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Abstract—We evaluate the end-to-end delay of a multi-hop
transmission scheme that includes a source, a number of relays
and a destination, in the presence of interferers located according
to a Poisson point process. The medium-access control (MAC)
protocol considered is a combination of TDMA and ALOHA,
according to which nodes located a certain number of hops apart
are allowed to transmit with a certain probability. Based on
an independent transmissions assumption, which decouplesthe
queue evolutions, our analysis provides explicit expressions for
the mean end-to-end delay and throughput, as well as scaling
laws when the interferer density grows to infinity. If the source
always has packets to transmit, we find that full spatial reuse,
i.e., ALOHA, is asymptotically delay-optimal, but requires more
hops than a TDMA-ALOHA protocol.

The results of our analysis have applications in delay-
minimizing joint MAC/routing algorithms for networks with
randomly located nodes. We simulate a network where sources
and relays form a Poisson point process, and each source
assembles a route to its destination by selecting the relaysclosest
to the optimal locations. We assess both theoretically and via
simulation the sensitivity of the end-to-end delay with respect to
imperfect relay placements and route crossings.

Index Terms—Multi-hop, end-to-end delay, throughput, Pois-
son point process, queueing.

I. I NTRODUCTION

The main question pertinent to wireless multi-hop networks
is determining the delay at which a certain throughput can
be achieved, at the end-to-end level. The question is related to
the following fundamental tradeoff: On the one hand, a smaller
hopping distance provides more robustness to interferenceand
noise, resulting in better link reliability; on the other hand,
each node that is added between the source of packets and
their final destination also incurs additional delay, as a packet
typically has to wait in line before it is transmitted to the next
node [1]. The treatment of the problem depends on a number
of diverse factors, among which are the employed routing and
medium-access (MA) control (MAC) protocols, the channel
model and, quite importantly, the topology of the network.

This paper obtains concrete end-to-end delay and through-
put results for multi-hop networks with randomly placed
nodes, taking into full account the effects of fading, interfer-
ence and queueing delays due to packet buffering. We optimize
the delay over the number of hops between the source of
packets and their destination, and other network parameters;
obtain asymptotic delay-throughput tradeoffs as the density of
nodes goes to infinity; and propose a delay-optimal routing
algorithm for networks with randomly placed nodes.

A. Related work and motivation

The delay and throughput of multi-hop networks has been
a topic of intense investigation, in particular in the last
decade [1]–[4]. An important line of work, spurred by [5],
considers the network as a collection ofm nodes randomly dis-
tributed in a unit-area disk, where source-destination pairs are
randomly formed, and focuses on obtaining asymptotic results
asm grows large. Following [5] and a number of other papers
that dealt exclusively with the issue of achievable throughput
(see [2] for an overview), [3] raised the question of delay-
constrained throughput. In particular, under an ideal scheme
that can schedule transmissions throughout the network, they
showed that, for almost all network realizations, the optimal
delay-throughput tradeoff is given byD(m) = Θ(mT (m)),
whereD(m) andT (m) are the delay and throughput scaling,
respectively. A similar result was derived in [6], albeit within
a different framework where nodes were allowed to move
throughout the network in an independent and identically
distributed (iid) fashion.

Although useful in shedding light on fundamental perfor-
mance trends, the previous approach falls short in providing
concrete results for given design choices, which are based on
realistic routing and MAC protocols. In [7], it was argued
that a functional network capacity theory should take into
account issues of delay and overhead, since these dramatically
affect the performance of practical networks. An approach
pioneered in [8] was to consider the network as a collection of
transmitters, each with a distinct receiver, which are distributed
on the plane as a Poisson point process (PPP). The PPP
framework is well suited for networks with no particular struc-
ture and uncoordinated transmissions, i.e., a random access
MAC (ALOHA). A significant amount of work has been
devoted to the study of single-hop PPP networks (see [9]
for a comprehensive overview) and the evaluation of metrics
such as the expected packet progress [8], the transmission
capacity [10] and the spatial density of progress [11].

