΓ(1 + δ)Γ(1 − δ)Dn(p, δ)
(23)

Proof: The distance distribution isfR(r) = 2πµre−πµr2

.
Letting ∆′ = ∆/r2, we have

p̃(n)
s = 2πµ

∫ ∞

0

exp(−∆′r2Dn(p, δ)) exp(−πµr2)rdr

=
πµ

πµ + ∆′Dn(p, δ)

Expanding the diversity polynomial,̃p(n)
s can be written for

p → 0 as

p̃(n)
s = 1− n∆′

πµ
p+

[(
n

2

)
∆′(1 − δ)

πµ
+ n2 ∆′2

(πµ)2

]

p2+O(p3),

which provides a good approximation for smallp.
If all nodes transmit with probabilityp (including the

desired one) and the receiver process has intensity(1 − p)λ,
we haveµ = (1 − p)λ, and

p̃(n)
s =

pn(1 − p)

1 − p + θδΓ(1 + δ)Γ(1 − δ)Dn(p, δ)
,

where the factorpn is the probability that the transmitter under
consideration is allowed to transmitn times in a row.

B. The local delay and the critical probability

Let the local delay be defined as

M , arg mink∈N
{Sk occurs}.

It denotes the time until the first successful transmission
(starting at time1). For a deterministic link distance, we have

P(M > n) = p(n)
o = 1 − p1|n

s ,

and the delay distribution is

P(M = n) = p1|n
s − p1|n−1

s

=
n∑

k=1

(−1)k+1

(
n − 1

k − 1

)

exp(−∆Dk(p, δ)).

Themean local delayor simply mean delay can be expressed
as

EM =
∞∑

k=0

P(M > k) =
∞∑

k=0

p(k)
o .

While this sum cannot be directly evaluated, the mean can be
obtained using the fact that outage events are conditionally
independent givenΦ, i.e., by taking an expectation of the
inverse conditional Laplace transform of the interference, see
[8, Lemma 2]. This yields

EM = exp

(

∆
p

(1 − p)1−δ

)

. (24)

So for a deterministic link distance, the mean delay is finite
for all p < 1.

For random (but fixed) link distance, the mean delay is
analogously expressed as

EM =

∞∑

k=0

p̃(k)
o , (25)

where p̃
(k)
o can be expressed using the joint success proba-

bilities from Cor. 5. It turns out that in this case, it is not
guaranteed forEM to be finite for anyp > 0. In fact, it was
shown in [7] thatEM < ∞ if and only if

∆′p

(1 − p)1−δ
< πµ, (26)

where∆′ = λπθδΓ(1 + δ)Γ(1 − δ) as above.
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Here we would like to explore whether thisphase transition,
i.e., the existence of a critical transmit probabilitypc < 1 such
that EM = ∞ for p ≥ pc, is mainly due to the random link
distance or due to the interference correlation. The following
corollary establishes the condition for finite mean delay if
interference was independent.

Corollary 6 (Mean delay and critical transmit probability
with independent interference). For a Rayleigh distributed
(but fixed) link distance and independent interference, the
mean local delay is

EM =
πµ

πµ − ∆′p
, ∆′p < πµ, (27)

and the critical probability is

pind
c =

πµ

∆′
. (28)

Proof: Let ps(r) = exp(−∆′pr2) be the success proba-
bility of a transmission over distancer. Since interference is
assumed independent from slot to slot, the mean local delay
given r is 1/ps(r), thus, averaging over the link distance,

EM = ER(1/ps(R)) =
πµ

πµ − ∆′p
, ∆′p < πµ,

whereR is Rayleigh with mean1/(2
√

µ).
So even if the interference was independent from slot to slot,

the static random transmission distance would cause the local
delay to become infinite if the spatial contention or the transmit
probability are too large. The critical transmit probability pc

is shown in Fig. 8 for the cases of independent and dependent
interference and different ratiosλ/µ as a function ofδ for
θ = 10. The parameter∆′ in (26) and (28) strongly depends
on δ. The two critical probabilitiespc < pind

c divide the range
of p into three regimes: Forp < pc, the mean delay is always
finite. For pc ≤ p < pind

c , the mean delay is finite only if the
interference is independent. Forp > pind

c , the mean delay is
always infinite.

It can be seen that forα < 3 (δ > 2/3), pc ≈ pind
c , which

indicates that in this regime,the divergence of the mean local
delay is mainly due to the random transmission distance.

