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1. INTRODUCTION

Due to their resource limitations, low-power Wireless Sensor Networks (WSNs)
pose considerable communication challenges. One of the most significant is
preventing packet loss while maintaining an acceptable goodput. Aside from
catastrophic problems such as hardware or software failure, packet loss may
occur due to channel errors, congestion-induced buffer overflow, and protocol-
level inefficiencies.

Wireless propagation effects such as large-scale path loss, shadowing, and
multipath fading contribute to the attenuation of the signal power. In Zhao and
Govindan [2003], Woo et al. [2003], and Zuniga and Krishnamachari [2007],
it is shown that a transitional reception region separates a region with high
connectivity from a disconnected region, and asymmetric links are shown to be
common in the transitional region: wireless connectivity is neither Boolean nor
bidirectional. Differently from high-end wireless networks such as WLANs or
mobile ad hoc networks (MANETs), low-power WSNs typically employ low-end
transceivers with a low maximum transmit power (typically 0dBm), and are
therefore completely exposed to the vagaries of RF propagation. Link estima-
tion is instrumental in limiting channel-related packet loss and minimizing the
number of retransmissions. Channel-related losses are also caused by interfer-
ence: for instance, CSMA-based MAC layers, common in WSNs, are exposed to
hidden node effects. Congestion is particularly severe in WSNs due to their typi-
cal many-to-one traffic pattern, which may lead to buffer overflow depending on
the network topology. Network protocols may also be responsible for additional
losses, for instance, due to routing loops and egress drops (the elimination of
packets that are erroneously believed to be flawed, such as false duplicates).
Incompatibility between protocols pertaining to different layers may also be
conducive to a significant performance degradation. An example is the use of a
network protocol that requires promiscuous mode operation for link estimation
along with a MAC protocol that avoids snooping to save energy [Langendoen
et al. 2006].

Many routing solutions have been proposed in the literature, but only a
handful of them have been implemented and tested on low-end nodes. The
most strenuously tested and heavily used solutions are distributed tree-based
schemes that target homogeneous networks. In particular, the MintRoute fam-
ily [Woo et al. 2003] has formed the core of the TinyOS [Hill et al. 2000] network
layer over the past years and has recently led to the Collection Tree Protocol
(CTP) [Gnawali et al. 2009].

In this article, we focus on the same corner of the routing design space as
the MintRoute family, and we propose Arbutus1, a routing architecture for
data collection applications of low-power WSNs that seeks to achieve high
reliability as well as to maximize the goodput given the reliability constraint.
The main principle behind the Arbutus architecture is that routing over a
few long hops can be much more efficient than routing over many short hops
[Haenggi and Puccinelli 2005; Wang et al. 2006]. By long hops, we do not

1The name Arbutus whimsically refers to an evergreen tree, suggesting that Arbutus builds a
routing tree that does not lose its leaves.

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 28, Publication date: July 2010.



Reliable Data Delivery in Large-Scale Low-Power Sensor Networks • 28:3

mean higher transmit power: the transmit power is assumed to be the same
independently of whether a hop is long or short. The hop length is completely
determined by the physics of wireless propagation and is qualitatively said to
be short or long compared to the hop length expected on the basis of the large-
scale path loss. Due to a particularly favorable (or unfavorable) fading state, a
hop may be significantly longer (or shorter) than expected from the large-scale
path loss [Puccinelli and Haenggi 2006a]. Routing over many short hops means
always minimizing the large-scale path loss, while routing over fewer long hops
means leveraging on positive fading states.

The Arbutus architecture employs existing tools and recent results along
with two main elements of novelty: a tree construction scheme built into the
link estimation level that represents the centerpiece of the architecture and
provides a practical way to enforce long-hop routing, and the treatment of
congestion control as a first-order problem. Other key contributions include
extensive experimental evidence about the advantages of long-hop routing (that
complements our work in Haenggi and Puccinelli [2005]), and the investigation
of the impact of load balancing on the routing performance (that complements
our previous work on the lifetime benefits of load balancing [Puccinelli and
Haenggi 2008a, 2009]). We also make a key contribution to the methodology of
WSN routing research: while most studies treat the network topology as given
and fixed, we treat it as a parameter, and provide ample experimental evidence
about the importance of this choice. We also begin the study of the impact of
the network topology by providing quantitative guidelines for its experimental
analysis.

Arbutus has been implemented in TinyOS 2.x on top of the standard CSMA-
based MAC layer. We adopt an experimental approach and evaluate Arbutus on
large-scale networks of 100–150 nodes using remote-access testbeds at Harvard
University (MoteLab [Werner-Allen et al. 2005]), the Technische Universitaet
Berlin (Twist [Handziski et al. 2006]), and the University of Southern Cali-
fornia (Tutornet2). We benchmark Arbutus against CTP [Gnawali et al. 2009],
the strenuously tested reference routing protocol for TinyOS 2.x. CTP has been
shown to work well in mote networks and has already been used in several
studies [Choi et al. 2007a, 2007b; Wachs et al. 2007; Fonseca et al. 2007; Hauer
et al. 2008; Kothari et al. 2008; Filipponi et al. 2008].

2. BACKGROUND AND RELATED WORK

2.1 Generalities

For ease of reference, Table I provides a list of the symbols and variables used
in this article (each symbol is also described in the text).

Nodes and sets thereof. We denote the set of all nodes in a given network by
N ⊂ N; for simplicity, we will refer to N as the network, but we intend it to only
denote the set of nodes (and not the set of links). We use the symbol z for an
invalid node. We assume the presence of only one sink in the network, denoted

2http://enl.usc.edu/projects/tutornet
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Table I. List of the Main Symbols Used in the Article

Nodes and sets thereof
N set of nodes in the network
N1 sink neighborhood
s sink
z invalid node
p(i) parent of node i
p̃(i) former parent of node i
pa(i) advertised parent of node i

Load
fgen target data packet generation rate (target offered load)
βi relayed load at node i (in pkts/sec)

Links
(i, j) physical link between nodes i and j
[i, j] generalized link between nodes i and j
[i, s]k generalized link between nodes i and the sink with a first hop over (i, k)
πi, j Packet Delivery Rate (PDR) over (i, j)
Mi Required Number of Packets (RNP) with no regard to the identity of p(i)
Ri,k Total Required Number of Packets (RNP) over (i, k), with p(i) = k
Ei, j Expected Number of Transmissions (ETX) over (i, j)
ei delivery ratio of node i measured at the sink

Data plane: Retransmissions
Nmax maximum number of retransmissions at fixed intervals
Tr fixed inter-transmission interval
Tv variable inter-transmission interval

Data plane: Congestion control
q fraction of occupancy of the data FIFO buffer
Wc congestion threshold

Control plane: Outer cost field
Hi hop count between node i and the sink
Ai outer cost at i
c binary depth correction

Control plane: Inner cost field
nCSIi, j normalized CSI over (i, j)
nRSSi, j normalized RSS over (i, j)
nLQIi, j normalized LQI over (i, j)
#nCSI

i Normalized CSI bottleneck function of node i

#nRSS
i Normalized RSS bottleneck function of node i

#
nLQI
i Normalized LQI bottleneck function of node i

wCSI Binary selection variable for the CSI terms in the inner cost metric

wRSS Binary selection variable for the RSS terms in the inner cost metric

wLQI Binary selection variable for the LQI terms in the inner cost metric

wB Binary selection variable for the load term in the inner cost metric

Bi load bottleneck function of node i

Cb
i inner cost at i if p(i) = b

Ci inner cost at i
Other performance indicators

ρ coverage target value
φ fairness
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Fig. 1. A distributed routing example viewed from the perspective of a given node i. The arrows
show the direction of unicast data traffic. Solid arrows represent physical links, while dashed ones
represent generalized links.

as s ∈ N (this is not a limitation of Arbutus, which can handle multiple sinks).
The application model employed in the experiments in this article is continuous
many-to-one data collection: every node generates data packets with target
rate fgen and routes them to s. The parent of a node i, denoted as p(i), is the
destination of the data packets unicast by i.

Load. We define the target offered load fgen as the number of packets that
each node attempts to inject into the network per time unit, barring impedi-
ments due to congestion control schemes; fgen is assumed to be the same for all
nodes. We define the relayed load βi of node i as the number of relayed packets
per time unit. Both the target offered load and the relayed load are measured
in pkts/sec.

Links. We denote a directed wireless link from node i to node j as (i, j).
This notation indicates that the link is physical: if i transmits packets using
a given physical layer and a set transmit power, j receives at least one of the
packets over a given time window T (or else, (i, j) is said not to exist within T).
Node j is said to be i’s neighbor if (i, j) and ( j, i) exist.

Generalized links. We define the concept of generalized link, which we in-
dicate as [i, j], to represent a route between i and j whose intermediate relays
may be unknown. We denote as [i, s]k the sequence of all the relays used by the
routing protocol (at a given time) to deliver i’s packets to s using k as the first re-
lay. Figure 1 clarifies our notation using a distributed routing example viewed
from the perspective of a given node i. Node i wants to send a packet to the
sink s. A distributed routing protocol runs at every node, allowing each node to
know the address of the next hop toward the sink. Let us visualize the network
from i’s point of view: i has physical links to its neighbors a and b (they can
all hear each other directly). Node i, however, does not know what lies beyond
its neighbors, other than the fact that the sink s is somewhere downstream
from them. Therefore, we say that i and s are connected by a generalized link,
[i, s]. If p(i) = a, then [i, s] corresponds to [i, s]a. Likewise, if p(i) = b, then [i, s]
corresponds to [i, s]b. It is up to the distributed routing protocol to determine
whether a or b should be p(i). A node is said to have a valid route to the sink if
all nodes along the route have a valid parent, that is, if p(k) $= z for all k ∈ [i, s].
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From a node’s point of view, a route breakage is equivalent to the lack of a valid
parent (p(i) = z).

Link performance measures. We define the Packet Delivery Rate (PDR) over
(i, j), πi, j , as the ratio between the number of packets received by j over the
number of packets sent by i to j over a given time window. The PDR is therefore
an empirical probability of reception over (i, j). An asymmetric link is defined
in this article as a link (i, j) with |πi, j − π j,i| > 0.5. The delivery ratio at the
sink for node i, defined as the number of packets from node i that are delivered
to the sink (either directly or through multiple hops) over the total number of
packets generated by node i, is denoted as ei.

Another link performance measure is the Required Number of Packets (RNP)
[Cerpa et al. 2005], which indicates the total number of transmissions that are
needed by node i to get a packet across (i, p(i)) (averaged over a given time
window). Differently from the PDR, the RNP is not necessarily tied to a specific
link, as p(i) may change while the same packet is being retransmitted. Indeed,
if a given parent requires too many retransmissions, parent rotation may be
encouraged by the network layer (parent changes dictated by a routing protocol
are whimsically known as churn). We employ the notation Mi to indicate the
RNP over (i, p(i)), deliberately omitting p(i) in the notation because it may
change over time, and we denote the RNP for a specific parent p(i) = k as Ri,k.
For a given packet, Mi = Ri,k if p(i) = k until the packet’s delivery to k, or else
Mi ≥ Ri,k.

