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Abstract—The interference in wireless networks is temporally ~ The paper makes four contributions:

correlated, since the node or user locations are correlatedver « We introduce the diversity polynomial and provide a

time and the interfering transmitters are a subset of these | d-f ion for the ioint babilit
nodes. For a wireless network where (potential) interferes form closed-torm expression 1or the joint success probabiiity

a Poisson point process and use ALOHA for channel access, of n transmissions in a Poisson field of interferers with
we calculate the joint success and outage probabilities of: independent Rayleigh fading and ALOHA channel access
transmissions over a reference link. The results are basedhahe (Section I11).

diversity polynomial, which captures the temporal interference « We show that there is no temporal diversity gain
correlation. The joint outage probability is used to determine

the diversity gain (as the SIR goes to infinity), and it turns (due to retransmission), irrespective of the number of
out that there is no diversity gain in simple retransmission retransmissions—in stark contrast to the case of inde-

schemes, even with independent Rayleigh fading over all lks. pendent interference (Section 111.D).

We also determine the complete joint SIR distribution for two « We provide the complete joint SIR distribution for the

transmissions and the distribution of the local delay, whib is case of two transmissions and show that the probability

the time until a repeated transmission over the reference tik . L .

succeeds. of succeeding at least once minimizedif the two

transmissions occur at the same rate (Section V).

« We determine the complete distribution of the local delay,
which is the time it takes for a node to transmit a packet
to a neighboring node if a failed transmission is repeated

. INTRODUCTION until it succeeds (Section V).

A. Motivation and contributions

The locations of interfering transmitters in a wireless-neg. Related work

work are static or subject to a finite level of mobility. As a , - . .
The first paper explicitly addressing the interference eorr

result, the interference power is temporally correlategne = =~~~ 77" | works is 121, wh th fio-t
if the transmitters are chosen independently at random frclﬁ%'on IN WIFEIESS NEWOTKS 1S 2], w ere the spatio- enaor
correlation coefficient of the interference in a Poissomoek

the total set of nodes in each slot. The interference cdivela . lculated. It is al h that t o :
has been largely ignored until recently, although it caneha(p Cacuiated. 111s aiso shown that iransmission SUCCessisy.
d outage events are positively correlated, but theirt join

a drastic effect on the network performance. In this papé;}n

we provide a comprehensive analysis of the joint success t8b?b'“ty IS not le?pllcnly f(f;a!culta}teg.tln [.3]’ (tjhfe temgd
outage probabilities of multiple transmissions over anesfee Interierence corretafion coetiicient s determined for egen-

link in a Poisson network, where the potential interferersrf eral network models, including the cases of static and rando

a static Poisson point process (PPP) and the actual (abti-ve)n%qe Iocaélofnz_that qtrﬁ I|<nown (;]r unknov;/_n, channcejlsd_vf\fnthoutt
terferers in each time slot are chosen by an ALOHA multiplé‘rfl flfng and Ia Ilng 4\1N| th olng co e;\jrgnce_t Imes, tarE)I' h'm?rfen
access control (MAC) scheme. The results show that for so ic models. In [4], the loss in diversity is establis

network parameters, ignoring interference correlati@uiteto a multi-antenna receiver in a Poisson field of interference.

significant errors in the throughput and delay performarfce Ehe probab|I|_ty that th_e SIR ab antennas Jom_tly excegds
the link under consideration. a thresholdd is determined in closed form. This result is a

The Poisson network model has served as an importgﬁFCial case of the main result in this paper, where the fiscus
temporal correlation. More recently, [5] studied thedféa

base-line model for ad hoc and sensor networks for seve?f i lavi X lated interf forthb
decades and later also for mesh and cognitive networfs, COOPErative refaying In corretated interterence, fotro

More recently, it has also been gaining relevance for Ce”ﬁ(_alectlon combining and maximum ratio combining (MRC),

lar systems, where base stations are increasingly irrElguIaWh"e [6] analyzed on the impact correlated interference ha
' n the performance of MRC at multi-antenna receivers.

deployed, in particular in het tworks [1]. -CoR . .
eployed, in particular in heterogeneous networks [1]. Co A separate line of work focuses on thacal delay which

sequently, the results in this paper may find applications in, N ;
va(rqiety 0¥ networks pap y PP is the time it takes for a node to connect to a nearby neighbor.

The local delay, introduced in [7] and further investigabed
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regime. In [11], the mean local delay for ALOHA and
frequency-hopping multiple access (FHMA) are compare
and it is shown that FHMA has comparable performancein tl
mean delay but is significantly more efficient than ALOHA ir” |
terms of the delay variance.

Il. SYSTEM MODEL

We consider a link in @&oisson field of interferersvhere
the (potential) interferers form a uniform Poisson poirtqass |
(PPP)® C R? of intensity \. The receiver under consideratior
is located at the origim, and it attempts to receive message;
from a desired transmitter at locatienwhere||z|| = r, which /
is not part of the PPP. Time is slotted, and the transmissi | :
over the link fromz to o is subject to interference from thel
nodes in®, which use ALOHA with transmit probability.
The desired transmitter is transmitting in each time sldte T
transmit power level at all nodes is fixedtpand the channels
between all node pairs are subject to power-law path logs wit;
exponenty and independent (across time and space) Rayleig

ﬁ. 1. The diversity polynomiaDs (p, ¢).

fading.
The signal-to-interference ratio (SIR) atin time slotk is  The first four diversity polynomials are
then given b
I Y - Di(p, ) =p
SIR; = U Ds(p,8) =2p+ (6 — 1)p?