C. Alternative expression of the mean local delay and a
binomial identity

As mentioned above in (25), the mean delayEM can also
be expressed as a sum ofp̃

(n)
o . The joint success probability,

averaged over the link distance, is given in Cor. 5. With
independent interference, the diversity polynomial is replaced
by np, and applying inclusion-exclusion to (23) yields

p̃(n)
o =

n∑

k=0

(−1)k

(
n

k

)
1

1 + k∆′′p
,

where∆′′ = ∆′/(πµ). The mean delay follows as

EM =

∞∑

n=0

n∑

k=0

(−1)k

(
n

k

)
1

1 + k∆′′p
.

This is identical to (27), which implies that
∞∑

n=0

n∑

k=0

(−1)k

(
n

k

)
1

1 + kβ
≡ 1

1 − β
, β < 1.
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Fig. 8. Critical probability for finite mean delay for dependent and
independent interference as a function ofδ for θ = 10 and λ/µ = 1 and
λ/µ = 1/4.

This identity may be of independent interest.
Using p̃

1|n
s = 1− p̃

(n)
o , the delay distribution with indepen-

dent interference can be calculated as follows.

P(M = n) = p̃1|n
s − p̃1|n−1

s

=

n∑

k=1

(−1)k+1

(
n − 1

k − 1

)
1

1 + k∆′′p

=
1

∆′′np
(
n+1/(∆′′p)

n

)

=
1

∆′′np

Γ(n + 1)Γ(1 + 1/(∆′′p))

Γ(n + 1 + 1/(∆′′p))

&
Γ(1 + 1/(∆′′p))

n∆′′p
n−1/(∆′′p).

The bound is obtained from a bound on the ratio of gamma
functionsn1−s < Γ(n + 1)/Γ(n + s) [17, Eqn. (1.1)]. It is
asymptotically exact asn → ∞. It reveals that∆′′p < 1
is a necessary and sufficient condition for a finite mean,
reproducing the result in (28) via a different approach.

D. Mean local delay calculation based on Taylor expansion

Here we use the linear approximation from (10) to calculate
the mean delay. With

p̂(n)
o = ∆pn Γ(n − δ)

Γ(n)Γ(1 − δ)
,

we have

M̂n =

n∑

k=0

p̂(k)
o

= 1 + ∆p(1 − p)δ−1−

∆pn+1 Γ(n + 1 − p)H([1, n + 1 − δ], n + 1, p)

Γ(n + 1)Γ(1 − δ)
,

whereH is the hypergeometric function.̂M , limn→∞ M̂n

will be the estimated mean delay.
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Expanding the hypergeometric function, we have

M̂n = 1 + ∆p(1 − p)δ−1−

∆pn+1
∞∑

k=0

pk Γ(n + 1)Γ(n + k + 1 − δ)

Γ(n + 1 − δ)Γ(n + 1 + k)
︸ ︷︷ ︸

G

.

The negative term goes to zero since the sumG is bounded
by (1−p)−1. Again applying the bound from [17] and noting
that it is asymptotically exact asn → ∞,

G ∼
∞∑

k=0

pk

(
n + 1

n + k + 1

)δ

< (1 − p)−1.

So for n → ∞, we obtain

M̂ = lim
n→∞

Mn = 1 + ∆p(1 − p)δ−1 + O(p2), p → 0.

Remarkably, this is exactly the first-order expansion ofEM
as given in (24). The expression is also correct ifO(p2) is
replaced byO(∆2) and interpreted as∆ → 0.

VI. CONCLUSIONS

We have shown that the joint success probability ofn trans-
missions in a Poisson field of interference can be expressed
in closed-form using the diversity polynomial. An important
consequence of this result is that there isno retransmission di-
versityin Poisson networks for simple retransmission schemes.
We conjecture that the same result holds for all interference
fields induced by stationary point processes of interferers.

The impact of interference correlation is less severe if the
transmit probabilityp is small or the path loss exponentα is
near2. As a rule of thumb, we can state that ifp(1 − δ) <
1/10, the assumption of independent interference may provide
a good approximation. Conversely, ifp(1−δ) is not small, the
correlation should definitely be considered in the performance
analysis.

For the two-transmission case, the complete joint SIR
distribution has been established. It shows that the joint outage
probability is maximized when the same rate is used in both
transmissions, and it allows the determination of the SIR
thresholds such that the resulting success or outage proba-
bilities equal the ones that would be obtained if interference
was independent across slots.

Lastly, we have calculated the distribution of the local delay
and shown that the phase transition phenomenon first observed
in [7] occurs even when the interference is independent—as
long as the link distance is random (but fixed).