Link performance estimates. Link performance estimates rely on Channel
State Information (CSI). Common forms of CSI include PDR estimates based
on control beacon sequence numbers [Woo et al. 2003], the Received Signal
Strength (RSS), and the Link Quality Indicator (LQI). Beacon-based PDR es-
timates are completely platform independent, RSS is made available by most
radios, and LQI is only available with 802.15.4-compliant devices. The RSS used
to be considered a poor predictor of link quality, mostly because of the limita-
tions of early platforms [Zhao and Govindan 2003]. The community has recently
focused on the 802.15.4 stack, and, in particular, on motes built around the
CC2420 transceiver, which provides a much more reliable RSS indication. The
RSS is a good predictor of link quality; specifically, it has been shown that the
RSS, if higher than about −87dBm, correlates very well with the PDR [Srini-
vasan and Levis 2006]. While most radios provide a RSS indicator, the LQI is
specific to 802.15.4, and its implementation is left to the radio chip designer.
In the CC2420, the LQI is implemented as the sum of the first 8 correlation
values after the start of frame delimiter represented as a 7-bit unsigned integer
value.

Critical set. The neighborhood of the sink, N1 = {i : πi,sπs,i > 0}, will be
referred to as the critical set, as it contains the critical nodes that must relay
all upstream traffic to the sink. It is the extra workload that makes these nodes
critical: their batteries get drained at a faster rate than their upstream peers,
and their energy depletion disconnects the sink from the rest of the network.
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Node degree. It is normally defined in the presence of Boolean connectivity
as the number of links that a node has to other nodes. In our case, we must
take both soft connectivity and link directionality into account, so we define
the incoming soft degree of node i as

∑
k∈N πk,i and the outgoing soft degree as∑

k∈N πi,k. We define the average node degree as the average of the incoming
and the outgoing soft degree. The soft degree is therefore an empirical estimate
of the expected node degree in the connectivity graph.

2.2 A Network Layer for Sensor Networks

A taxonomy of routing protocols for sensor networks. Various classifications of
routing protocols are possible. Depending on whether geographic information
is employed or not, we speak of geographic routing or cost-based routing [Poor
2000]. In the latter, the central idea is the generation of a cost field rooted
at the sink. The cost field is set up as nodes estimate the cost of reaching
the destination according to a given metric, for example, the distance in num-
ber of hops, and packets are routed to the destination through reverse path
routing (data packets descend the cost field from the sensing area to the des-
tination). Arbutus does not employ geographic information and is therefore
cost-based.

If routing decisions are taken locally at each node, the protocol is distributed,
whereas it is said to be centralized if all decisions are taken by one special
node, typically a high-end node. Arbutus is distributed, because it targets ho-
mogeneous low-end networks where no single node has sufficient computing
resources and energy to support a centralized approach.

Routing schemes are said to be point-to-point if they allow any node to
route data to any other node. This any-to-any routing paradigm, however, is
not needed in the largest class of sensor network applications, data collection,
where a collection tree (many-to-one or many-to-few) is normally employed; this
is also the case with Arbutus.

Protocols are said to be sender-based if nodes have specific parents to which
they unicast packets; this is the case with Arbutus. In receiver-based routing,
a node estimates the cost of reaching the intended destination and includes
it in the outgoing packet before broadcasting it. Only the neighbors that es-
timate a lower cost to the destination rebroadcast the packet, allowing it to
descend a loop-free gradient towards the destination. The main problem with
the receiver-based approach is the large overhead due to redundant forwarding
[Woo 2004].

Multipath routing schemes [Ganesan et al. 2002] distribute traffic over dif-
ferent paths (either alternating the use of different paths at different times,
or using multiple paths at the same time). Given the energy cost of redundant
transmissions, Arbutus does not follow a multipath approach.

Routing schemes can be classified based on when route selection is per-
formed. In proactive protocols, routes are discovered before they are needed,
whereas in reactive protocols routes are discovered on demand. In the case of
cost-based data collection, one could argue that routing is reactive, as the sink
initiates it by starting the setup of a cost field. One could also argue, however,

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 28, Publication date: July 2010.



28:8 • D. Puccinelli and M. Haenggi

that routing is proactive, because the nodes always know their next-hop neigh-
bor thanks to periodic beaconing.

Most WSN routing protocols are based on collection trees. MintRoute,
MultiHopLQI3, and the Collection Tree Protocol (CTP) [Gnawali et al. 2009]
represent successive evolutions of a common cost-based paradigm defined in
Woo et al. [2003], which recognizes that the volatility of the wireless chan-
nel makes Boolean connectivity models unsuitable to low-end sensor networks
with low-power radios and limited resources. In the MintRoute family, a link
estimator assesses link quality to help a routing engine choose the neighbor
that offers the best progress toward the sink (according to a given metric), and
a forwarding engine unicasts local and upstream traffic to the neighbor chosen
by the routing engine.

Long-hop and short-hop routing. For multihop wireless networks, a funda-
mental question is whether it is better to route over many short hops (short-hop
routing) or over a smaller number of longer hops (long-hop routing). In Haenggi
and Puccinelli [2005], we have shown 18 reasons why long-hop routing is, in
most cases, a very competitive strategy: less energy consumption, better load
balancing, a more aggressive exploitation of radio sleep modes, and a reduced
route maintenance overhead are the most relevant for low-end nodes. Routing
over a few long hops is efficient if lossy links can be avoided through robust
link estimation. In Couto et al. [2003], the Expected Number of Transmis-
sions (ETX) metric is proposed; the idea is to estimate the total number of
transmissions needed to get a packet across a link, and use the route with
the minimum ETX. For (i, j), the ETX is estimated as Ei, j ≈ 1/(πi, jπ j,i). The
ETX has been shown to be a robust metric, especially on top of per-hop re-
transmissions [Gnawali et al. 2004], and is used in the MintRoute architecture
[Woo et al. 2003], which treats link estimation as a complementary problem to
routing. In the absence of a cap on the number of retransmissions (i.e., with
unconstrained retransmissions), the ETX coincides with the RNP; it is shown
in Fonseca et al. [2007] that the ETX can be measured based on the number of
layer-2 acknowledgements (ACKs).

2.3 Congestion Control

Several congestion control schemes have been proposed, most of which follow a
push-based paradigm whereby child nodes send their packets downstream and
parent nodes request rate adaptation, either by way of hop-by-hop flow control,
or through a rate-limiting scheme.

With hop-by-hop flow control, nodes signal local congestion to each other via
backpressure signals, reducing packet loss rates and preventing the wasteful
transmission of packets that are destined to be dropped downstream. The use
of backpressure in the form of binary feedback was initially promoted as the
Explicit Congestion Notification scheme in Ramakrishnan and Jain [1990].
Hop-by-hop flow control can be achieved through channel sampling [Wan et al.

3http://www.tinyos.net/tinyos-1.x/tos/lib/MultiHopLQI
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2003] (estimation of channel utilization by way of periodic sampling) or queue
occupancy monitoring.

Rate-limiting schemes, such as the Interference-aware Fair Rate Control
(IFRC) [Rangwala et al. 2006] and Rate-Controlled Reliable Transport (RCRT)
[Paek and Govindan 2007], tackle congestion control by means of rate allo-
cation (distributed in IFRC and centralized in RCRT). In Hull et al. [2004],
hop-by-hop flow control based on queue occupancy monitoring, rate-limiting,
and a prioritized MAC [Woo and Culler 2001] are combined into one scheme,
Fusion. Experimental evidence on a large mote network is provided, showing
significant benefits. In Arbutus, we integrate hop-by-hop flow control at the
network layer and study the interplay between congestion control and routing,
showing that congestion control is instrumental to data collection reliability.
Note that, while the interplay between congestion control and routing is not
studied in Hull et al. [2004] and Rangwala et al. [2006], where routing trees are
frozen, the importance of routing variability is accounted for in Paek and Govin-
dan [2007]. The importance of congestion control for the routing performance
has also been acknowledged in COSMOS (COngestion avoidance for Sensors
with a MObile Sink) [Karenos and Kalogeraki 2007], where congestion control
and RSS-based link estimation are jointly considered for routing to a mobile
sink, and experimental results from a 10-node testbed of MICA2 nodes are
presented.

A pull-based solution, the Pull Collection Protocol (PCP), has been proposed
in Wachs et al. [2007]; i can only send to p(i) if the latter provides a grant-
to-send authorization, issued on the basis of buffer space availability. PCP
eliminates the cause of congestion-induced buffer overflow at the price of a
large control overhead. The rationale behind its approach is that, in the push-
based paradigm, any form of congestion control is a post-facto measure, whereas
the pull-based paradigm operates preemptively. Arbutus follows a push-based
paradigm to avoid the considerable overhead that comes with the pull-based
approach.

2.4 Load Balancing

If a routing scheme always requires nodes to choose the next-hop neighbor that
offers the highest-quality route to the sink, load imbalance results in the hot
spot problem, whereby the critical nodes experience a faster energy depletion
rate due to the extra workload. Load balancing has been proposed in the form
of topology control, redundancy suppression, controlled mobility, and as part of
routing protocols; hybrid solutions across these categories also exist.

Redundancy suppression may be used to enhance virtually any load balanc-
ing solution (for instance, in the form of data aggregation). Siphon [Wan et al.
2007] is a hybrid between topology control and routing (cluster-based routing)
that recognizes the challenge posed by the hot spot problem and proposes a mul-
titiered solution (backed by experimental evidence on a mote testbed) based on
the use of virtual sinks, special nodes equipped with a secondary radio that
serve as local safety valves for overload traffic management.

Since our focus is on static homogeneous WSNs, clustering, virtual sinks, and
controlled mobility are not viable options. We therefore focus on load balancing
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as part of the routing protocol: Arbutus may incorporate a load-dependent term
into the cost field in order to enforce parent rotation in case a particular node
is overloaded [Puccinelli and Haenggi 2008a].

3. THE ARBUTUS ARCHITECTURE

In this section we provide an in-depth description of the Arbutus routing archi-
tecture, which we break down into a data plane and a control plane. At every
node, the control plane employs link estimation to build a distributed routing
tree and ensure that the data plane knows the next-hop address on the way to
the sink.

3.1 Data Plane

The data plane performs the basic services of data packet buffering and for-
warding, complemented by duplicate packet suppression, routing loop detec-
tion, and load monitoring. The data plane also avails itself of the combined
action of retransmissions and congestion control.

Basic functions. A data packet must contain three pieces of information
in its header: the identity of the node that initially injected it (the packet’s
generator), its sequence number as assigned by the generator, and the total
number of times it has been transmitted (needed to compute the RNP of a route
at the sink). A unique instance of a packet is defined based on its origin address
(address of its generator) and its sequence number set by its generator. The data
plane unicasts all data packets to the current parent p(i), which is determined
by the control plane. Locally generated packets (from the application layer)
and packets received from upstream neighbors are queued in a FIFO buffer.
Packets are dequeued for unicast transmission to p(i) only if p(i) $= z. After a
packet is sent to p(i), if a positive layer-2 ACK is received, the FIFO buffer is
served again (unless it is empty). If a layer-2 ACK is not received, the data plane
implements a given retransmission policy. The data plane is also responsible
for keeping track of the relayed load, which is fed into the control plane for
optional network-layer load balancing.