2ecn, Reillcl® Ds(p,d 5= 1)p? +2(5— 1)(6 — 2
where®,, C ® is the set of active interferers in time slotand 3(p,0) = 3p+3(6 = D)p”+ 5( ~ D0 =2p
(R, hiox)kez.nea 1S @ family of independent and identically — Dy(p,8) = 4p + 6(5 — 1)p? +2(5 — 1)(6 — 2)p>+
distributed (iid) exponential random variables with mdamn 1

: ; : : —(§—1)(6 —2)(5 — 3)p*.

each time slok, ®; forms a PPP of intensityp, but the point 6

processe®;, and®; aredependentor all ,i € Z, since they pygperties:
are subsets of the same PRP In the extreme case where For fixedn and s, D, (p,d) is concave increasing from
p=1, &, = @, Vk € Z. This dependence is what makes the  , p (1,4) fOI’,p en[o ’1]_

following analysis non-trivial. « For fixedn andp, D, (p,d) is convex increasing from

1—(1—p)™tonp, for§ € [0,1].
Ill. THE DIVERSITY POLYNOMIAL AND THE JOINT

SUCCESSPROBABILITY Theorem 1 (Joint success probability). The probability that
A. Main result in a Poisson field of interferers a transmission over distanc

. .r succeeds: times in a row is given b
We use a standard SIR threshold model for transmission g y

success and denote I8, £ {SIR; > 6} the transmission pM =e
success event in time slét We first focus on the probabilities  , . A _ ATr26°T(1 + 6)T(1 — §) and § = 2/a.

of the joint success events
(n) & Proof. See Appendix A.
Ds * = P(Sl n...N Sn) Remarks:

To calculate this probability, we introduce tidiversity o The parameten is related to thespatial contentiorpa-
polynomial rametery introduced in [12], [13]. For Poisson networks,
v =mT(1 + 6)I'(1 — &), henceA = \r2y.
« When evaluatingpgn) as a function of§, it must be
considered thatA is itself a function ofd, not just

—ADy(p,5)
)

Definition 1 (Diversity polynomial). The diversity polyno-
mial D, (p,d) is the multivariable polynomial (irp and ¢)

given by "N st Du(p,0).
D, (p,0) & < > < )pk. Q) « Forn =1, the result reduces to the well-known single-
Pl UYAUAE transmission resulP(S;) = e~ 47, for all k.
It is of degreen in p and degreer — 1 in 4. e If 611 (o] 2), Dn(p,0) T np, which means the success
) . events become independent. At the same titke], oo,
The second binomial can be expressed as 50p§") 10.
§—1\ o (60—=1)-...-(6—k+1) ING)! e If 5 1 0 (a1 o), Dp(p,d) | 1 — (1 —p)", which is
k—1) (k—1)! - D(kT(0 —k+1) the case of maximum correlation. At the same timie|
82) Arr?, which is the smallest possible value.



by observing that
0.95¢ 1 INE)
Je=1(0) = r(k)r(a(—)k +1)
- 0.9 AN n=4 g
0" — Using the Stirling numbers of the first kingj, ., the falling
- 0.85f ~ N n=2 . . N , _
: factorial (z),, £ x(z —1)--- (¢ — n + 1) can be written as
v 08 n=1 1 n
(] ~
- \\\ = S k
oF 0.75 1 (@)n Z ok
E/ \\\ . . .
0.7r ] Rewriting the binomial as
=0 .
0.65f " o §—1\ (6—1)py 1 2
RN = = Z Sk 1 ] - 1
‘ ‘ ‘ ‘ N k—1 (k)  T(k)
0 0.2 0.4 0.6 0.8 1 J=0
P we have
Fig. 2. The conditional success probability (3) o= 1/2 andA = 1/2. n pk k-1
The dashed line is the success probability of a single tressom e —?/2, Z < ) —k Sk—1 ]
k=1 ( 7=0
k—1

n k
«If 5§ | 0andp = 1, D,(1,6) | 1 for all n, so 3 (n)p_ 1) S(1— 6. (@)
the success events are fully correlated (despite the iid k=1 (k) = 0

Rayleigh fading), i.e., This expansion i1 — §) is useful sincex € (2,4] in most

pgl) =pP = =P = e Amr? situations. Fom = 2, 3, 4, the polynomial in this form is

)

andP(S, | S;) = 1. This is a strict hard-core condition, ~ Da(p,d) = 2p — p*(1 - 9)
i.e, all transmissions succeed if there is no interferer pDs(p,8) = 3p + (— 3p2+ 1 3)(1 8) + 1p3(1 —0)?
within distancer.

o If p = 1, the diversity polynomial simplifies to the one Dalp,0) =4p+ (= 6p 27 - )(1 — o)+ 5
introduced in [4] for the SIMO case, where it quantifies (2p° — 2 P~ 5) - Ep 1(1-9)%.
the spatial diversity instead of the temporal diversity: Foré 1 1, sinceSg_11 = (—1)*T'(k — 1), k > 2, we have
from (4 '
D, (1.0)= L0ED @
I'(n)['(1+96) "L/ (=1)RHpE ,
As these remarks show, the diversity polynomial charamtsri Da(p,0) = np+(1-9) Z <k> k—1 +0((1 = 9)7).

the dependence between the success events and the diversi h=2

i
achievable with multiple transmissions. 'Hns expression is useful as an approximation for general
An immediate important consequence of Thm. 1 is tHE @ <3 (or1—d<1/3).
following result for the conditional success probability o Alternatively, Dy, (p,d) can be expressed as a polynomial in
succeeding at time + 1 after having succeeded times: 0 as

n k k
ny p i—1
B(Snst | S1.-. Sn) = B EOTE0I) - (3) Dn(p,0) = Z (k) L'(k) ZS’W‘SJ
k=1 =1

Fig. 2 displays the conditional success probability for=
1,2,3,4. It can be seen that succeeding once or twice dr
tically increases the success probabilitypifs not too small.
This illustrates that treating interference as indepehdeay
result in significant errors.

In this last expression, the term fgr=1is 1 — (1 — p)™.
FFhis is the polynomial ip obtained wherd = 0. Conversely,
whené =1, it is np.