Given the tractability of the PPP framework, some exten-
sions have been proposed to accommodate multi-hop transmis-
sion. In [12], an opportunistic routing strategy was advocated
where the relay with the most favorable channel is selected
in each hop, and the end-to-end delay was evaluated via
simulation. In [4], the end-to-end throughput was derived
and optimized over the number of hops, assuming that in
each hop the interferer locations are drawn independently
according to a PPP. The authors coined the term random-
access transport capacity for the optimized throughput, to
emphasize that, as in [5], the metric reflects the rate at which
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packets are transported from the source to the destination,
but in the specific setting where interferer locations and their
transmissions are random. In [13], the multi-hop problem
was studied from an end-to-end connectivity perspective and
bounds were determined on the time required for a path to
form between the source and the destination. The common
trait of these papers is their “throughput-centric” approach; it
is assumed that nodes always have packets to transmit and
queueing delays resulting from packet buffering are ignored.

Other related work includes [14]–[19], which have studied
the “line network” consisting of a source, a number of relays
and a destination. The common assumption here is that the line
network operates in a stand-alone fashion, i.e., interference
from other such “lines”, which are expected to be present
in a network environment, is not considered. Assuming a
channel model with path-loss, fading and noise, and no delay
constraints, [15], [16] determined the end-to-end rate, i.e.,
the minimum achievable rate over all hops, when a TDMA-
access protocol is employed. Alternatively, under a given delay
constraint, [17] specified the number of hops and the rate
allocation among them, such that the total power consumption
is minimized. A similar problem was studied in [14], under
an end-to-end success probability requirement. In [19], a
decomposition approach was employed to decouple the line
network into isolated queues and the end-to-end delay of time-
division multiple access (TDMA) and ALOHA protocols was
evaluated.

B. Contributions

In this paper, we study the end-to-end delay performance of
a multi-hop transmission system (or route, in routing terminol-
ogy) consisting of a source, a number of relays and a destina-
tion, in a network where interferers are located according to a
PPP. In this manner, we bridge the gap between existing end-
to-end delay results for line networks that do not account for
interference [19], and existing end-to-end throughput results
for PPP multi-hop networks that do not account for queueing
delays [4]. Our main departure point from previous work is
the introduction of buffers at the nodes, which leads to the
explicit evaluation of the associated packet service and waiting
times. The coupling of the queue evolutions renders the
evaluation of the end-to-end delay a very challenging problem;
consequently, we assume that transmissions across nodes are
independent, which allows the use of the framework developed
in [20], in order to evaluate the steady-state distributionof the
size of each node queue. Section VI-D is devoted to verifying
the validity of our approach through simulations.

The MAC protocol considered is a combination of TDMA
and ALOHA. In each slot, the protocol schedules nodes which
are separated by a given number of hops, and the scheduled
nodes are allowed to transmit with a certain probability. It
is selected in light of the fact that, in practice, while intra-
route coordination is fairly easy, inter-route coordination is
hard, hence a random-access policy for scheduled nodes is
easily implementable. Moreover, slotted ALOHA arises as a
special case, when all nodes in the route are simultaneously
scheduled. In this manner, we model and analyze in a “mean

sense” a network consisting of an infinite number of mutually
interfering routes, which employ the TDMA-ALOHA MAC
protocol. We study in detail a scenario where the source always
has packets to transmit (“backlogged” source) and show how
the analysis can also be adapted for the case of sources with
geometric arrivals. In summary, our main contributions consist
of:

• Obtaining analytical expressions for the hop success
probability and the end-to-end delay as functions of the
number of hops, the source MA probability and the intra-
route spatial reuse factor.

• Deriving the delay-optimal values of these parameters,
and delay-throughput scaling laws when the density of
interferers grows to infinity. In particular, it is shown that,
in the limit of a large interferer density, maximum intra-
route reuse, i.e., slotted ALOHA, minimizes the end-to-
end delay.

• Using the theoretically obtained delay-optimal number of
hops in order to perform routing in a network where both
sources and relays form a PPP. The routing algorithm
consists of each source selecting the relays closest to
the optimal locations on the source-destination line. We
assess theoretically and via simulation the sensitivity
of the end-to-end delay with respect to imperfect relay
placements and the utilization of given relays by more
than one source-destination pairs. Moreover, we verify via
a number of experiments the validity of the assumptions
that form the backbone of our analysis, in the “small”
MA probability regime.