Duplicate packet suppression. A packet duplicate may be the consequence
of a failed ACK (i.e., an ACK is not sent) or a dropped ACK (i.e., an ACK is sent
but not received). The latter case is more common: if i sends a data packet to j
and (i, j) is asymmetric with πi, j > π j,i, j is likely to receive i’s data packet, but
i is likely to miss j’s ACK and send the same data packet, so that j receives
duplicates. Arbutus keeps duplicates from entering the data buffer by caching
the signature (origin address and sequence number) of the latest packet from
each node (uncapped signature caching), thus avoiding the useless and energy-
inefficient propagation of duplicates at the price of extra RAM usage. Low-end
nodes have a few KBs worth of RAM; given that each signature needs 2–4
bytes, uncapped caching can be used up to a network size of several hundreds
of nodes.

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 28, Publication date: July 2010.



Reliable Data Delivery in Large-Scale Low-Power Sensor Networks • 28:11

0

1 2 3 4

(a) Node 0 has become unavailable. Node
1 attempts to unicast to node 0 and cannot
reach it (M1 ! 1). Node 2 is unaware of 0’s
unavailability and advertises that p(2) = 0.
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(b) Node 0 is unavailable. Node 2 attempts to
unicast to node 0 and cannot reach it (M2 !
1). Node 3 is unaware of 0’s unavailability
and advertises that p(3) = 0.
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1 2 3 4

(c) Node 0 is unavailable. Node 3 attempts
to unicast to node 0 and cannot reach it
(M3 ! 1). Node 4 is unaware of 0’s un-
availability and advertises that p(4) = 0.

0

1 2 3 4

(d) Node 0 is unavailable. Node 4 attempts to
unicast to node 0 and cannot reach it (M4 !
1). Node 1 advertises that p(1) = 2. Node 4
sets p(4) = 1 and loops back to node 1.

Fig. 2. An example of loop formation upon route breakage: node 0 becomes unavailable and its
child nodes form a loop.

Routing loop detection. Inconsistencies in the cost field may cause a node k
to award parent status on an upstream peer i with pn(i) = k (n ≥ 1), thus caus-
ing a routing loop. Trivial loops (n = 1) can be avoided upon parent selection
using cost field information (i cannot accept k as a parent if p(k) = i), but loops
with n > 1 must be specifically targeted by a dedicated scheme. Figure 2 illus-
trates a simple example of how a loop may arise: a node with many descendants
becomes unavailable, and a time lag in the update of the state information at
the descendants causes them to form a loop. In general, the formation of loops
may or may not happen based on the relative timing of the control and data
packets.

Arbutus has two key mechanisms that contribute to preventing the for-
mation of loops: the outer field, whereby nodes cannot unicast data to their
upstream peers, and parent pinning, whereby troubled nodes ask their child
nodes to pin them. The outer field is a cost field bootstrapped by depth estimates
that can be incremented if the data-driven feedback indicates that the link to
the current parent is very lossy; the net result is that a node can only award
parent status on its downstream peers that have a lower depth estimate, or on
nodes with equal depth estimates in case its RNP blows up (for an example,
refer to the description of the outer cost field in Section 3.2). Parent pinning is a
data plane policy whereby a troubled node can ask its descendants to pin it as a

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 28, Publication date: July 2010.



28:12 • D. Puccinelli and M. Haenggi

parent and wait out for at least a full beacon period before accepting any other
node as their parent. Our extensive experiments have showed that this policy,
along with the action of the outer field, is extremely effective at preventing
loops from forming. Parent pinning does not cause a significant goodput loss,
because it usually happens in subnetworks that have a bottleneck to the rest of
the network (the troubled node is the bottleneck). If a loop does arise, the outer
field can break it very easily, because it limits the depth of the nodes. While
in a loop, the hop count of the nodes involved grows; as soon as a beacon is
received from anywhere upstream, the beacon sender breaks the loop because
its depth value is lower than all the overinflated depth values of the nodes that
are stuck in the loop. As an additional safety measure, the data plane itself can
detect a loop if i is forwarded a packet whose generator is i itself. Upon loop
detection, duplicate suppression is disabled to avoid dropping packets in the
loop, because duplicates are injected by the routing loop. The control plane is
then instructed to advertise route breakage. Note that this method only detects
loops that involve a packet generator (e.g., packets from node 1 in a loop 1-2-3-
4-2-3-4 never travel back to 1, and so this particular loop does not involve the
packet generator, node 1), but it is bound to be effective in a many-to-one traffic
scenario where every node injects traffic periodically. Different traffic injection
scenarios can always count on the outer field to break loops.

Retransmission strategies. Under the assumption that all packets are
equally important, no particular packet should be discarded to favor others,
and therefore unconstrained retransmissions are in order. If the traffic is not
time sensitive, packets should be treated equally [Wachs et al. 2007]. Under
the assumption of time-sensitive traffic, however, newer packets are more im-
portant than older packets, which may contain obsolete information; in this
case, it makes sense to drop a packet after a given number of retransmissions
Nmax. Arbutus supports both constrained and unconstrained retransmissions,
but retransmissions are only performed if the node has a valid parent, or else
they are put on hold. Note that the parent may of course change, and that is
why Arbutus keeps track of the RNP given the current parent (Ri,p(i)) to be fair
to the new parent (similarly to CTP, a new parent starts off with a clean slate
and is not penalized for the shortcomings of the previous parent).

In the case of unconstrained retransmissions, the data plane retransmits
as many times as necessary. In our unconstrained retransmission policy, up to
Nmax retransmissions are performed at fixed intervals Tr; if they do not suffice
to receive a positive ACK, more retransmissions are performed at increasing
intervals Tv = g(Ri,p(i)), where g(Ri,p(i)) is an increasing function of Ri,p(i). The
reason for this strategy is that transitional links tend to be bimodal and oscil-
late between high and low PDR, and therefore delaying retransmissions by a
fixed amount of time has been shown to reduce the transmissions-to-deliveries
ratio [Srinivasan et al. 2008b]. In the case of constrained retransmissions, the
data plane retransmits up to Nmax times before dropping the packet.

In the case of unconstrained retransmissions, if more than Nmax transmis-
sions are needed and no alternate parent can be identified, congestion is bound
to become a problem. Therefore, this particular situation is treated as the onset
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of congestion (RNP-based congestion onset detection). In the reference imple-
mentation, we use Nmax = 30, g(Ri,p(i)) = Tr Ri,p(i) and Tr = 10ms, and we employ
unconstrained retransmissions unless otherwise specified.

Congestion control. Given that the use of unconstrained retransmissions
virtually eliminates channel-related packet loss, aside from residual loss due
to false ACKs or faulty CRCs, the other major factor that can cause packet loss
is congestion. To mitigate it, Arbutus employs backpressure-based congestion
control triggered by either an abnormal FIFO occupancy level or an abnormally
lossy link to a bottleneck parent. This latter scenario, which we refer to as
congestion onset detection, occurs at node i with parent p(i) = k when Ri,k >

Nmax: node i does not infer parent loss (which might be conducive to a loop),
but preemptively infers congestion (because its FIFO buffer lacks an outlet).

The fraction of FIFO occupancy q ∈ [0, 1] is fed into the state machine after
each access to the FIFO buffer. The state machine has two states, a Default state
and a Congested state; the Congested state is entered if q ≥ Wc or in the case of
congestion offset detection, and it is not exited until the queue becomes empty
(to ensure hysteresis). All communication to the descendants is performed with
beacons managed by the control plane according to a strategy that we describe
in Section 3.2. If the medium is highly congested, these backpressure beacons
may not be heard by their intended receivers, and this is exactly why a rea-
sonably conservative calibration of the congestion thresholds is in order. As we
have verified experimentally, a not-so-conservative threshold calibration (in-
creasing the value of Wc) provides a slightly higher goodput but is detrimental
to reliability. On the other hand, an overly conservative Wc causes too much
control overhead and is counter-productive. We have determined Wc = 0.75 to
be a good compromise, as we show in Section 4.5.

3.2 Control Plane

The control plane selects the next-hop address based on a cost field set up
across the network. The cost field setup is initiated by the sink and continued
by the other nodes as they receive control beacons from their downstream
neighbors. The control plane is built around the DoUble Cost Field HYbrid
(DUCHY) link estimator [Puccinelli and Haenggi 2008b], which employs an
outer field for depth control and an inner field for parent selection, allowing
Arbutus to actively enforce long-hop routing while avoiding lossy links. Both
cost fields are bootstrapped with beacon-based channel estimates and refined
with data-driven feedback. The outer field is conducive to a low hop count (long
hops), while the inner field and the data-driven feedback for both fields are
instrumental to robust link estimation.

Routing state. Table II shows the routing state variables and indicates
which ones are advertised in the broadcast control beacons. At a given node
i, Arbutus only keeps state for the current parent p(i) and keeps track of the
former parent p̃(i). The address of the current parent is advertised in the con-
trol beacons and is denoted as pa(i). Two kinds of beacons are employed: route
beacons advertising a valid route (pa(i) = p(i) $= z), which are broadcast at
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Table II. State Information at Node i

State Variable Symbol In Beacon
address i yes
current parent address p(i) no
former parent address p̃(i) no
advertised parent address pa(i) yes
hop distance to sink Hi yes
bottleneck link RSS #nRSS

i yes

bottleneck link LQI #
nLQI
i yes

bottleneck relayed load Bi yes
local relayed load estimate βi no
cost of reaching the sink by way of p(i) Ci no

For each state variable, we provide the corresponding symbol and specify
whether it is included in the control beacons.

regular intervals (every 60s in the implementation), and no-route beacons ad-
vertising route breakage (pa(i) = z), which are broadcast whenever necessary.
Route breakage at node i is defined as the lack of a valid parent (p(i) = z);
it is advertised veridically (pa(i) = p(i) = z) in the case of a routing loop or
downstream congestion and is faked (pa(i) = z $= p(i)) in the case of local con-
gestion. Inferring route breakage based on data plane feedback (i.e., in case
the RNP blows up) is not necessary, because the double cost field can mend
itself if other parents are available. We have also observed that inferring route
breakage based on data plane feedback may be conducive to routing loops.

Double cost field link estimator. The centerpiece of the control plane is the
DUCHY link estimator [Puccinelli and Haenggi 2008b]. Any beacon from node
b advertising p(b) $= z is subjected to a vetting process by the double cost field.
The two cost fields are bootstrapped with CSI and refined with data-driven
feedback, the RNP, which is measured by counting layer-2 ACKs (as in Fonseca
et al. [2007]). Specifically, the outer field is initialized with depth estimates
refined with the RNP, while the inner field is bootstrapped with CSI based on
the received control beacons and also refined with the RNP. DUCHY is hybrid
in two different ways: it is driven by both CSI and RNP estimates, and it
exploits both broadcast control traffic and data traffic (like Woo et al. [2003]
and Fonseca et al. [2007]).