C. Event correlation coefficients

B. Alternative forms of the diversity polynomial Let Ay = 1(Sk) be the indicator thatS, occurs. The
Let correlation coefficient betweed; and A4;, i # j, is
- 1 & P(S; N Sy) — P2(Sy)
f@) 2T (3-1) = Caray (p,8) = —re

G-y =T A0 = TR 1 PE)
be the polynomial of order with roots at[n] = {1,2,...,n} _ e 1m0 — 1. )
andf,(0) = (—1)". Thus equipped, we can write the diversity efr — 1
polynomial as The correlation coefficient foA = 5°T'(1 + §)T'(1 — §)/2 is

illustrated in Fig.3 as a function gf and é. It reaches its

Putr:5) =3 (7)) a0

=1 1(z)n is the Pochhammer notation for the falling factorial.
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which is consistent with the previous observation thaufail

)

events are also positively correlated.
From (7), the success probability given a failure follows as
1 — e~ Ap(1-p(1-9))

P(S | 5’1) - edr — 1

which is maximized atA = 0, where it is1 — p(1 — §).2
This follows since the numerator is at masp(1 — p(1 — 9))
whereas the denominator is at ledsp, both with equality at
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A = 0. This yields the general bound
]P)(SQ | 51) S 1 —p(l — 5),

1
with equality if and only ifA = 0. Since A = \rr20°T(1 +
NI'(1—-146), A — 0 is achieved by either letting the interferer
density \, the transmission distanae or the SIR threshold

N
o
N
AR

iy
T
i

<

e
i
l|\\\\§\\\\‘\\\\\\\\
i

I‘| |

e e
0.5

lj
I
Il
ly
)
1
II

go to 0.
outage in slotn + 1 given that outages occurred in slots

throughn. Sinceps™ — 1 as A — 0, one would expect

Next we examine the conditional outage probability of an
this conditional outage probability to go to zero in the timi

Fig. 3. The correlation coefficient(p, §) given in (5) for \rr? = 1/2 and
6 = 5 as given by (5). The correlation coefficient is decreasinth Wi For
Interestingly, this is not the case.

§ < 1, it increases imp, but foré = 1, it is not monotonic inp.
Corollary 1 (Asymptotic conditional outage).

maximum ofl atp = 1 and§ = 0. While it is decreasing in
d, it is not monotonic inp at§ ~ 1.
Since P(S;) = P(S,), we haveP(S; N Sy) — P2(S)) _ _ _
P(S1 N S2) — P?(S1), thus the failure events are correlated in i P(Sp+1 [ S10...NSw) = p(1 =d/n), n=1. (8)
Proof: From (11) we know that the expansions;é?“)
andpf)”) both have non-zero linear terms4xy, thus the higher-

(n—9).

exactly the same way as the success eventdylt= 1(Sy),
order terms do not matter, and the limit follows as
I'(n—9)
[

p(()nﬂ) _pl(n+1-90) P
n

then(z, a,(p,d) = Ca;,a,(p,9).
Alglo p(()”) n

The dependence between two success events can be quan-
This is in stark contrast to the independent case, where this

tified by the ratio of the probabilities of the joint event teet
limit is obviously 0. The actual asymptotic conditional outage

probability of the same events if they were independent. We
probability is increasing im and reachep asn — oo.

Conversely, we have for the conditional success probwbilit

D. Joint and conditional outage probabilities

P(S1NSy) e Ab2pd) A= S
- e—2Ap - )

P2(S1)
which is consistent with the fact that the correlation coedffit
(5) is positive. The positive correlation is also appareatf givenn failures
iimO]P)(SnJrl |S1N...NS,) =1-p(1—5§/n).
Fig. 4 illustrates the conditional outage probability afte

the conditional probability that the second attempt sudsee

obtain

failures for6 = 1/2 andA = 1/2.

when the first one did, which is
—ADs(p,8
e A0 ap-p(1-8)).

P(S2 | 1) =
The probability of (at least) one successful transmission i
n attempts follows from the inclusion-exclusion formula  E. Diversity gain of retransmission scheme
- n n et (M) Definition 2 (Diversity gain of retransmission scheme).The
pim &P Sk ) =D (-1)FF (k)]?§ ). (6) diversity gain, or simply diversity, is defined as
k=1 k=1
_ logpl"” (SIR)
lim ——
SlR—  log SIR
whereSIR is the mean SIR (averaged over the fading).
This is analogous to the standard definition in noise-lithite

e—Ap

)

d& —

For the joint outage it follows that

]P’(S'l N 5'2) =1 —p;|2 =1—2e AP 4 o~ AP2-p(1-9))
systems, where diversity is defined as the exponent of tioe err

Hence
o —Ap(1 — e~ Ap(1—-p(1-9))
P(Sy | 8y) =1 - T — )@ s _ onel
- ¢ probability as the (mean) SNR increases to infinity, seg,
and
G G _9AD/ Ap2(1—6 °Here and elsewhere in the paper, we assume that when a funttias
P(Sl N SQ) =14 e? p(e P (1-8) 1) >1 a removable singularity at, its value ata is understood as the limjf(a) =
(1 — e*AP)Q ’ hmxla f(CC)

P2(S1)



0.9 Proof: From (11) we have!™ = 1—pl™ = AC+0(A2)
0.8k hea for someC > 0 that does not depend ah. It follows that
[%]
i log(A(C + O(A
50.7 dzliméog( (C+ 0 ))):6.
3 A0 log A
= 0.61 =1
$ 05l o _ .
= In contrast, with independent interference, the divergin
S 0.4f would be
£ ; - clog((1—e"2)")
3 0.3k PO lim ¢ oo A = nd.
_g- /’,—' n=0 A—0 og
go0z2r T So, retransmissions in (static) Poisson networks provide no
01l e diversity gain
/,/’ Conversely, fixingA > 0 and varyingp, we have from (10)
% 02 04 06 08 and the fact thaSIR o p~—1/%

Fig. 4. The conditional outage probability of an outage ia th + 1)th
transmission given that the previousfailed foré = 1/2 andA = 1/2. The
dashed line is the outage probability of a single transmissi— e /2.