APPENDIX: PROOFS

A. Proof of Theorem 1

Proof: We would like to calculate the joint success
probabilityp

(n)
s = P(S1 ∩ . . . ∩ Sn). Let

Ik =
∑

x∈Φk

hx,k‖x‖−α

be the interference in time slotk,

H(n)
x =

n∑

k=1

1(x ∈ Φk)hx,k, x ∈ Φ,

the sum of the fading coefficients of interfererx when it is
active, andθ′ = θrα. The eventSk = {SIRk > θ} can then
be expressed as{hk > θ′Ik}, and we have

p(n)
s = P(h1 > θ′I1, . . . , hn > θ′In)

(a)
= E(e−θ′I1 · · · e−θ′In)

= E

[

exp

(

−θ′
∑

x∈Φ

H(n)
x ‖x‖−α

)]

(b)
= E

[
∏

x∈Φ

(
p

1 + θ′‖x‖−α
+ 1 − p

)n
]

(c)
= exp







−λ

∫

R2

[

1 −
(

p

1 + θ′‖x‖−α
+ 1 − p

)n]

dx

︸ ︷︷ ︸

Fn








.

Here (a) follows from the independence of the fading random
variables, (b) from the expectation with respect to the fading
and ALOHA, and (c) from the probability generating func-
tional (pgfl) of the PPP [15]. To evaluate the integralFn, we
first write it in polar form usingv = ‖x‖.

Fn = 2π

∫ ∞

0

[

1 −
(

pvα

vα + θ′
+ 1 − p

)n]

vdv (29)

(a)
= πδ

∫ ∞

0

[

1 −
(

1 − pθ′

u + θ′

)n]

uδ−1du

(b)
= πδ

n∑

k=1

(
n

k

)

(−1)k+1pkθ′k
∫ ∞

0

uδ−1

(u + θ′)k
du (30)

(a) follows from the substitutionu = vα andδ = 2/α and (b)
from the binomial expansion of(1 − pθ′

u+θ′
)n.

For this integral, we know from [18, Eqn. 3.196.2] that

∫ ∞

0

uδ−1

(u + θ′)k
du = θ′δ−kB(k − δ, δ) (31)

whereB(k − δ, δ) = Γ(k−δ)Γ(δ)
Γ(k) is the beta function. Since

Γ(k − δ)Γ(δ − k + 1) =
π

sin(π(k − δ))
,

we have

Γ(k − δ) =
(−1)k+1π

sin(πδ)Γ(δ − k + 1)
,

and it follows that

Fn = πθ′δ
πδ

sin(πδ)

n∑

k=1

(
n

k

)

pk Γ(δ)

Γ(k)Γ(δ − k + 1)
.

The ratio of the gamma functions on the right can be expressed
as
(

δ−1
k−1

)
. Noting thatθ′δ = θδr2, we obtain the result.
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B. Proof of Lemma 1

Proof: Expanding the exponential terms in (6) ase−x =

1 − x + O(x2), the first-order expansion ofp1|n
s in ∆ or p is

p1|n
s ∼

n∑

k=1

(−1)k+1

(
n

k

)

(1 − ∆Dk(p, δ))

=

n∑

k=1

(−1)k+1

(
n

k

)


1 − ∆

k∑

j=1

(
k

j

)(
δ − 1

j − 1

)

pj





= 1 − ∆

n∑

k=1

(−1)k+1

(
n

k

) k∑

j=1

(
k

j

)(
δ − 1

j − 1

)

pj

︸ ︷︷ ︸

Gn

.

Re-writing the double sumGn in terms of equal powers ofp
yields

Gn =

n∑

j=1

pj

(
δ − 1

j − 1

) n∑

k=j

(−1)k+1

(
n

k

)(
k

j

)

.

In this expression, the inner sum simplifies to
n∑

k=j

(−1)k

(
n

k

)(
k

j

)

=
n∑

j=1

1

j!

dj

duj
(1 − u)n

∣
∣
∣
u=1

= (−1)n
1(j = n)

since all derivatives of(1− u)n contain a factor1− u except
the nth. So

Gn = (−1)n+1pn

(
δ − 1

n − 1

)

and, therefore,

p1|n
s ∼ 1 − (−1)n+1∆pn

(
δ − 1

n − 1

)

= 1 − ∆pn Γ(n − δ)

Γ(n)Γ(1 − δ)
.