C. Paper outline and notation

In Section II, the system model is described in detail.
Section III is devoted to the evaluation of the hop success
probability. In Sections IV and V, the mean end-to-end delay
is derived and optimized over the relevant network parameters
for the cases of backlogged sources and geometric arrivals,
respectively. In Section VI, we present our simulation results
and in Section VII we summarize our conclusions. Table I
includes a list of the main symbols employed throughout the
paper. Note that the following conventions are employed for
x → xo: If limx→xo

f(x) = limx→xo
g(x), thenf(x) ≈ g(x);

if limx→xo
f(x)/g(x) = 1, thenf(x) ∼ g(x).

II. SYSTEM MODEL

A. Topology, source traffic and MAC protocol

A source node employsN − 1 relays,N ∈ N, to commu-
nicate with a destination at distanceR. The relays are placed
equidistantly on the source-destination line so that the hopping
distance isR/N (if N = 1 we have single-hop transmission).
A node in the source-destination path is specified by the index
n = 0, . . . , N , wheren = 0 corresponds to the source,n = 1
to the first relay and so on.

As in [4], [11], we assume that time is slotted and nodes
are synchronized to a common clock. We define the intra-
route spatial reuse factord = 1, . . . , N , which determines
the pairwise distance (in hops) between nodes in the route
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TABLE I
COMMONLY USED SYMBOLS

Symbol Meaning

Φ(t) interferer PPP at timet
λex interferer density (extrinsic interference)
λ source density (intrinsic interference)
po source MA probability
p relay MA probability
ρ node transmission probability
a source packet arrival probability (geometric arrivals)
ps hop success probability
R source-destination distance
N number of hops

d = 1, . . . , N intra-route spatial reuse factor
γ spatial contention

δ(d) intra-route spatial contention
b propagation exponent
θ SINR threshold for successful reception

that may simultaneously transmit in a slot. By definition,
there ared such groups of nodes:P0 = {0, d, 2d, . . .},
P1 = {1, d+1, 2d+1, . . .}, . . . , Pd−1 = {d−1, 2d−1, . . .}.
The valued = 1 corresponds to maximum intra-route reuse,
i.e., a slotted ALOHA protocol, whiled = N corresponds to
no intra-route reuse, i.e., the case where only one node may
transmit at any given time, respectively. Whend < N , simul-
taneous transmissions createintra-route interference, which,
on the average (due to the presence of fading), is larger for
smaller values ofd.

Each node is equipped with an infinite-capacity buffer1,
where received packets are stored in a first-in first-out fashion.
We consider two different cases regarding packet traffic at the
source: backlogged, where the source always has packets to
transmit, and geometric arrivals, where a new packet arrives at
the source buffer with probabilitya everyd slots, i.e., traffic
intensitya/d. The first case models a scenario where a large
amount of information rests at the source, e.g., a large file in
an FTP-type application. The second one models in a simple
manner the bursty nature of packet traffic in other types of
applications.

The MAC protocol is a combination of TDMA and ALOHA
and is described below2.
1. Sett = 0 and randomly selectk ∈ {0, . . . , d− 1}.
2. SetP(t) = Pk. If the source is inP(t), it is allowed to
transmit with probabilitypo. If a relay is inP(t), it is allowed
to transmit with probabilityp.
3. A packet is successfully sent over a hop if the receiver
SINR is larger than a thresholdθ. If it is not, the transmitting
node is informed via an ideal feedback channel and the packet
remains at the head of its queue.
4. For geometric arrivals only: If the source is inP(t), a new
packet arrives at the end of its queue with probabilitya at
t+ 1− ǫ, where1 ≫ ǫ > 0.
5. Sett → t+ 1 andk → mod(k + 1, d). Repeat 2-5.

1At “low-traffic”, the assumption of infinite buffer capacityhas negligible
impact on the derived results.