[14]. In our interference-limited system, the relevant mfitst

is the SIR.

- 510gp§>") (»)
p—0 logp
so if the SIR is increased by decreasipgfull diversity is
restored. The difference in the behavior lies in the fact tha
captures the static components of the network, while redyci
p reduces the dependence between the interference power in
different time slots.

= in,

To calculate the diversity, we need to first establish the Alternatively, the diversity could be defined on the basis
connection between the mean SIR and the parametéthe of A~! — o instead of SIR — oo, which would yield
SIR can be increased by either increasing the received sig@alersityn in the independent case (and diversitin reality).
power or by decreasing the interference. Either way, we finthis value may be better aligned with the intuition of what
that SIR oc A~1/%: the diversity gain should be with independent transmission

« If we increase the received power by increasing thattempts.

transmit powerP; at the desired transmitter, we have
SIR « P;. Since increasing?, and decreasing have F. Effect of bounded path gain

the same effect on the success probabilitgIR > 6), ) . .
we haveA oc P oc SIR~® and thusSIR o A~1/%, Here we derive the conditional success probability for the

« If we increase the received power by reducing the linkaS€ where the (me_an) path gain is bounded, instead of
distancer, we haveSIR o . SinceA « r2, we obtain @ssuming a gain of— for a link of distancev, we employ
STR oc A—1/8. a path gain ofmin{1,v~*}. Equivalently, the patHoss is

« If we reduce the interference by decreasing the intensﬁgf”) = max{1,v}.
X of the PPP, we havé oc A'/? since the interferencé  Corollary 3 (Joint success probability for bounded path
is a stable random variable with characteristic exponeghin). For the same setting as in Thm. 1 but with path loss
4 [15, Cor. 5.4]. SinceA oc A andSIR o I, we again |aw ¢(v) = max{1,v°}, the joint success probability of
haveSIR oc A~1/9, transmissions over distanceis

In conclusion, lettingSIR — oo is the same as letting n
A~1/% o0, and we can express the diversity as pifi))d — exp <_)\7TZ(_1)k+lpkBk> ’ (12)
n n k=1
log po™ (A log p&™ (A
d=— (A) _ 5#- (9)  where

A1/ oo log(A=1/3)  AS0  log A

k
Next we need a lemma that establishes expansions on jhe_ ( 4 ) Lgig Lk — OT() H ([, 8], 146, —1/0)
probability of succeeding at least oncerintransmissions. 1+¢ I'(k) Y 7 ’

Lemma 1 (Taylor expansions). We have H is the Gauss hypergeometric functipmnd 6’ = 6/(r) =

T(n — 6) O max{1,r*}.
pln=1—-Apr————~_ L+ O(p"*'), p—0. (10) Compared with the unbounded case in Thm. 1, we have
T'(n)I(1 —9) p(@d - pgn) i r> 1.
and ’ .
T 5 Proof. See Appendix C.
piln =1— Apn("i_) +0(A?), A—0. (11) The middle term in the expression fds; is the one for
L(n)I'(1-9) the unbounded path gain, whereas the other two account

Proof: See Appendix B.

Corollary 2 (Diversity gain). We haved = ¢ for all n € N.

for the difference between the unbounded and bounded case.

3Sometimes denoted ad



Proof. See Appendix D.
0.95 | Since the joint success probability is symmetricdinand
0>, the expression (14) is even im, and it can be tightly
0.9 n=a ] bounded by its quadratic Taylor expansion
% oss ‘ \‘\ n=2 . IA)(p,é7 fe™",0e") >
5" 0g | T : Pl (2—p(1—5)+5[5+g(5—1)(5—2)] u2). (15)
@ 075 ~ ] With independent interference, we would have= p(69+63).
07 =0 . As expected,
065 T D(p,8,0e7",0e”) < p(82 + 63) = 2pA° cosh(vd),
06 ‘ ‘ ‘ ‘ which shows that transmission success events are pogitivel
"o 0.2 0.4 0.6 0.8 1 correlated for all threshold;, 6.
P The joint SIR distributionP,(61,65) = 1 — P(S; U S5)

Fig. 5. The conditional success probability (12) fo=1/2,r=1,60 =1, follows from Thm. 2 as
and\ = 72 for the path loss law(u) = max{1,u®}. The parameters are N
chosen so that they result it = 1/2, so that the only difference to Fig. 2 Py(6:1,02) = P(SIRy < 61, SIR; < 6)

is the bounded path gain. — 1 _ A0 _ —A6dp + e~ AD(p,6,01,02) (16)

Expressed differently,
Since H([a,b],¢,0) = 1, the bounded and unbounded cases  _ _
coincide a®¥’ — oo, i.e,, for large SIR thresholds or distances F2(fe™",0e”) =
r of the desired link. Even fod = 1 andr = 1, the 1 — 2exp(—Apf° cosh(16)) cosh(Aph° sinh(vd))+
difference is insignificant, as Fig.5 illustrates. The fgur o sinh(v(1 — 6))
replicates Fig.2 for bounded path gain and shows the same exp (—Ap96 [2 cosh(vd) —pf]) (17)
behavior: Succeeding once or twice significantly incredises _ Sy _
success probability fop not too small. This suggests that the 1"€ next result shows that = 0 is an extremal point of
conclusions and trends observed in the unbounded case H§ioint outage probability.

hold in the bounded case. Corollary 4 (Asymmetric probability of success). For all
€ (0,1],6 € (0,1), A > 0, 8 > 0, the probabilityp *(v) of

IV. THE TWO-TRANSMISSION CASE WITH DIFFERENTSIR  sycceeding at least once in two transmissions with threkshol

THRESHOLDS fe~" andfe”, respectively, isninimizedat v = 0, i.e,, in the

Here we explore the case of = 2 but with different symmetric case.

thresholdsi.e., we focus on the event$, = {SIR; > 6,} and
Sa = {SIRy > 62}. This case is of interest for two reasons:
First it leads directly to the complete joint SIR distrilartj
second it is useful to provide guidance on how the rate
transmission affects the probabilities of succeeding éwoc
succeeding after a failure.