Data-driven feedback is essential because the control plane cannot take
beacon-based link estimates at face value [Zhang et al. 2008]: for one, CSI
is based on reverse-link estimates (beacons travel over (p(i), i), but data will
travel over (i, p(i))), and the timescale of data traffic is necessarily different
from the timescale of control traffic. Specifically, it has been observed [Srini-
vasan et al. 2008a] that the PDR over a given link may be different for traf-
fic with different inter-packet intervals. Further, since the quality of wireless
links may change over time (for instance, due to shadowing and induced fading
[Puccinelli and Haenggi 2006b]), beacon-based link estimates may provide ob-
solete information due to the propagation lag of the cost field, especially in the
case of transitional links (because very good links typically have a large noise
margin).
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For platform independence, DUCHY could obtain CSI from PDR estimates
based on control beacon sequence numbers, but link-layer ACKs would still be
required for data-driven feedback, as is the case with Four-Bit Link Estimation
[Fonseca et al. 2007]. Since 802.15.4 provides link-layer ACKs as well as the
LQI, and since the RSS is available with most radios, our implementation of
DUCHY employs both the RSS and the LQI. The RSS is used to obtain soft
information about good links, while the LQI is used to get soft information
about bad links. The CSI-based estimate obtained by merging the RSS and
the LQI is refined through the use of RNP feedback from the data plane. The
version of DUCHY used in this article, differently from the original version
in Puccinelli and Haenggi [2008b], allows the option of network-layer load
balancing by incorporating load information into the inner field.

Outer cost field. The purpose of the outer cost field is to limit the depth
of the routing tree. At node i, the outer field filters out neighbors that are
estimated not to be closer to s than i (i.e., nodes estimated to be at the same
depth as i, or deeper in the tree), because they would lead to unnecessarily long
routes. Let Hi be the hop count between i and s. The outer cost field actively
pursues long-hop routing, and the outer cost normally coincides with the hop
count, so that nodes can only award parent status to shallower nodes. The
hop count, however, is a beacon-based estimate, and taking beacons at face
value for the estimation of a node’s depth in the routing tree can easily cause
nodes to underestimate their depth. Counting hops, in fact, means assuming
links to be Boolean objects that either exist or do not exist, but low-power
wireless links are probabilistic. We therefore refine our beacon-based depth
estimates with data-driven feedback, which we distil down to a binary depth
correction term c that is normally equal to 0 and is set to 1 if the current parent
of i is deemed to be particularly unreliable (Ri,p(i) ( 1). The outer cost is given by

Ai ! Hi + c, (1)

and a beacon from node b is said to pass through the outer cost field at i if
Ab < Ai. Computing the outer cost as an incremented hop count enables bea-
cons from a prospective parent b that advertises Hb = Hi to pass through the
outer field in case i is stuck with a lossy link. The exact RNP threshold beyond
which a parent is tagged as unreliable and c is set to 1 is application-dependent
(we set it to 5 in the reference implementation).

Data-driven feedback is essential to refine beacon-based estimates and avoid
link estimation errors. While beacon-based link estimates only give information
on inbound links, data plane feedback makes link estimates bidirectional, so
that asymmetric links can be avoided. Suppose, for instance, that i estimates
Hi = 2 and p(i) = k. Further, suppose that (k, i) is asymmetric with πk,i > πi,k:
i generally receives k’s beacons, but k generally misses i’s data packets. The
outer cost is bootstrapped as Ai = 2, i starts using (i, k), but the RNP blows up:
Ri,p(i) ( 1. Suppose now that all the other neighbors of i also lie at depth 2.
Without data-driven feedback, i would be stuck with p(i) = k. Since Ri,p(i) ( 1,
however, its outer cost becomes Ai = 3, and the beacons from i’s neighbors k
with Hk < 3 are allowed through the outer field, which means that i can use
the inner cost field to choose a new parent among them.
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The outer field is very helpful with routing loops. As an example, in
Figure 2(c), A4 = 1 (H4 = 1 and c = 0), A3 = 2 (H3 = 1 and c = 1, be-
cause M3 ( 1), A2 = 3 (A2 = A3 + 1), and A1 = 4. Therefore, in Figure 2(d),
node 4 cannot award parent status on any of its peers, because A4 < Ak with
k = 1..3.

Inner cost field. While the outer field directs the choice of a prospective
parent toward the set of downstream neighbors, the inner field is in charge of
awarding parent status on a specific downstream neighbor. If a beacon passes
through the outer field, the link estimator obtains the necessary CSI mea-
surements related to the received beacon as feedback from the lower layers
and marshals the relevant arguments for the computation of the inner cost of
choosing b, the beacon’s sender, as its new parent. As node i considers node b as
a prospective parent, it needs to pay attention to the outgoing link (i, b), which
is the first step out to s: a significant quality fluctuation on (i, b) would dis-
rupt communication over [i, s]b. Of course, it is just as important for i to avoid
that packets get stuck at some point past b. Due to the different timescales of
control and data traffic and the time lag between the beacon arrival and the
actual use of the corresponding link, the reliability of beacon-based estimates
is relatively low. Therefore, rather than keeping track of the quality of all links
in a route (e.g., with an additive link metric), we only account for the worst link
(bottleneck link) of a given route (in addition to the outgoing link).

The inner cost Cb
i of using b to reach s, that is, the cost of using [i, s]b, is

computed by i as a function of both the quality of (b, i) and the quality of the
worst link (link quality bottleneck) over [i, s]b:

Cb
i = nCSIb,i + #nCSI

b + wB Bb, (2)

where nCSIb,i denotes normalized CSI measured at i over (b, i), #nCSI
b repre-

sents the bottleneck normalized CSI advertised by b, defined as

#nCSI
b ! max

r∈[b,s]p(b)

nCSIp(r),r, (3)

Bb represents the load bottleneck seen by b, defined as

Bb ! max
r∈[b,s]p(b)

βr, (4)

and wB is a binary selection variable that allows us to select or deselect the
option of load balancing. The load bottleneck term embeds load balancing into
the routing protocol, because it raises the cost of a prospective parent with
a large relayed load (even if it advertises a reliable route). If wB = 1, we
speak of Arbutus with load balancing, while we speak of Arbutus without load
balancing if wB = 0. The values of #nCSI

b and Bb are advertised in the control
beacons broadcast by b to ensure state propagation and build up a cost field.

Our reference implementation takes full advantage of the two kinds of CSI
provided by the CC2420: the RSS and the LQI. We denote the normalized RSS
over (b, i) as nRSSb,i and the normalized LQI as nLQIb,i, and introduce binary
selection variables wRSS and wLQI to select and deselect each piece of CSI in
our evaluation. RSS is normalized so that 0 corresponds to a very high RSS
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(> −50dBm), and 1 corresponds to a very poor RSS (< −85dBm), and LQI is
normalized so that 0 corresponds to a very high LQI (> 100), and 1 corresponds
to a very poor LQI (< 60). Unless otherwise noted, wRSS = 1 and wLQI = 1. In
the implementation, (2) is used in the form

Cb
i = wRSS

(
nRSSb,i + #nRSS

b
)
+ wLQI

(
nLQIb,i + #

nLQI
b

)
+ wBBb, (5)

where the various terms with the RSS and LQI subscripts have the same role
of the corresponding terms with the CSI subscript described earlier. If b is the
current parent (p(i) = b), then we use the simplified notation Ci for the inner
cost field at i.

When a beacon received from another node, say j, passes through the outer
cost field (i.e., Aj < Ai), node j is awarded parent status if C j

i < Ci + cRi,p(i),
where cRi,p(i) is a data-driven feedback term that artificially inflates the inner
cost of the current parent if c = 1. Recall that c is the binary depth correction
term that favors switching to a reliable prospective parent in case the current
parent is found to be unreliable.

State management upon parent update. A key point is that no routing table
is employed: state is only maintained for the current parent p(i). A table-free
protocol uses less RAM, and, much more significantly, scales very well. Aside
from the current parent p(i), the control plane also keeps track of the former
parent p̃(i), which is used to streamline congestion recovery. Changes in the
state variables after the adoption of a new parent include the update of the
load, the RSS, and the LQI downstream bottlenecks, the update of the hop
count to the sink (Hi ! Hp(i) + 1, which impacts the outer cost Ai), and the
update of the inner cost Ci.

Recovery from abnormal conditions. If a parent becomes unavailable for
any reason, its child nodes no longer receive its beacons. Rather than using an
arbitrary timeout value to infer parent loss, we let the cost fields mend them-
selves (if possible): the data plane keeps unicasting to p(i), the RNP blows up,
so does Ai, and as soon as a beacon from a different neighbor j with Aj ≤ Ai
is received, j is awarded parent status. As we have already mentioned, a large
RNP to p(i) is viewed by i as the onset of congestion (RNP-based congestion on-
set detection), and a no-route beacon is broadcast to keep the descendants from
sending in more data packets in case it is not possible to mend the cost field.

In the case of local congestion at node j, the congestion control state machine
in the data plane enters the Congested state, where node j requires its descen-
dants to stop sending by faking parent loss. Specifically, node j broadcasts a
no-route beacon with pa( j) = z: j gets its descendants to stop sending data
packets by faking route breakage (p( j) $= z, but pa( j) = z).

Routing loops and downstream congestion are both viewed as a route break-
age. If p(i) = k and node i receives a packet generated at i, a loop is detected,
which automatically means that k does not have a valid route to the s. If
p(i) = k and k broadcasts a no-route beacon with pa(k) = z, i learns that its cur-
rent parent k is congested; for i’s purposes, k cannot currently offer a valid route
to s.
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Route breakage is normally conducive to a high risk of routing loop forma-
tion. To prevent loops from forming, Arbutus employs parent pinning: upon
reception of a no-route beacon from its parent k, i pins the identity of k and
does not switch to a new parent for at least one full beacon period. Pinned
parents are blacklisted and only chosen again as parents if there are no vi-
able alternatives, in which case the formerly pinned parent is bound to be a
bottleneck and is taken off the black list.