2The proposed protocol can be implemented in a distributed fashion as
follows. Once the route is established, send a test packet tothe destination
that includes a hop counter. Each relay increases the hop counter by one, thus
learning its position and corresponding time slot in the route.
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Fig. 1. (a) TDMA-ALOHA MAC protocol with N = 3, d = 2. In the
first slot , the source and the second relay are scheduled (P0 = {0, 2}); in
the second slot, the first relay is scheduled (P1 = {1}), and so on. When
the source (relay) is scheduled, it accesses the medium withprobability po
(p). If the source is backlogged it always has packets to transmit; if arrivals
are geometric, a new packet arrives at the end of its queue every time it
is scheduled, with probabilitya. (b) An example forN = 8 and d = 3.
The worst-interfered hops are4 and5, thusI = {−1, 1} and the respective
distances ared+ 1 = 4, d− 1 = 2.

The protocol for both traffic scenarios is depicted in Fig. 1(a),
when N = 3, d = 2. It is emphasized that a node inP(t)
transmits only when it is allowed to (by the ALOHA part of
the MAC) and there is at least one packet in its queue. (The
two events are equivalent only for the backlogged source.) We
denote byρn, n = 0, . . . , N − 1, the probability that noden
transmits, given that it is scheduled by the TDMA part of the
MAC. By definition,ρ0 ≤ po andρn ≤ p, n = 1, . . . , N − 1.

We model network orinter-route interference by assuming
that, in slott, the locations of inter-route interferers are drawn
from a PPPΦ(t) of densityλPPP, where{Φ(t)} are iid across
t. We consider two cases, one ofextrinsicand one ofintrinsic
interference, which are defined below:

Extrinsic interference: λPPP = λex. Inter-route interferers
are randomly located on the plane with arbitrary densityλex.

Intrinsic interference: λPPP = λNρ̄/d. The network consists
of an infinite number of randomly located and mutually
interfering routes, whose nodes observe the MAC protocol
described above in a slot-synchronous manner. In particular, λ
is the density of sources (or routes) in the network, andNρ̄/d
reflects the fact that, with intra-route reused, there are on av-
erageNρ̄/d interferers per route, wherēρ = N−1

∑N−1
n=0 ρn.

If d = N , only one node per route is scheduled at any given
slot, soλPPP = λρ̄/N ; if d = 1, all nodes per route are
simultaneously scheduled andλPPP = λρ̄. Since λPPP is
proportional toρ̄, we explicitly take into account that an inter-
route node is an interferer only when it is allowed to transmit
and it has at least one packet in its queue.
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B. SINR-based packet successes

The channel between two nodes at distancer includes
Rayleigh fading and path-loss according to the lawr−b, where
b > 2 is the path-loss exponent. The fading coefficients are
spatially iid, with a coherence time that takes values in[1, d]
(i.e., the fading is assummed to change at least as frequently
as a node is allowed to transmit). All the nodes have the same
transmit power and the transmit signal-to-noise-ratio isβ.

Suppose that noden − 1 is scheduled at timet, i.e.,
n − 1 ∈ P(t) and its queue is not empty. Without loss of
generality, assume that noden is located at the origin. A packet
is successfully received byn if

SINRn(t) ,
A(t)(R/N)−b

In,o(t) + In,i(t) + β−1
> θ (1)

where

• A(t) is the fading coefficient betweenn − 1 and n,
exponentially distributed with unit mean.

• In,o(t) is the total inter-route interference power

In,o(t) =
∑

x∈Φ(t)

Ax(t)|x|−b, (2)

whereAx(t), exponentially distributed with unit mean,
is the fading coefficient between the interferer at location
x ∈ Φ(t) andn.

• In,i(t) is the total intra-route interference power

In,i(t) =
∑

m∈P(t)\{n−1}

em(t)Am(t)|xm|−b, (3)

where em(t) = 1 if m is a transmitter (and zero
otherwise),Am(t) is the fading coefficient betweenm
andn, andxm is the location ofm.

Note that the reception model based on (1) has an embedded
half-duplex constraint. Ifd = 1, n ∈ P(t), thus, if en(t) = 1,
SINRn(t) = 0.

III. A GENERAL EXPRESSION FOR THE HOP SUCCESS

PROBABILITY

In order to simplify the analysis, we ignore the favorable
fact that nodes at the edge of the route are subject to less intra-
route interference and assume that the success probabilities are
equal to the one of the worst-interfered hop, which we denote
by ps. Due to symmetry, the probabilities of transmission
are equal, i.e.,ρ1 = · · · = ρN−1 , ρ and ρ̄ = ρ. In the
following proposition, we derive an expression forps, under
the assumption that transmissions occurindependentlywith
probabilityρ.