Proof: See Appendix E.
Hence the probability of succeeding at least once in two
trPnsmissions can be increased by using asymmetric tHossho
91 # 02, corresponding te # 0. Conversely, the joint outage
probability P>(fe", 6e”) is maximizedat v = 0.

Sincepi‘g(y) is an even function of, it can be expressed
as
A. Main result 2 S ) .
Theorem 2 (Joint success probability with different thresh- i (v) =1 = P07, 0e") = A+ Bu + 00,
olds). We have where A = p!!?(0) and B is the second derivative at = 0.

P(S1NSy) = o~ AD(p,5,01,62) A and B are given by

. A =2P(SIR; > 0) — P(SIR; > 0, SIR, > 6
where A = A/6% = \xrT(1 + 6)I'(1 — §) and (SIR: > §) — P(SIR, > 6, SIR; > )

096, — 636 =278 — A0 (18)
D(p,6,61,02) = p(6] + 63) +p2ﬁ- (13) B = Apds2(Apa® — 1)e 200" 4
— N = A no _ _
Alternatively, lettingd = /6,0, and v = log+/02/61, we %Apeéé (65+ 2p— 3p5+p52) emBapmr 6)()1-9)
have

D(p,d8,0¢7",0¢") = pi° <2C°Sh(”5) -p In Fig.6, exact curves fopi?(v) and the quadratic ap-

4) proximationsA + Bv? are shown fop = 1/2 andp = 1/4.
Moreover, D(p, 5,0e7",fe’) achieves its minimum of It can be observed that the approximation is quite accurate

pA?(2 —p(1 —0)) atv = 0, i.e, the joint success probability (slightly optimistic, in fact) for|v| < 1, which corresponds to

is maximized at = 0. 01/6> € [e72, €.

sinh(v(1 — 4)) Sincev = 0 is the global minimum, we know that > 0.
sinh v )
1



——exact -
- - ~approximation 0.967 -

p=1/4 : /

pL(v)

=2 -1 0 1 2 /
\Y

-0.8 -0.6 -04 -02 0 02 04 06 038
Fig. 6. Probability of succeeding at least once in two trassions with
general#; and f2. The solid curves are the exact values pﬁQ(u) =
1 — Py(6e™",0¢e"), where P is given in (17). The dashed curves are the_. Lo S
approximations4d + Br2, with A and B given in (18) and (19), respectively. ?'g ]73 G—SEEC%SS,, pr(l)jbat?:htée? afier_tmllo_tr%ng?ﬁésgonéﬁ f,@f, 12' ?.ﬁhd dlmeh_
The transmit probabilities and= 1/2 andp = 1/4, and the other parameters 2(6e™”,0¢”). Dashed linel — (1 — P(SIR: > e )2) - Ihe das
ares = 2/3, AG® = 2. dotted line shows the minimum of the solid curve, Whlclpjé (0) = 0.908.
Its intersection with the dashed line is the point given bg)(2vhererv =
—0.649. This indicates that two transmissions at thresh@{d—",e”) =
. . . .. (19.1, 5.23) have a probability 0H1% of succeeding (the value of the solid
B. Comparison with two independent transmissions curve atv — —0.649). The other parameters a — 1/3, p — 1/3,

Here we investigate three cases where actual success préba2/5:
bilities are compared with the probabilities obtained & tivo
success events were independent. . . .

1) Joint success probagility'Since transmission success 2) Probability of succeeding at least ongeé;lternatwely, .
events are positively correlated, we expect that the link cqne may want_to ensure thaF the prpbablhty of succe_edmg
accommodate a certain level of asymmetry in the threshofats least once in tWO. tr_ansm|55|ons IS the same as in the
for the two transmissions. To explore this, we find the Valdgdependent case. This is guaranteed if

of v such that 1— Py(61,60;) =1 — (1 —P(SIR; > 6;))?
]P)(SIRl > ée_”, SIRQ > 9_61/) = P2(SIR1 > 9_) or, equiva'ent'y'
or, writing out the probabilities, 1— Py(fe=",0¢") =1 — (1 — P(SIR; > fe™"))2.  (21)
AT n,.—Vv Qv —2A0° . . .
exp (—AD(p, d,0e”", e )) = e 220, To solve this equation forv, we approximatel —
— v — v - = 1 2 . . . .
To find an approximate valu@ of » for which this holds we Pl?‘goe " 0e") 21— P, 19‘)2: p+*(0), which s valid since
use (15). Taking logarithms and dividing Ey#p yields ps ~(0) is the minimum ofps“ () per Cor. 4 and the curvature
D i given by B in (19) is smalt. Hence an approximate solution
2-p(l—-6)+6 [5+ g0 -1~ 2)} e =2, of (21) is given by
and we obtain 12
-1 1—14/1—ps
. p(1—0) I G D),
vt = (20) eV = . (22)