4. EXPERIMENTAL PERFORMANCE ANALYSIS

4.1 Methodology

Evaluation on testbeds. We perform a comprehensive routing evaluation and
benchmarking on large-scale testbeds. For many different reasons, the number
of working nodes in a given testbed fluctuates over time: hardware may fail,
software issues may occur, and human activity may disturb the nodes. As a
reference, we provide the number of working nodes in each testbed that we use
averaged over the timeframe of usage. Most of the experimental work for this
article was carried out on the MoteLab testbed over several months. All the
data presented herein pertains to three particular timeframes of testbed usage:
March 2008, when the average number of working nodes was 90, April–May
2008, when the average number was 155, and December 2008, when the aver-
age number was 130. An additional set of results obtained in June 2009 with
an average of 100 nodes is also presented. MoteLab nodes are distributed over
3 floors. The total deployment area is about 6500 square meters, which corre-
sponds to a relatively low average density of approximately 0.025 nodes per
square meter. Node placement is very irregular, and the node degree has a very
high variance. We also present results obtained on the Telecommunication Net-
works Group Wireless Indoor Sensor network Testbed (Twist) at the Technische
Universität Berlin, and on the Tutornet testbed at the University of Southern
California. In terms of node placement regularity, Twist is at the other end
of the spectrum with respect to MoteLab, as its 102 nodes are arranged in a
fairly regular grid over 3 floors; each floor covers an area of 460 square meters,
and the average density is a relatively high 0.074 square meters, about 3 times
the density of MoteLab (there are 204 sockets for 102 TMoteSky and 102 eye-
sIFX nodes; in the experiments in this article, we employ the 102 TMoteSky
nodes). Tutornet contains 91 TMoteSky nodes distributed over sections of 2
floors of 1400 square meters each, with an average density of about 0.065
nodes per square meter. Using all three testbeds provides us with topological
diversity.

CTP as a benchmark. Arbutus lies in the same subset of the design space
as the MintRoute family, so CTP represents a natural choice for a benchmark.
The control plane of CTP sets up a cost field based on link estimation. CTP’s
control plane treats the link estimator as a separate block, so that CTP may
use different link estimators; in this work, we employ both the Link Estima-
tion Exchange Protocol (LEEP) [Gnawali 2007] and Four-Bit Link Estimation
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[Fonseca et al. 2007]. In LEEP, a neighbor table is seeded with bidirectional
ETX estimates based on control beacons (specifically, we employ the implemen-
tation in http://www.tinyos.net/tinyos-2.x/tos/lib/net/le). With Four-Bit
Link Estimation, LEEP’s beacon-based estimates are refined on the basis of
data plane feedback (link-layer ACKs are used to measure the RNP). While
LEEP was the standard link estimator when we began this work, Four-Bit has
now taken over, which is why we employ it in the more recent experiments.
Arbutus’s link estimator is tightly integrated into the control plane, so in this
sense Arbutus is not as modular as CTP. Arbutus’s DUCHY-like link estimator
uses both CSI (RSS and LQI) and ETX-like quantities. CTP also uses these
pieces of information, but at the lower granularity of one bit (the white bit
in the Four-Bit Link Estimator). Like Arbutus, CTP also sets up its cost field
through beaconing; CTP’s interbeacon intervals, however, are not constant, but
are adapted. CTP does not perform load balancing. CTP’s data plane provides
buffering, loop detection, and congestion detection, but no congestion control,
other than rate-limiting. There are two levels of buffering: a message pool and
a forwarding queue. The idea behind the message pool concept is that multiple
network protocols might coexist and need to exchange information with the
link layer. While the message pool concept is certainly applicable to Arbutus,
we limit ourselves to using a forwarding queue of the same size as CTP’s (12
packets).

CTP has built-in loop detection and breakage features. A data packet ad-
vertises its sender’s cost of reaching the sink, and if a node receives a data
packet advertising a cost no greater than its own, it infers that there must
be an inconsistency in the cost field. CTP then broadcasts a control beacon to
inform the lower-cost descendant that the cost field has become inconsistent.
If the lower-cost descendant does not hear the beacon, the loop does not get
broken and the cost of the nodes involved keeps increasing, but CTP breaks
the loop when the cost value exceeds an implementation-dependent threshold.
Differently from CTP, Arbutus uses several loop prevention techniques, as de-
scribed in Section 3.2; if loops do arise, Arbutus breaks out of them thanks to
the depth-limiting outer field itself, along with a simple loop detection scheme
(see Section 3.1).

Another difference lies in duplicate suppression: CTP caches a finite number
of signatures (made up of address, sequence number, and a Time Has Lived
field), while Arbutus uses a reduced signature (address and sequence number),
but stores it for the latest packet received from all nodes. Arbutus’s memory
signature (4 bytes per node) therefore grows linearly with the number of nodes,
but it is relatively small for the network size that we consider (100–150 nodes).
In much larger networks (e.g., more than 1000 nodes), Arbutus would need to
employ CTP’s limited-size signature caching approach.

While Arbutus has the option of unconstrained retransmissions, CTP gives
up on a packet after 30 retransmissions. Arbutus’s unconstrained retrans-
missions require a backpressure scheme for congestion control. In CTP, aside
from a rate-limiting mechanism, congestion control is not used, but con-
gestion detection is employed, which means that CTP facilitates the use of
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existing congestion control schemes without attempting to incorporate their
functionality.

4.2 Experimental Setting and Performance Metrics

We use a many-to-one application scenario where each node generates traffic at
a fixed target rate fgen (the target offered load, equal for all nodes) destined to a
single sink node. It is assumed that all nodes are equal and all packets have the
same importance: there is no benefit in dropping a given packet to favor another
one. Due to the presence of a congestion control mechanism, the actual offered
load may be lower than the target offered load. In general, each experiment has
two main parameters: the sink assignment and the target offered load. For each
MoteLab data point, we typically present results obtained as an average over
3 experimental runs of a duration ranging from 10–30 minutes (most runs last
15 minutes). Experiments with Arbutus and the benchmark, CTP, are run back-
to-back. Network-wide results are obtained by averaging over all nodes. For
Twist, we typically present results obtained as an average over 1–2 runs of an
average 15–20 minutes. For Tutornet, we show fewer but longer experiments,
typically 1 run per data point, ranging from 30 minutes to a few hours. For
the March 2008 and the April–May 2008 MoteLab experiments, as well as for
the Twist and Tutornet experiments, we employ the February 2008 release of
CTP with LEEP. For the MoteLab experiments from December 2008 and later,
we use the September 2008 release of CTP with Four-Bit Link Estimation. We
use a transmit power of 0dBm for every node in all experiments. We employ
several performance metrics for our experimental evaluation.

Delivery ratio. Since Arbutus is optimized for reliability, the primary per-
formance indicator is the delivery ratio, whose average for the network is com-
puted as the total number of delivered packets over the total number of sent
packets.

Goodput. It is defined as the number of successfully delivered packets at
the sink per time unit (we measure it in packets per second). Delivery ratio and
goodput provide nonoverlapping information: a protocol can achieve a relatively
large goodput at the cost of a low average delivery rate (for instance, by adopting
a best-effort approach and injecting more packets than can be accommodated),
or, conversely, it can achieve a very high delivery rate at the cost of a goodput
degradation and a larger delay (for example, through the use of unconstrained
transmissions).

Coverage. We define coverage with respect to target values, which are frac-
tions ρ of the offered load. A node is said to be covered with respect to a target
value ρ if its contribution to the goodput at the sink is no less than a fraction
ρ of its offered load. As an example, if ρ = 0.75 and fgen = 1 pkt/sec/node, then
a node is covered with respect to ρ if it is able to contribute a goodput of no
less than 0.75 pkts/sec at the sink. Note that this notion of coverage is agnos-
tic to the delivery ratio, because what matters is only the number of packets
delivered to the sink per time unit. In other words, if ρ = 0.75 and fgen = 1
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Fig. 3. Delivery ratio with Arbutus (with load balancing) and CTP (with LEEP) at four different
levels of offered load for two different network sizes.

pkt/sec/node, a node that delivers 0.8 pkts/sec and loses 0.2 pkts/sec is consid-
ered to be covered, while a node that delivers 0.7 pkts/sec with no packet loss
(thanks to the use of retransmissions) is considered not to be covered.

Fairness. Fairness is a widely used metric in the congestion control litera-
ture [Hull et al. 2004]. It is usually applied to delivery rates according to Jain’s
equation [Jain 1991]:

φ !
(∑

i∈N ei
)2

|N |
∑

i∈N e2
i
, (6)

where ei is the delivery ratio of node i measured at s. While coverage is agnostic
to the delivery ratio and only considers the goodput, fairness is agnostic to the
goodput and only considers delivery ratios.

Routing cost. The routing cost from a node i to s is defined as the total
number of transmissions needed to deliver a packet over [i, s]. The routing cost
for a network N is computed as the average of the routing costs from the nodes
i ∈ N . Ideally, the routing cost should coincide with the average hop distance
to the sink, but this is not the case due to the lossy nature of wireless links and
the consequent need for retransmissions.

4.3 Performance as a Function of the Offered Load

We begin by assessing the impact of the offered load on Arbutus and CTP. We
use Arbutus with load balancing (wB = 1 in Eq. (5)) and CTP with LEEP. We
arbitrarily fix the sink assignment (we choose MoteLab’s node 151) and vary
the offered load. For a given value of the offered load, we plot the delivery ratio
and goodput averaged over 5 experiments that we ran within a few hours of
each other. We consider four different offered load levels: fgen = 0.1 pkt/sec,
fgen = 1 pkt/sec, fgen = 2 pkts/sec, and fgen = 4 pkts/sec. Figures 3(a) and 3(b)
show the delivery ratio in, respectively, the 90-node from March 2008 and the
155-node testbed from April–May 2008.
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Fig. 4. Goodput with Arbutus (with load balancing) and CTP (with LEEP) at four different levels
of offered load for two different network sizes.

In terms of reliability (Figure 3) Arbutus significantly outperforms CTP at
all the offered load points, and its performance is relatively insensitive to the
variations in the offered load. Figures 4(a) and 4(b) show the goodput achieved
by Arbutus and CTP in, respectively, the 90-node and the 155-node testbed. At
0.1 pkt/sec, CTP slightly outperforms Arbutus in terms of goodput in the 90-
node network and matches Arbutus’s performance in the 155-node network,
while Arbutus does much better at higher offered loads. If the offered load
is low, Arbutus’s load balancing definitely affects the goodput, while at higher
offered load points, the interplay between load balancing and congestion control
kicks in. Load balancing keeps nodes from getting overloaded and prevents
congestion: under heavy load, the goodput does not suffer as much as under
light load.

Figure 4(a) shows that, with Arbutus, the goodput in the 90-mote network
peaks at fgen = 2 pkts/sec; this does not happen in the 155-mote network, where
Arbutus’s goodput increases monotonically with the offered load (Figure 4(b)).
This is due to the presence of bottlenecks in the 90-mote network: these bottle-
neck nodes get congested and thus limit the achievable goodput as the target
offered load increases. In the 155-mote network, congestion is not as critical:
there are no significant bottlenecks (because the bottlenecks in the 90-mote
network were due to the unavailability of 65 motes that are now available),
and the achievable goodput at fgen = 4 pkts/sec is therefore larger. CTP’s lack
of congestion control (other than rate-throttling) is responsible for the satura-
tion of its goodput past fgen = 2 pkts/sec at levels well below Arbutus’s in both
versions of the MoteLab testbed. As CTP specifically targets relatively low-rate
data delivery, it does not contain an explicit congestion control mechanism. Ar-
butus, on the other hand, contains several congestion control mechanisms to
accommodate a relatively high offered load without a significant performance
degradation.