Proposition 1 If nodes scheduled by the TDMA part of the
MAC transmit independently with probabilityρ, then

ps = ps,o · ps,i · ps,n (4)

where

ps,o = e−λPPPc(R
N )2 , (5)

with c = Γ(1 + 2/b)Γ(1− 2/b)πθ2/b,

ps,i =
∏

i∈I

(

1− ρ+
ρ

1 + |di− 1|−bθ

)

, (6)

with

I =

{

−
⌊

1

2

⌈

N

d

⌉⌋

,−1, 1, . . . ,

⌈

N

d

⌉

−
⌊

1

2

⌈

N

d

⌉⌋

− 1

}

,

(7)
and

ps,n = e−(
R
N )

b
θβ−1

. (8)

Proof: For the proof, we employ the approach in Sec-
tion III.B of [9]. From (1), the success probability can be
written as

ps = P
(

A(t) ≥ θ(R/N)b
(

In,o(t) + In,i(t) + β−1
))

.

Due to the independence ofA(t), In,o(t), In,i(t), and the
exponential distribution ofA(t), we have that

ps = E

[

e−(
R
N )

b
θIn,o(t)

]

E

[

e−(
R
N )

b
θIn,i(t)

]

e−(
R
N )

b
θβ−1

. (9)

Each term in this product corresponds to the success proba-
bility taking into account only inter-route interference (ps,o),
intra-route interference (ps,i), and noise (ps,n). Since Φ(t)
is a PPP with densityλPPP, ps,o is given by (5) (see [9,
Eq. (9)]). Moreover, the index of the transmitter with the
worst-interfered receiver isn = ⌊ 1

2⌈N
d ⌉⌋, where⌈N

d ⌉ is the
maximum number of concurrently scheduled nodes givenN
and d. The potential intra-route interferers are thus located
at distances(R/N)|id − 1|, where i ∈ I and I is the set
defined in (7). Due to the independence of transmission events,
from [21, Eq. (19)], we obtain (6). This concludes the proof.

Remarks on Proposition 1:
1. The setI defined in (7) determines the distances of the intra-
route interferers for the worst-interfered hop. In Fig. 1(b), an
example is shown forN = 8, d = 3. Whend = N , I = ∅,
andps,i = 1.
2. The assumption of independent transmission events is made
for the sake of analytical tractability as the exact tandem
queueing system is a very involved problem [19], [22]. When
d < N , the queue states are correlated due to (a) intra-
route interference, and (b) the common to all scheduled hops
interference processΦ(t). Regarding (a), we maintain that
the assumption is reasonable when the nodes are not allowed
to transmit often, and this is the regime considered in the
rest of the paper; indicatively,max{po, p} / 0.1. Regarding
(b), as shown in [23], the spatial correlation coefficient of
the interference power resulting from a PPP is zero (under
the path-loss and fading model of this paper). This indicates
that the dependence between packet successes at a given
time slot due toΦ(t) is very weak. On the grounds of
these observations, packet successes, determined by the SINR
criterion in (1), are considered independent acrossn and t.
Note that whend = N , the independence of packet successes
(hence transmission events) is exact, since only one node is
scheduled at a time,{Φ(t)} are independent acrosst and the
coherence time of the fading is at mostN slots.
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Based on (6), we now derive a lower bound tops,i.

Proposition 2 If d < N , thenps,i can be lower-bounded as

ps,i ' e−δρ, (10)

where

δ =
∑

i∈Z\{0}

(

1− p+
|di − 1|b

θ

)−1

. (11)

The bound is tight forρ → 0.

Proof: Taking the inverse of (6)

p−1
s,i =

∏

i∈I

(

1 +
ρ

1− ρ+ |di− 1|b/θ

)

.

Applying the logarithm to both sides and using the inequality
log(1 + x) < x, x > 0, we obtain that

ps,i > exp

(

−ρ
∑

i∈I

1

1− ρ+ |di− 1|b/θ

)

.

Since ρ < p and I ⊂ Z\{0}, (10) follows. Whenρ → 0,
ps,i → 1 and e−δρ → 1, which proves the tightness of the
bound.