SP+E2E-1)(0-2)] Apf?
This is the Ievel_(_Jf SIR asy_mmetry that can _b(_e affordezgib}u(o) is calculated in (18) and denoted by
thanks to the positive correlation. The resulting joiNtG®ES |4 Fig 7, the design procedure is illustrated. & 10, the
probgblhty_wnl be slightly higher tharP?(SIR; > ), since probabilitiesl — P»(6:,65) and1 — (1 — P(SIR; > 6))? are
(15) is a (tight) bound. shown in solid and dashed curves, respectively. First we ob-
Assuming a transmission rate bfg(1 + ) nats/s/Hz for go e that while independent transmission success woeld yi
an SIR threshold ob), which can be achieved if Gaussian, g ccess probability 0f4% at § = 10, the actual success
S|gnal|n_g is employed, th? p_osmve correlation translaite a probability is slightly less thaf1%. The two curves intersect
rate gainor throughput gainsince atv ~ —0.6. So if a threshold 08e’6 ~ 18.2 was used in the
log(1 + fe™") +log(1 + fe”) = log(1 + 20 cosh v + 6%) independent case and thresholis’ %, e~%6) ~ (18.2,5.5)
. L . were used for the two transmissions in the dependent case,
is increasing in|v|. Compared to the symmetric case, the
throughput gain is 4A numerical investigation shows that the second derivafiveachieves

29 h 1 02 its maximum value 0f0.3248 for Apf® = 2.456 and § = 1. For most
log (1 (COS ’f_ ) > log ( 1+ V_ parameters B is significantly smaller. For the ones in Fig. 6, for example,
(1+06)2 ~ (1+6)?

B =0.075 forp=1/2 and B = 0.02 for p = 1/4.



the success probability would be about 91% in both cases. ]

So thepenaltyin the SIR threshold due to the correlation Expanding the diversity polynomiq]ié") can be written for

is aboute!? ~ 3.32. This is the necessary reduction in the — 0 as

threshold for the second transmission to achieve the same tw / " _ 2
. . . . ~(n) _ 1 _ E |:(TL) A (1 5) 2 2 3

transmission success probability as in the independert casp;’ = 1 p+ +n 5| p*+0(p?),

Since the intersection between the solid and dashed curves T 2 T ()
cannot be calculated in closed form, the intersection betwewhich provides a good approximation for small
1 — P»(6,6) (the dash-dotted curve) is used instead, which If all nodes transmit with probabilityp (including the

yields the slightly conservative value of= —0.649. desired one) and the receiver process has inteiisity p)),
3) Conditional success probability after failuréastly, one we havey = (1 —p)A, and
may want to choose the threshold for the second transmission (1 - p)
h that the conditional bability after a fail Y = Pl _p
such that the conditional success probability after a ffails s 1—p 1 0T+ 0)T(1 —0)Du(p,0)’
still as large as the success probability in the indepenciess, i . )
i.e, the problem is to find), such that where the factop™ is the probability that the transmitter under

consideration is allowed to transmittimes in a row.
P(SIRy > 65 | SIRy < 01) =P(SIRy > 64).
We have B. The local delay and the critical probability
Py(01,09) Let the local delay be defined as
P(S1)
e—A03p _ ,—AD(p,5,01,02) _ _ _ o
= g It denotes the time until the first successful transmission
1 —em2%P (starting at timel). For a deterministic link distance, we have

P(M >n) =p =1-pl",

P(Sy | S1)=1-P(S2|S1)=1-
M £ arg min, . {S, occurg.

This should be the same &5,) = e~291P_ The resulting
equation
and the delay distribution is

P(M = n) = pll" — plint

=> (- (Z: 'D exp(~ADi(p, ).
k=1

e*AP%S _ e*Af)(Pﬁﬁl-,‘%) _ e*AP(’f (1— e*Aow)
can be numerically solved fdi,.

V. RANDOM LINK DISTANCE AND LOCAL DELAY

A. Random link distance The mean local delayr simply mean delay can be expressed
Now we let the transmission distance be a random varialsle - -

(which is constant over time), denoted By We consider the EM — ZP(M > k) = Zp(k)'

case whereR is Rayleigh distributed with meam/(2,/1), P Py ©

since this is the nearest-neighbor distance distributicmPPP While this sum cannot be directly evaluated. the mean can be
of intensity i [16]. This situation models a network where the | . X y ' -
receivers form a PPP of intensity independently of the PPP.Obtamed using the fa}ct that out_age events are .cond|twnall
of (potential) transmitters of intensity, and each transmitter !ndependent givere, i.e, by taking an expectation of the

. : : inverse conditional Laplace transform of the interferersee
attempts to communicate to its closest receiver. To remaﬂp Lemma 2]. This yields

consistent with the assumption of the typical receiverdiagi ' ' y

at the origin and its desired transmitter being active inheac EM = exp <A p )
time slot, we add the pointto the receiver PPP and an always (1—p)t-9 )"

active transmitter at distande. The joint success probability So for a deterministic link distance, the mean delay is finite
over this link of random distance is denoted yﬁﬁﬁ). for all p < 1.

Corollary 5 (Joint success probability with random link ~ For random (but fixed) link distance, the mean delay is
distance). If the link distance is Rayleigh distributed withanalogously expressed as

(24)

meanl/(2,/x), the joint success probability in transmission o0
attempts is given by EM = Zf)gk), (25)
P = a (23) h=0
A+ APT (14 0)T(1 — 6) Dy (p, 6) where 5" can be expressed using the joint success proba-
Proof: The distance distribution igz(r) = %Wefﬁmﬂ_ bilities from Cor. 5. It turns out that in this case, it is not
Letting A’ = A /72, we have guaranteed folEM to be finite for anyp > 0. In fact, it was
o shown in [7] thatEM < oo if and only if
B = 2mp / exp(=A"r? Dy (p, 8)) exp(—mpr®rdr A'p
0 s <, (26)
T (1-p)

T+ A’ Dy (p, 6) where A’ = Ar6°T'(1 + §)I'(1 — &) as above.