In the remainder of the article, we will concentrate on only two offered load
points: fgen = 0.1 pkt/sec and fgen = 1 pkt/sec, because the most remarkable
performance changes occur in this interval. Given that we work with a network
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Fig. 5. Performance plane for Arbutus (with load balancing) and CTP (with LEEP) in MoteLab
(about 155 nodes). Results at several sink assignments are shown, and in a few cases the sink as-
signment itself is indicated. Different sink assignments correspond to different network topologies.
The impact of topology on the goodput is significant, particularly at higher offered load points (note
the different scale of the two subfigures). Arbutus’s delivery ratio is, however, relatively insensitive
to the topology.

size between 90 and 160 nodes, the offered load point fgen = 0.1 pkt/sec will be
henceforth referred to as light load, while fgen = 1 pkt/sec will be considered
heavy load.

4.4 Joint Impact of the Topology and the Offered Load

Topology as a parameter. The results in Section 4.3 pertain to a specific, arbi-
trary sink assignment in the MoteLab testbed. In the assessment of a routing
protocol, network topology must be treated as a parameter, similarly to the
target offered load. To understand how crucial topology is, we perform sev-
eral experiments with different sink assignments. We continue to use Arbutus
with load balancing (wB = 1) and CTP with LEEP, and we distill the perfor-
mance indicators down to their average value over all nodes in the network,
after obtaining each per-node value as the average over at least 3 runs. In
particular, we visualize the routing performance on a goodput-delivery ratio
plane (henceforth called performance plane), and we represent the routing cost
on a hop count-total number of transmissions plane (henceforth named cost
plane).

Performance plane. Figure 5 shows the performance plane for a number
of network topologies in MoteLab. We observe that the goodput varies signifi-
cantly depending on the sink assignment, especially for Arbutus. This happens
because Arbutus’s long-hop approach is able to leverage on the network topol-
ogy, and a change in the sink assignment means a different topology. In general,
CTP yields a better goodput under light load; this is particularly noticeable in
topologies 12, 25, and, in particular, 16, which all appear to be performance out-
liers. Load balancing causes a definite goodput degradation under light load;
this degradation may be particularly significant depending on the topology.
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Fig. 6. Performance plane for Arbutus (with load balancing) and CTP (with LEEP) in Twist (about
100 nodes). The impact of topology on the goodput is not as significant as in MoteLab, given the
regular grid-like structure of the Twist network.

Figure 5 also shows that the delivery ratio of Arbutus is always superior and
relatively insensitive to both topology and load. Arbutus owes this to its long-
hop approach and the combined action of congestion control and unconstrained
retransmissions. CTP’s delivery ratio also appears to be insensitive to the sink
assignment; we conclude that topology does not have a significant impact on
the delivery ratio.

Figure 6 shows the performance plane for a few sink assignments in Twist.
Due to its very regular topology, there is very little variability across different
sink assignments, and the performance of both protocols is considerably better
than in MoteLab. Arbutus achieves virtually 100% reliability under light load,
and is always above 98% reliability under heavy load. Twist’s regular grid-like
topology is not conducive to congestion, and CTP’s goodput is consistently better
than Arbutus’s under light load (Figure 6(a)). While load balancing hurts the
goodput under light load, the interplay between congestion control and load
balancing begins to kick in under heavy load (Figure 6(b)), and Arbutus nearly
always outperforms CTP in terms of goodput. Even under high load, CTP’s
goodput is better than Arbutus’s for a couple of sink assignments, for which
Twist’s regular topology does not trigger the interplay between load balancing
and congestion control (because the topology is so regular that there is hardly
any congestion).

Figure 7 shows the results on Tutornet; in particular, Figure 7(a) shows
that on Tutornet Arbutus (with load balancing) achieves a competitive goodput
performance even under light load, due to the irregular distribution of the nodes
that is conducive to congestion. Tutornet also suffers from a heavy amount of
802.11 interference; although these results were obtained on a nonoverlapping
802.15.4 channel (channel 26), there remains a certain amount of residual
interference that increases the average RNP, contributing to the injected load.

Cost plane. In MoteLab, the routing cost, shown in Figure 8, is affected
by wide performance variations depending on the sink assignment. Arbutus
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Fig. 7. Performance plane for Arbutus (with load balancing) and CTP (with LEEP) in Tutornet
(about 90 nodes). Topology has an impact on the goodput, albeit not as much as in MoteLab, due
to Tutornet’s higher density.
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Fig. 8. Cost plane for Arbutus (with load balancing) and CTP (with LEEP) in MoteLab, 155 nodes.
Arbutus greatly reduces the routing cost (transmissions per delivered packet) as well as the depth
of the routing tree. Note the different scale in the two subfigures, and the relative consistency of
Arbutus’s routing cost as the offered load is increased.

typically achieves a smaller routing cost with fewer transmissions per delivered
packet. Its routing cost is relatively insensitive to the offered load, while CTP’s
cost varies greatly between the two offered load points. This is due to Arbutus’s
more efficient tree structure: unnecessarily long routes are avoided, and a
smaller relayed load is imposed onto the network.

The cost plane for our Twist experiments is shown in Figure 9. Given the
regular grid-like layout of Twist, Arbutus’s average routing cost is fairly con-
sistent across different sink assignments and always lower than CTP’s. Like on
MoteLab, Arbutus’s cost does not vary significantly as the target offered load
is increased. Moreover, Arbutus always builds shallower trees, thanks to its
long-hop routing strategy.

ACM Transactions on Sensor Networks, Vol. 6, No. 4, Article 28, Publication date: July 2010.



28:26 • D. Puccinelli and M. Haenggi

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

1.4

1.6

1.8

2

2.2

2.4

2.6

100
81

250

196

79

91

209
144

Hops to sink

R
ou

tin
g 

co
st

Arbutus
CTP

(a) fgen = 0.1 pkts/sec

1.4 1.6 1.8 2 2.2 2.4 2.6
1.5

2

2.5

3

3.5

4

4.5

10

100

81

250

196

79

91

209

144

Hops to sink

R
ou

tin
g 

co
st

Arbutus
CTP

(b) fgen = 1 pkts/sec

Fig. 9. Cost plane for Arbutus (with load balancing) and CTP (with LEEP) in Twist, about 95
nodes. Due to the regular grid-like layout of the network, all sink assignments correspond to
benign topologies, and the performance is consistent across different topologies.

Table III. MoteLab, 155 nodes: Overall Results for the April–May 2008 Experiments

Performance Indicator Arbutus (light) CTP (light) Arbutus (heavy) CTP (heavy)
Delivery ratio 0.98 ± 0.02 0.89 ± 0.02 0.92 ± 0.03 0.40 ± 0.06
Goodput [pkts/sec] 13.95 ± 1.09 14.26 ± 0.31 52.70 ± 13.95 34.10 ± 4.65
Hop count 2.65 ± 0.50 3.22 ± 0.56 2.45 ± 0.41 3.04 ± 0.61
Routing cost 4.25 ± 0.68 5.72 ± 0.74 4.05 ± 0.48 7.67 ± 0.90
Coverage at 5% 0.99 ± 0.01 0.99 ± 0.01 0.78 ± 0.12 0.77 ± 0.11
Coverage at 25% 0.99 ± 0.01 0.99 ± 0.01 0.50 ± 0.16 0.32 ± 0.09
Coverage at 50% 0.98 ± 0.01 0.99 ± 0.01 0.27 ± 0.10 0.15 ± 0.05
Control overhead 0.17 ± 0.03 0.09 ± 0.05 0.05 ± 0.02 0.26 ± 0.20
Duplicate suppression 0.99 ± 0.01 0.94 ± 0.03 0.99 ± 0.01 0.85 ± 0.04

We compare Arbutus with load balancing and CTP with LEEP, both under light and heavy load. For each
performance indicator, we provide the mean µ and the standard deviation σ in the form µ ± σ . The results are
averaged over all the topologies that we considered.

Overall benchmarking results. In Table III we present an overview of our
April-May 2008 experimental results on the 155-node MoteLab testbed for the
two offered load points of 0.1 and 1 pkt/sec/node, averaged over all topologies.
Arbutus definitely achieves reliability, as proved by the 10% improvement over
CTP under light load and the wide gap under heavy load. Load balancing does
degrade the goodput under light load: Arbutus falls 3% below CTP’s goodput.
Due to the interplay between load balancing and congestion control, however,
Arbutus outperforms CTP by as much as 50% under heavy load. Independently
of the offered load, Arbutus reduces the average node depth by an average 19%,
and reduces the number of transmissions per delivered packet by 47% under
light load, and by 26% under heavy load. The coverage of both protocols is
virtually identical under light load. Under heavy load, however, Arbutus out-
performs CTP. Under light load, Arbutus’s control overhead is almost double
than CTP. There are two reasons for this: Arbutus’s congestion control scheme,
and the fact that CTP relaxes the beaconing interval if no anomalies are de-
tected. The situation is completely reversed under heavy load: Arbutus’s control
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Fig. 10. MoteLab, 130 nodes (December 2008). Relative impact of the components of the Arbutus
architecture on the performance plane under light load.
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Fig. 11. MoteLab, 130 nodes (December 2008). Relative impact of the components of the Arbutus
architecture on the cost plane under light load.

overhead drops to just 5%, only 20% of CTP’s overhead. This happens because
heavy load conditions are likely to cause disruptions that get CTP to reduce its
beaconing interval. Arbutus’s uncapped duplicate suppression scheme is very
effective, although capped signature caching (similarly to CTP) would need to
be employed in larger networks (|N | > 200).

4.5 Relative Impact of the Main Components

In this section, we isolate the impact of load balancing, link estimation, and
congestion control on the performance with a set of experiments that we ran on
MoteLab in December 2008 (with an average of 130 active nodes). In this set
of experiments, we employ CTP’s September 2008 version with Four-Bit Link
Estimation [Fonseca et al. 2007]. Figures 10 and 11 show the relative impact
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of the various components of Arbutus under light load and compare them to
CTP on, respectively, the performance plane and the cost plane.

Load balancing. We begin by comparing Arbutus with load balancing
(wRSS = 1, wLQI = 1, wB = 1 in Eq. (5), indicated as LQI+RSS+LB in
Figures 10 and 11) and Arbutus without load balancing (wRSS = 1, wLQI = 1,
wB = 0, indicated as LQI+RSS). We have seen that Arbutus with load bal-
ancing works very well under high load thanks to the interplay between load
balancing and congestion control, but we have also seen that load balancing
reduces Arbutus’s goodput under light load, because suboptimal links require
more transmissions, and their use therefore limits the goodput and increases
the routing cost. Figure 10 shows that, if load balancing is disabled, Arbutus
outperforms CTP’s goodput even under light load. Figure 11 shows that, under
light load, load balancing also has a significant impact on the routing cost,
which drastically drops if load balancing is shut down.