C. Proof of Corollary 3

Proof: The first steps in the proof are the same as for
Thm. 1 (see Appendix A). The integral (29) is replaced by

Fn = 2π

∫ ∞

0

[

1 −
(

pℓ(v)

ℓ(v) + θ′
+ 1 − p

)n]

vdv, (32)

where ℓ(v) = max{1, vα} and θ′ = θℓ(r). We split the
integral into two parts, one forv ∈ [0, 1] and one forv > 1,
denoted asF [0,1]

n andF>1
n , respectively. For the first part, we

have

F [0,1]
n = 2π

∫ 1

0

[

1 −
(

1 − pθ′

1 + θ′

)n]

rdr

= π

n∑

k=1

(
n

k

)

(−1)k+1

(
pθ′

1 + θ′

)k

.

For the second part, we need to calculate the integral (31) but
from 1 to ∞. From [18, Eqn. 3.197.8] we know
∫ ∞

1

uδ−1

(u + θ′)k
du =

θ′−k

[

θ′δ
Γ(k − δ)Γ(δ)

Γ(k)
− δ−1H([k, δ], 1 + δ,−1/θ′)

]

,

whereH is the hypergeometric function. Using (30), it follows
that

F>1
n = π

n∑

k=1

(
n

k

)

(−1)k+1pk

[

θ′δδ
Γ(k − δ)Γ(δ)

Γ(k)
−

H([k, δ], 1 + δ,−1/θ′)

]

.

Adding F
[0,1]
n andF>1

n yields the result.
For the comparison with the unbounded case, we note that for
r ≥ 1, the difference between the two cases is due to the term

ℓ(v)
ℓ(v)+θ′

for v < 1 in (32), which is 1
1+θrα in the bounded

case and vα

vα+θrα in the unbounded case. Forv ≥ 1, they are
identical. Since vα

vα+θrα < 1
1+θrα for v < 1, it follows that

p
(n)
s,bd > p

(n)
s for r ≥ 1. Forr < 1 the situation may be reversed

since now the comparison is betweenvα

vα+θrα and 1
1+θ , and

there will be somev < 1 for which v > r, so p
(n)
s,bd < p

(n)
s

mayoccur.

D. Proof of Theorem 2

Proof: From the pgfl, the joint probability is given by
exp(−λr2F2), where

F2 = 2π·
∫ ∞

0

(

1 −
[

prα

rα + θ1
+ 1 − p

] [
prα

rα + θ2
+ 1 − p

])

rdr.

Substitutingu = rα, we have

F2 = πδ

∫ ∞

0

(

pθ1

[

1 − pθ2

θ2 − θ1

]
uδ−1

u + θ1
+

pθ2

[

1 − pθ1

θ1 − θ2

]
uδ−1

u + θ2

)

du

(a)
= π

πδ

sin(πδ)

(

pθδ
1

[

1 − pθ2

θ2 − θ1

]

+ pθδ
2

[

1 − pθ1

θ1 − θ2

])

= π
πδ

sin(πδ)

(

p(θδ
1 + θδ

2) + p2 θδ
1θ2 − θδ

2θ1

θ1 − θ2

)

.

(a) follows from (31). This proves (13). The form (14) can
be obtained by expressingθ1 and θ2 by θ̄e−ν and θ̄eν ,
respectively, and usingcosh x ≡ (ex + e−x)/2 and sinhx ≡
(ex − e−x)/2 twice.

Lastly, we need to show that

g(ν) = 2 cosh(νδ) − p
sinh(ν(1 − δ))

sinh ν
(33)

is minimized atg(0) = 2 − p(1 − δ). Since g is even, it
is sufficient to focus onν ≥ 0. g(ν) ≥ g(0) holds since
coshx ≥ 1 and

−p sinh(ν(1 − δ)) ≥ −p(1 − δ) sinh ν,

due to the convexity ofsinhx for x ≥ 0 and the fact that
δ ∈ [0, 1].
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E. Proof of Corollary 4

Proof: We need to show thatf(ν) , p
1|2
s (ν)−p

1|2
s (0) ≥ 0

for all parameters, wherep1|2
s (ν) = 1 − P2(θ̄e−ν, θ̄eν). From

(17) we have

f(ν) = 2 exp(−∆̂pθ̄δ cosh(νδ)) cosh(∆̂pθ̄δ sinh(νδ))−
2 exp(−∆pθ̄δ)+

exp
(

−∆̂pθ̄δ(2 − p(1 − δ))
)

− exp
(

−∆̂pθ̄δg(ν)
)

,

whereg(ν) is given in (33).f(ν) ≥ 0 holds sincecoshx ≥ 1
and, as already established in the proof of Thm. 2,g(ν) ≥
g(0) = 2 − p(1 − δ).
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