Here we would like to explore whether thphase transition 1

i.e., the existence of a critical transmit probability < 1 such 0.9f -- _?:;::;:;nti
thatEM = oo for p > p., is mainly due to the random link 0.8--\.

distance or due to the interference correlation. The fatigw

corollary establishes the condition for finite mean delay if 0.7

interference was independent. 0.6F

Corollary 6 (Mean delay and critical transmit probability a’ 0.5~

with independent interference). For a Rayleigh distributed 0.4f

(but fixed) link distance and independent interference, the
mean local delay is

0.2
T
EM = = A A'p < mp, (27) 0.1f
and the critical probability is % 02 04 06 08 1
ind _ TH ®
pind = A (28)

;5 Fig. 8. Critical probability for finite mean delay for depemi and
Proof: Let py(r) = exp(—A’pr?) be the success proba-independent interference as a functiondofor = 10 and A\/x = 1 and

bility of a transmission over distance Since interference is A/pn =1/4.
assumed independent from slot to slot, the mean local delay
givenr is 1/ps(r), thus, averaging over the link distance,
o This identity may be of independent interest.
EM =Er(1/ps(R)) =

Tn—Ap Alp <mp, Using L™ = 1 — i, the delay distribution with indepen-
where R is Rayleigh with meari/(2,/x).

dent interference can be calculated as follows.
So even if the interference was independent from slot to slot P(M =n) = ~1\n _ ~1|nf1
the static random transmission distance would cause tla loc

delay to become infinite if the spatial contention or the $rait = Z 1)kt ( 1> %
probability are too large. The critical transmit probatyilp, L+ EA"p
is shown in Fig. 8 for the cases of independent and dependent B 1

interference and different ratios/;. as a function of§ for B A”np("*l/(“p))

6 = 10. The parameteA’ in (26) and (28) strongly depends 1 F(n—t D1 + 1/(A"p))

on §. The two critical probabilitiep. < pi»¢ divide the range =

" "
of p into three regimes: Fay < p., the mean delay is always Anp  T(n+1+1/(A"p))

"
finite. Forp. < p < pi*d, the mean delay is finite only if the > Wn—l/(ANP)'
interference is independent. Fpr> pi*d, the mean delay is nA"p
always infinite. The bound is obtained from a bound on the ratio of gamma

It can be seen that far < 3 (9 > 2/3), pc = p!, which  functionsn!~* < T'(n + 1)/T(n + s) [17, Eqn. (1.1)]. It is
indicates that in this regimehe divergence of the mean localasymptotically exact as — oc. It reveals thatA”p < 1
delay is mainly due to the random transmission distance s a necessary and sufficient condition for a finite mean,

reproducing the result in (28) via a different approach.
C. Alternative expression of the mean local delay and a

binomial identity
As mentioned above in (25), the mean delay/ can also

be expressed as a sum]ﬂfﬂ, The joint success probability, Here we use the _Iinear approximation from (10) to calculate
averaged over the link distance, is given in Cor. 5. Witthe mean delay. With

D. Mean local delay calculation based on Taylor expansion

independent interference, the diversity polynomial idaepd T(n— §)
by np, and applying inclusion-exclusion to (23) yields o) = Ap"m,
ORI YRR LAV S h
P k;( ) (k) N e e
whereA” = A’ /(ru). The mean delay follows as M, = Zﬁf)k)
© n k=0
= =550 () i =1+ Ap(1 —p)"' -
n=0 k=0 p An+11"(n—|—1—p)H([l,n—f—l—6],n—|—1,p)
This is identical to (27), which implies that P T'(n+1T(1-4) ’
SOS (- (”) I _ 1 CB<l. where H is the hypergeometric functiod £ lim,,_... M,,
== 1+k5 1-0 will be the estimated mean delay.
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Expanding the hypergeometric function, we have be the interference in time sldt,

n

T 5—1
My, =1+Ap(1—-p)° - HM =" 1(x € ®p)hap, z€ P,
ni1 = g+ 1DI(n+k+1-90) k=1
At r'E F1-0T(n+1+k)
k=0 (n (n the sum of the fading coefficients of interfererwhen it is

P active, andd’ = 6r*. The eventS, = {SIR; > 6} can then

) ) ) be expressed afh, > 0’1}, and we have
The negative term goes to zero since the suns bounded

by (1 —p)~!. Again applying the bound from [17] and notingpgn) =P(hy > 0L, ..., hy, > 0'L,)

that it is asymptotically exact as ,
Yy p y — 0 (.:d)]E(e_e/Il ,,,e—é'ln)

0o §
n+1
G~ pk ( ) < (1 _p)il' o / (n) —a
kzzo n+k+1 =E |exp (—0' > H"|az|

zed
So forn — oo, we obtain

(b) < p "
~ =E 7_a—|—1—p)
M= lim M, =1+Ap(1-p)° '+0(p*), p—0. Lgp 1+ 6| 1

n—oo

Remarkably, this is exactly the first-order expansionEaf n
as given in (24). The expression is also correcOifp?) is © exp _)\/ [1 _ (# +1 _p) ] dx
]R2

replaced byO(A?) and interpreted ad — 0. 1+ 0]~
Fa
VI. CONCLUSIONS Here (a) follows from the independence of the fading random

variables, (b) from the expectation with respect to therfgdi
missions in a Poisson field of interference can be expres@f ALOHA, and (c) from the probability generating func-
in closed-form using the diversity polynomial. An importantional (pgfl) of the PPP [15]. To evaluate the integfal, we
consequence of this result is that theradsretransmission di- fi'st write it in polar form usingy = |-
versityin Poisson networks for simple retransmission schemes. /Oo [

N

We have shown that the joint success probability. dfans-

We conjecture that the same result holds for all interfegenc F,, = 2«

fields induced by stationary point processes of interferers 0 - L an
The impact of interference correlation is less severe if the & 5 {1 _ (1 _ o > ] wldu

transmit probabilityp is small or the path loss exponeditis 0 u+0'

near2. As a rule of thumb, we can state thatpifl — §) < (b) " /n

1/10, the assumption of independent interference may provide = 7o Z (k:)

a good approximation. Converselygifl — d) is not small, the k=1

correlation should definitely be considered in the perforeea () follows from the substitution = v ands = 2/a and (b)

analysis. from the binomial expansion dfl — u’fe)”

For the two-transmission case, the complete joint SIR g4 this integral, we know from [18, Eqn. 3.196.2] that
distribution has been established. It shows that the jaitage

probability is maximized when the same rate is used in both oo g0t
transmissions, and it allows the determination of the SIR /0 (
thresholds such that the resulting success or outage proba-
bilities equal the ones that would be obtained if interfeEenWhereB(k —4,0) = W is the beta function. Since
was independent across slots.