Link estimation. We now shut down load balancing and focus on link esti-
mation, which has two main components: CSI estimates from control beacons
(beacon-based link estimation) and data plane feedback. We begin to focus on
beacon-based link estimation, isolating RSS-only link estimation (wRSS = 1,
wLQI = 0, wB = 0, indicated as RSS in Figures 10 and 11), LQI-only link es-
timation (wRSS = 0, wLQI = 1, wB = 0, indicated as LQI), and their combined
effect, which is Arbutus without load balancing (wRSS = 1, wLQI = 1, wB = 0,
indicated as LQI+RSS). It is clear from Figure 10 that the joint use of both
RSS and LQI makes a big difference, because RSS and LQI complement each
other: the former provides soft information about good links, while the latter
provides soft information about bad links [Puccinelli and Haenggi 2008b]. Us-
ing only LQI yields a higher delivery ratio than using only RSS at the price
of a lower goodput; this is because if only RSS is used, the very best links
are consistently chosen, which leads to higher goodput but, at the same time,
more congestion-induced packet loss. On the other hand, if only LQI is used,
there is no soft information about good links: any high LQI link can be se-
lected. It has been shown that the time average of the LQI is a lot more reliable
than just a single value. Arbutus does use a single LQI value, but normally
compensates it with the concurrent use of RSS. If single-value LQI is the only
link metric, however, not-so-good links get chosen based on one high LQI sam-
ple, thus causing a significant goodput degradation. Reliability, however, is
not affected, since Arbutus uses unconstrained retransmissions, and the fact
that any high-LQI link can be arbitrarily chosen means that congestion is
not an issue. In other words, the choice of CSI affects the goodput, while the
data-driven feedback affects the delivery rate. From the standpoint of cost,
Figure 11 shows that using only RSS or only LQI is significantly more costly
than combining them, which confirms that using both is extremely beneficial.
Note that the same delivery ratio is achieved with RSS and LQI, which are two
complementary forms of CSI, and this shows that the delivery performance is
not sensitive to the inner cost field metric, which depends on the data-driven
feedback.
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We now separate beacon-based link estimation from data plane feedback
by shutting down the latter (wRSS = 1, wLQI = 1, wB = 1 in Eq. (5), and
y(Mi) = 0 for all i in Eq. (1), indicated as No DPF), which means that beacon-
based estimates are accepted at face value without data-driven feedback. Due
to the use of unconstrained retransmissions and congestion control, the lack of
data plane feedback hardly affects reliability, but goodput is heavily affected,
as shown in Figure 10. Not using data plane feedback means being exposed
to link estimation errors and, therefore, suboptimal links; indeed, Figure 11
shows that, in the absence of data plane feedback, Arbutus’s routes are shorter
than usual, but its routing cost is higher. With blind beacon-based estimates,
Arbutus’s long hop approach backfires, because its link estimator chooses long
links no matter how lossy they are.

Congestion control. We have already stated that Arbutus outperforms CTP
owing to long-hop routing and the combined action of congestion control and
unconstrained retransmissions. Though CTP has a congestion detection mech-
anism and can employ existing congestion control schemes, it does not perform
congestion control. It is therefore fair to ask to what extent congestion control
boosts Arbutus’s performance. We therefore disable the congestion control state
machine (by setting Wc > 1) as well as congestion onset detection both in the
presence of load balancing (wRSS = 1, wLQI = 1, wB = 1 in Eq. (5), indicated as
No CC) and in its absence (wRSS = 1, wLQI = 1, wB = 0 in Eq. (5), indicated as
No CC, No LB).

Figure 10 shows that, under light load, with load balancing and no conges-
tion control, Arbutus’s delivery ratio matches CTP’s, while its goodput drops
below CTP’s. Nonetheless, if we also shut down load balancing, Arbutus’s de-
livery rate and goodput almost match their values in the case of Arbutus with
congestion control and without load balancing. The same is true for the cost
plane shown in Figure 11: with load balancing and no congestion control, both
the routing cost and the hop count increase, but with no load balancing the
cost drops well below CTP’s, though it is still a bit larger than in the case of
Arbutus with congestion control and no load balancing. This result confirms
the key role of the interplay between load balancing and congestion control and
also underlines that Arbutus’s main strength does not lie in its congestion con-
trol scheme, but in its long-hop routing strategy, made possible by its dual cost
field link estimation scheme. This is also confirmed by the results under high
load, shown in Figure 12, where we consider Arbutus without load balancing
(LQI+RSS), with load balancing (LQI+RSS+LB), and without congestion con-
trol (No CC). Under high load, congestion control becomes a lot more crucial:
without it, Arbutus’s delivery ratio drops below 70%; nevertheless, Arbutus
with no congestion control still outperforms CTP, providing further evidence
that the main strength of Arbutus lies in its dual cost field and the low-depth
routing tree that it leads to. Note that, in the absence of congestion control,
Arbutus achieves a better goodput. This is a clear indication that the backpres-
sure scheme is rather conservative; indeed, a congested node asks its children
to simply stop sending. We have experimented with more lenient backpressure
policies, such as asking children to slow down rather than just stop, and we
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Fig. 12. MoteLab, 130 nodes (December 2008). Relative impact of the components of the Arbutus
architecture on the performance plane under heavy load.
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Fig. 13. Our experimental data (under light load) shows that an overly conservative calibration
of Wc causes the system to overreact and flood the network with control traffic.

have found that they provide a small goodput gain at the price of a significant
degradation of the delivery ratio. Figure 12 also confirms the interplay between
congestion control and load balancing, which minimizes the impact of load bal-
ancing on the goodput under heavy load (even with load balancing, Arbutus
outperforms CTP under heavy load).

We will now provide a justification for our calibration of Wc, the key threshold
for the congestion control scheme. The threshold Wc can be calibrated empir-
ically based on the experimental data shown in Figure 13, obtained by av-
eraging the goodput, packet loss, and control overhead results obtained with
Arbutus under light load for different topologies. These results were obtained
on MoteLab under light load in June 2009 with about 100 nodes; the good-
put is normalized with respect to the target offered load (0.1 pkt/sec), and the
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Table IV. MoteLab, 130 Nodes

Performance Indicator Arbutus (LB) Arbutus (no LB) CTP (4BLE)
Delivery ratio 0.98 ± 0.02 0.99 ± 0.01 0.93 ± 0.02
Goodput [pkts/sec] 11.44 ± 1.17 11.96 ± 0.65 11.70 ± 0.26
Hop count 2.43 ± 0.42 2.35 ± 0.37 2.85 ± 0.67
Routing cost 4.73 ± 1.44 4.03 ± 1.11 4.45 ± 1.03
Duplicate suppression 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

Overall results for the winter 2008 experiments, averaged over all the topologies that we
considered, under light load. For each performance indicator, we provide the mean µ and
the standard deviation σ in the form µ ± σ . We compare Arbutus with load balancing (LB),
Arbutus without load balancing (no LB), and CTP with Four-Bit Link Estimation (4BLE).

Table V. MoteLab, 130 Nodes

Performance Indicator Arbutus (LB) Arbutus (no LB) CTP (4BLE)
Delivery ratio 0.94 ± 0.04 0.96 ± 0.05 0.48 ± 0.02
Goodput [pkts/sec] 59.80 ± 9.10 63.70 ± 9.10 44.20 ± 2.60
Hop count 2.19 ± 0.38 2.04 ± 0.29 3.35 ± 0.13
Routing cost 4.27 ± 0.47 4.20 ± 0.67 6.60 ± 1.17
Duplicate suppression 0.99 ± 0.01 0.99 ± 0.01 0.91 ± 0.05

Overall results for the winter 2008 experiments, averaged over all the topologies that we
considered, under heavy load. For each performance indicator, we provide the mean µ and
the standard deviation σ in the form µ ± σ . We compare Arbutus with load balancing (LB),
Arbutus without load balancing (no LB), and CTP with Four-Bit Link Estimation (4BLE).

absolute goodput can be obtained by multiplying the normalized goodput by
10 (100 nodes * 0.1 pkt/sec). If an overly conservative calibration is chosen,
the system overreacts to congestion, the control overhead blows up, and a se-
vere performance degradation occurs. A relaxed calibration, on the contrary,
defies the purpose of congestion control and leaves the system vulnerable to
congestion-induced losses. Based on these results, our implementation employs
Wc = 0.75 (if the queue is 75% full, the system signals congestion).

Overall benchmarking. We now focus on the results with and without load
balancing, and examine how they compare to CTP with Four-Bit Link Estima-
tion. Tables IV and V present an overview of our December 2008 results on the
130-node MoteLab testbed, respectively for light and heavy load.

Table IV confirms that, while Arbutus is more reliable (both with and without
load balancing), CTP outperforms Arbutus with load balancing in terms of
goodput under light load. As already seen in Figures 10 and 11, load balancing
is responsible for the performance degradation remarked in Table III. In fact,
without load balancing Arbutus outperforms CTP also in terms of goodput.
Load balancing also has an impact on the routing cost: without load balancing,
Arbutus achieves a lower cost and tree depth than with load balancing.

Table V shows the results under heavy load. As already shown in Figure 12,
load balancing has a negligible cost under high load, and this is true in all
dimensions (delivery ratio, goodput, hop count, routing cost). On the CTP side,
a comparison between Tables III and IV–V shows that Four-Bit Link Estimation
significantly outperforms LEEP in terms of routing cost. We also note that the
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Table VI. MoteLab, about 100 Nodes

Performance Indicator Arbutus - Unconstrained Arbutus - Constrained
Delivery ratio 0.99 ± 0.01 0.97 ± 0.12
Goodput [pkts/sec] 7.11 ± 2.88 7.20 ± 1.98
Hop count 2.80 ± 1.19 2.76 ± 1.17
Routing cost 4.35 ± 1.88 3.63 ± 1.53

Overall results for the June 2009 experiments, averaged over all the topologies that we
considered, under light load. For each performance indicator, we provide the mean µ and
the standard deviation σ in the form µ ± σ . We compare Arbutus without load balanc-
ing with unconstrained retransmissions (Unconstrained) and constrained retransmissions
(Constrained) with Nmax = 30.

September 2008 version of CTP performs much better than the February 2008
version in terms of duplicate suppression.

So far, we have only considered Arbutus with unconstrained retransmis-
sions. We have run a number of experiments, with several different sink as-
signments, to quantify the impact of constrained retransmissions on the per-
formance. We set Nmax = 30, just like CTP. Interestingly, we found that con-
strained retransmissions do not, on average, increase the goodput. They do
cause some packet loss, but typically not more than an average 3%. One strong
advantage of constrained retransmissions, however, is energy conservation, as
shown by the significant reduction of the average routing cost. The results of
these experiments, run in June 2009 on MoteLab (with about 100 active nodes)
are in Table VI.

5. THE IMPACT OF NETWORK TOPOLOGY ON ROUTING

We have seen in Section 4 that network topology has a significant impact on
routing performance. In this section, we further characterize this impact. We
study the impact of the critical set size in Section 5.1 and analyze the role of
transitional links in Section 5.2.