Lastly, we have calculated the distribution of the locabgel T(k— 6T —k+1) = il
and shown that the phase transition phenomenon first oliberve sin(m(k — )’
in [7] occurs even when the interference is independent—v%% have
long as the link distance is random (but fixed).

pv® "
T +1 p) } vdv (29)

6—1

<
(_1)k+1pk9/k ‘/O mdu (30)

mdu = e/éikB(k — 67 5) (31)

(-1t
sin(md) (6 — k + 1)’

(k- 6) =

APPENDIX. PROOFS
and it follows that
A. Proof of Theorem 1

Proof: We would like to calculate the joint success FE, = ngé.l Z (")I?k r'(s) _
probability p = P(S1 ... N S,). Let sin(md) = \k/” T(K)I'(0 —k+1)
I, = Z P |||~ The ratio of the gamma functions on the right can be expressed

hordl as (9~7). Noting that¢”® = ¢°r2, we obtain the result.
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B. Proof of Lemma 1 whereH is the hypergeometric function. Using (30), it follows
Proof: Expanding the exponential terms in (6) as® = that

1 — 2 + O(2?), the first-order expansion of™in A orpis
F>1 _ ﬂ_z k+1 k 9/66 (k B 6):[‘(6)_
I'(k)

n

P~ S0 () 1 - ADu(p. )

k=1

" A H([k,8),1+6,-1/60")].
k+1 1A J
(@ ez (6 T
=1 Adding F*Y and F>1 yields the result.
i KO/EN /5 — 1\ . For the comparison with the unbounded case, we note that for
=1- AZ * < > Z <]> <j . 1)17] . r > 1 the difference between the two cases is due to the term
j=1 E(v +9, for v < 1 in (32), which is ——= 1+0r0< in the bounded
Gn case andW in the unbounded case. For> 1, they are
Re-writing the double sund, in terms of equal powers of identical. Since—Y— < 15— for v < 1, it follows that
yields ity > pi" forr > 1. Forr < 1 the situation may be reversed
n (61 n e (M) (K since now the comparison is betweeﬁm and 1+9’ and
- Zp < ) Z(_l) (k) (3) there will be somey < 1 for whichv > r, SOp;b)d < p
=t k=j may occur. [

In this expression, the inner sum simplifies to

Br()) -5 ko

k=j

D. Proof of Theorem 2

u=1

Proof: From the pgfl, the joint probability is given by

= (=11 =n) exp(—Mr?Fy), where
since all derivatives of1 — u)™ contain a factol — u except
the nth. So 51 Fy =27
Gn = —1"+1"<_> >0 a o
(=D)""p n—1 / <1—{ p:—@ +1—p]{ :_9 +1—p]>rdr.
Tr(! Tr(!
and, therefore, 0 ! 2
§—1 Substitutingu = r“, we have
p;\n ~1— (_1)n+1Apn
n—1 00 pls w1
I'(n —9) = 7r§/ (p91 {1 - } +
=1-Ap" . u O — 01| u+06,
T(n)T(1 - 0) 0 0, 1wl
C. Proof of Corollary 3 P2 [1 T o= 92] wt 92)(1“

Proof: The first steps in the proof are the same as for |, ) 5[ o o [ pb1
Thm. 1 (see Appendix A). The integral (29) is replaced by = ﬂ-SiIl(ﬂ'(S) ( 1 [ T, — 91} + pty [ 0, — 92D
> pl(v) >”] ) 690, — 636,

F, =2n 1— | ——+1- vdw, 32 = 0% + 09 27172 7270 )
/0 { (ﬂ(v)+9’ b (32) T n(rey \POLF ) g

where ¢(v) = max{1,v*} and ¢’ = 6¢(r). We split the
integral into two parts, one fos € [0, 1] and one forv > 1,
denoted ag""" and F>1, respectively. For the first part, we

have

(a) follows from (31). This proves (13). The form (14) can
be obtained by expressing; and 6, by fe~* and feV,
respectively, and usingoshz = (e* + e~ *)/2 andsinhz =
(e” — e~ ") /2 twice.

PO — 27T/1 [1 _ (1 _ 1If/91>n] rdr Lastly, we need to show that
0
sinh(v(1 -9
WZ < > e ( Pt ) o) = 2cosh(vd) —p T UL ()
1+0 )

is minimized atg(0) = 2 — p(1 — §). Sinceg is even, it
For the second part, we need to calculate the integral (3t1) l?é,l sufficient to focus onv > 0. g(v) > ¢(0) holds since
from 1 to co. From [18, Eqn. 3.197.8] we know cosha > 1 and - -

0o 01
/1 (u+ 9/)kdu = —psinh(v(1 — §)) > —p(1 — J) sinh v,
o'k 9’5w — 0 H([k,d],1+5,-1/¢) due to the convexity okinhz for x > 0 and the fact that
F(k) L b ’ 5 5 c [0’ 1] .



E. Proof of Corollary 4
Proof: We need to show that(v) 2 p?()—pt?(0) > 0
for all parameters, whergl>(v) = 1 — P,(9e=, fe”). From
(17) we have
f(v) = 2exp(—Aph° cosh(v6)) cosh(Aph sinh(v8))—
2 exp(—Apf°)+

exp (—Ap# (2 = p(1 - 9))) —exp (~Ap8g(v))

whereg(v) is given in (33).f(v) > 0 holds sincecoshx > 1
and, as already established in the proof of Thmg@;) >
9(0) =2 —p(1-9).
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