5.1 Impact of the Critical Set Size

Since we employ a many-to-one collection tree, the critical set size is the most
natural way to quantify a given topology. As already remarked, in our experi-
ments on Twist we observed a much less significant topology-induced variabil-
ity compared to MoteLab. The reason for this is that Twist has a very regular
layout and a relatively high node degree, while MoteLab has a more irregular,
complex topology, and a lower average node degree. All the Twist sink assign-
ments that we considered have a critical set size between 40 and 60, which is
large compared to Twist’s network size (between 95 and 100). Both protocols
perform much better in Twist (Figure 6) than they do in MoteLab (Figure 5)
showing that a large critical set is extremely beneficial. In Twist, under heavy
load, Arbutus achieves an average normalized goodput (i.e., normalized with
respect to the target offered load) of 0.75, 2.2 times higher than in MoteLab.
CTP also performs much better: 0.61 in Twist and 0.22 in MoteLab. A large
critical set size has an even more significant impact on the routing cost. Under
heavy load, Arbutus goes from 4.05 in MoteLab to 2.16 in Twist, while under
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Fig. 14. Overview of the routing performance of Arbutus with load balancing: the results shown
herein are averaged over all topologies with a critical set size within one of three classes: small
(S, less than 20 critical nodes), medium (M, 20 to 40 critical nodes), and large (L, over 40 critical
nodes).

light load, it goes from 4.25 in MoteLab to 1.68 in Twist. The larger the crit-
ical set, the easier it is to get more packets to more nodes (higher goodput)
with fewer transmissions per delivery (lower cost). A performance degrada-
tion can be expected to occur in topologies with a small critical set, which are
more likely to suffer from severe congestion. In fact, if only a few critical nodes
are relaying traffic from many upstream peers, interference and congestion
are unavoidable. The problem with a similar scenario is that congestion causes
more interference, because congestion management requires additional control
traffic that interferes with the intense data traffic.

Given its complex layout, MoteLab is the testbed that best lends itself to
the study of the impact of the topology. Figure 14 provides an overview of the
joint impact of the offered load and the topology on the goodput, coverage, hop
count, and routing cost in all the March–April 2008 experiments on MoteLab
(155 nodes), where we employed Arbutus with load balancing and CTP with
LEEP. The results for light and heavy load are averaged over all topologies
within a given interval of critical set sizes. Given that there are 155 nodes, we
classify those critical sets with less than 20 critical nodes as small (indicated
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Fig. 15. MoteLab, 90 nodes: goodput as a function of the critical set size.
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Fig. 16. MoteLab, 90 nodes: reliability as a function of the critical area size.

as S), those between 20 and 40 as medium (M), and those with over 40 as large
(L). We do not consider the delivery ratio because we have seen in Section 4.4
that it is not affected by the topology.

Figures 14(a) (goodput under light load) and 14(b) (goodput under heavy
load) confirm that, as we remarked in Section 4.4, Arbutus’s goodput leverages
on the topology: due to its long-hop routing approach, Arbutus performs much
better if the critical set size is large. This is particularly true under light load,
where load balancing takes a toll on the goodput for small and medium critical
set sizes. The critical set size also significantly affects hop count (Figure 14(c))
and routing cost (Figure 14(d)), both of which are relatively insensitive to the
offered load in the case of Arbutus, as seen in Section 4.4.

Figures 15 and 16 show, respectively, the goodput and delivery ratio results
under heavy load for various values of critical set size in March 2008’s 90-node
MoteLab testbed. In these experiments, we used Arbutus with load balancing
and CTP with LEEP. Particular effects can be observed in the 90-node testbed
due to its much sparser connectivity. In particular, sinks with very low degrees
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Fig. 17. MoteLab, 90 nodes. Neighborhood instability is a good predictor of performance degrada-
tion. Topologies 12, 16, and 56 exhibit a very poor performance with both protocols.

have a rather unpredictable performance not only in terms of goodput, but
also in terms of delivery ratio. There are some significant outliers in Arbutus’s
performance: 12, 16, and 56 are truly awful for both protocols. They all have
small degrees, but so do many other sink assignments that do not experience the
total collapse suffered by these three outliers. This suggests that, in conditions
of sparse connectivity, critical set size does not fully capture the impact of the
topology. There exists another significant topological effect, the presence of
transitional links, which we discuss in Section 5.2.

5.2 Impact of Transitional Links

Links in the transitional region are affected by a lack of long-term stability. We
define neighborhood instability based on the fraction of links in the transitional
region, that is, the links whose quality lies below a given RSS threshold (which
we set at −87dBm, following Srinivasan and Levis [2006]) and a given LQI
threshold (which we set to 100, based on empirical observations). Figure 17
shows that, in the 90-node MoteLab testbed, sink assignments with a poor
delivery rate performance have instability values close or equal to 1: most of
their links are asymmetric or just poor in both directions. If the sink has almost
exclusively links that are poor in both the inbound and the outbound direction,
its beacons normally do not make it to its neighbors, and when they do, the
data packets from the sink’s neighbors normally do not make it to the sink. In
this case, unconstrained retransmissions still save the delivery ratio, but the
goodput drops dramatically. If links are asymmetric and predominantly lossy
in the inbound direction, beacons normally make it to the sink’s neighbors,
but their packets normally do not make it to the sink; again, unconstrained
retransmissions still save the delivery ratio, but the goodput plummets. If
the sink has asymmetric links that are predominantly lossy in the outbound
direction, the sink’s beacons normally get dropped. If the sink’s beacons happen
to get through, the sink’s neighbors attempt to send data packets to the sink.
The sink’s inbound links are not particularly lossy, and the sink is likely to
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Fig. 18. MoteLab, 90 nodes. Correlation between CTP duplicate suppression rate and instability;
12, 16, and 56 again stand out as outliers.

receive the packets sent by its neighbors, but the sink’s ACKs back to its
neighbors get dropped over its lossy outbound links. The neighbors send the
same packets over and over, and the sink ends up with plenty of duplicates
as well as lots of congestion. Therefore, if the sink has asymmetric links that
are predominantly lossy in the outbound direction, there is not only a goodput
degradation, but also a drop in delivery rate.

Since CTP puts a cap to the number of packet signatures that it caches for
duplicate suppression, CTP’s duplicate suppression rate is a good indication of
this phenomenon, and is indeed much lower for those sink assignments that
also see a significant delivery rate degradation, as can be seen in Figures 17
and 18, which show, respectively, the delivery ratio and the duplicate suppres-
sion rate against the instability of the sink neighborhood. Those same nodes 12,
16, and 56 that we labeled as outliers in Section 5.1 also stand out in Figures
17 and 18. In particular, Figure 18 shows that there is a definite correlation
between CTP’s duplicate suppression rate and sink neighborhood instability.
CTP has a much harder time suppressing duplicates in unstable topologies,
simply because there are many more duplicates to suppress. If Arbutus also
capped the number of node signatures that it can store for duplicate suppres-
sions, it would have the exact same problem as CTP. Instability is more likely
if the sink has a low critical set size, because in this case there exists a limited
number of paths to the sink; this is the condition of the performance outliers in
the 90-node MoteLab testbed. Figure 19 shows the duplicate suppression rate
against the critical set size (node degree), confirming that sink assignments
affected by instability (such as outliers 12, 16, and 56) all have a small critical
set size.

Instability is a byproduct of multipath fading [Puccinelli and Haenggi
2006a], whose effect is frequency dependent; indeed, unstable topologies dis-
play a wide range of variability across different frequencies. Figure 20 shows
the goodput-delivery performance of sink assignment 56 as we modify the
802.15.4 channel employed by the CC2420 transceiver. Channel 26, used in
all other experiments in this article, yields the worst performance with sink
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Fig. 19. MoteLab, 90 nodes. Outliers 12, 16, and 56 have both a small critical set and a low CTP
duplicate suppression rate, which is a good predictor of instability.

Fig. 20. MoteLab, 90 nodes. Different 802.15.4 with sink assignment 56 produce very different
results: for instance, fading is not an issue on channel 11, but is destructive on channel 26.

assignment 56, while channel 15 yields the best performance. This experiment
therefore confirms that fading may have a devastating impact on topologies
with a small critical set. Interference is also an issue here: for instance, 802.15.4
channels 11 and 18 fully overlap with 802.11 channels 1 and 6.

6. CLOSING REMARKS

Long hops. Our extensive experimental results, obtained on large-scale
public testbeds of low-end sensing nodes, provide further evidence in favor of
long-hop routing, which we have showed to boost routing performance provided
that the routing protocol is supported by a solid link estimator. Our double cost
field link estimator employs an outer field based on depth estimates to avoid
unnecessarily long routes, and an inner field based on link quality estimates
to avoid lossy links. To ensure link estimation robustness, both fields refine
beacon-based estimates with data-driven feedback. The double cost field struc-
ture keeps the routes as short as possible while avoiding unreliable links. The
outer cost minimizes the hop count while also minimizing the routing cost.
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Reliability. We have showed that Arbutus achieves a significant degree of
reliability; this is mainly due to its active pursuit of long hops, along with the
combined action of congestion control and unconstrained retransmissions. We
have shown that Arbutus’s reliability is not sensitive to the offered load and
the network topology.

Scalability. Since Arbutus contains mechanisms that explicitly address a
relatively high traffic load, the performance gap between Arbutus and CTP
widens as the offered load increases.

Load balancing. In Puccinelli and Haenggi [2008a], we estimate that load
balancing extends network lifetime by 30% under heavy load; in Puccinelli and
Haenggi [2009]), we confirm this estimate by emulating energy depletion and
measuring the lifetime benefit. In this work, however, we find that, under light
load, load balancing is responsible for a 5% goodput loss. While Arbutus with
load balancing yields a goodput that is 3% below CTP’s, Arbutus without load
balancing improves CTP’s goodput by 2%; this happens because load balancing
requires the occasional use of suboptimal links. Under heavy load, however,
there is an interplay between load balancing and congestion control, because
part of the goodput loss caused by load balancing is partially compensated for
by the decreased congestion.

Topology. Our results show that the network topology has a huge impact
on routing performance. Even with the same network, performance can change
dramatically if we modify the sink placement. While in actual deployments
there is often a limited amount of freedom in node placement and sink selection,
care should nonetheless be exercised to ensure enough route diversity near the
sink by way of a relatively large critical set (compared to network size).

Exploring the design space. The Arbutus architecture lends itself to further
explorations of the routing design space. In particular, an adaptation of Arbutus
for point-to-point routing over a mesh is also possible: a node would have to
keep state for all its intended destinations, which would be feasible due to the
fact that Arbutus saves memory by not relying on a routing table.

Impact of the MAC layer. In this study, we have bulit on top of the standard
CSMA-based MAC layer of TinyOS 2.x. It would be of great interest to study
the performance of Arbutus on top of different MAC schemes. In particular, the
use of a prioritized MAC [Woo and Culler 2001] that would shorten the backoff
for congested nodes would probably increase Arbutus’s goodput.

Low-power operation. A future study could be devoted to investigating
the operation of Arbutus on top of the Low Power Listeningprotocol (LPL)
[Polastre et al. 2004] or Low Power Probing [Musaloiu-E. et al. 2008]. A ver-
sion of CTP with LPL is already available, and it would again serve as a bench-
mark. It would be of particular interest to use Arbutus for backbone routing in
a mostly-off sensor network where the use of sleep modes is widespread.
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