As shown in Fig. 2,e−δρ provides a good approximation
to ps,i for sufficiently small values ofρ. For analytical con-
venience, we (conservatively) setps,i = e−δρ when d < N .
Sinceps,i = 1 for d = N , from (4), we have the following
general expression forps, which is employed throughout the
rest of the paper,

ps = exp

(

−λPPPc

(

R

N

)2

− δ′ρ−
(

R

N

)b

θβ−1

)

, (12)

where δ′ = δ for d < N and δ′ = 0 for d = N . Based
on (12), we define the parameterγ , ∂ps/∂ρ|ρ=0 as the
spatial contention[24]. It measures how steeply the success
probability decreases with the transmission probabilityρ. If
d < N , γ = δ for λPPP = λex, andγ = λcR2/(Nd) + δ for
λPPP = λNρ/d. In the latter case, i.e., intrinsic interference,
γ consists of both an inter- and an intra- route component.
Hence,δ is termed theintra-route spatial contention, which,
as seen from (11), is a decreasing function ofd. In order
to emphasize the dependence ofδ on d, we also employ the
notationδ(d). Note that, ifd = N , γ = λcR2/N2 for intrinsic
interference.

Armed with (12), in the next two sections we examine
separately the cases of a backlogged source and geometric
arrivals. In each case, we evaluateρ, derive expressions for
the mean end-to-end delay and throughput, and minimize the
delay over the relevant network parameters. Since the noise-
dependent term in (12) does not depend onρ, in the remainder
of the paper, we focus on the interference-limited regime, i.e.,
we letβ → ∞ (ps,n = 1). Closing, in Table II, we have listed
and commented on the main assumptions made in this section,
which provide the backbone for (12) and the analysis of the
following sections. The validity of each assumption is checked
via simulation in Section VI-D; Table II also lists the figures
where the respective results can be found.
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ps,i, eq. (6)
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Fig. 2. Success probability, taking into account only intra-route interference,
as a function ofρ, for N = 10 andd = 1, 2, 3, 4. The lower-bound calculated
in Proposition 2 becomes tighter asd increases. (b = 3, θ = 6 dB, p = 0.1)

TABLE II
MAIN ASSUMPTIONS OFSECTION II

Assumption Comments

Inter-route interference:
PPP and iid across time

Crucial; reasonable for small MA probabil-
ities (see Fig. 9)

Hop success probabili-
ties: equal to success
probability of “worst”
hop

Conservative; can be relaxed, but would
lead to cumbersome expressions; reasonable
for range of interest of path-loss exponents
(see Fig. 10)

Transmission events: in-
dependent

Crucial; reasonable for small MA probabil-
ities (see Fig. 11)

IV. BACKLOGGED SOURCES

A. Evaluation of the mean end-to-end delay

We first determine the probability of transmissionρ when
the source is backlogged.

Proposition 3 If the source is backlogged andpo < p, then
ρ = po.

Proof: Recall the analysis in [20]. Since packet successes
are independent events with probabilityps, if pops < pps,
packets arrive to the first (and all subsequent relays) with
probability pops. Hence the probability that a relay has a
non-empty queue ispops/(pps) = po/p, which yieldsρ =
po/p · p = po (same as the source).

Setting ρ = po in (12), we readily obtainps. Note that
the conditionpo < p is necessary for the stability of the relay
queues, as it ensures that the packet arrival rate does not exceed
the packet service rate. We now evaluate the mean end-to-end
delayD, defined as the mean total time (in slots) that it takes
a packet to travel to the destination from the moment of its
first transmission attempt at the source.

Proposition 4 If the source is backlogged, the end-to-end
delay is given by

D =
d

pops
+ d(N − 1)

1− pops
ps(p− po)

−N(d− 1). (13)
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Proof: Since a departure occurs from the source everyd
slots independently with probabilitypops, the mean service
time measured from the first transmission attempt till the
packet is successfully received by the first relay, isHs =
d/(pops)−d+1. Forpo < p, packets arrive at a relay everyd
slots with probabilitypops and are serviced with probability
pps. The mean service time for the head-of-line (HOL) packet
at a relay is thereforeHr = d/(pps)−d+1. The mean waiting
time at a relay,Wr, defined as the mean total time from the
moment a packet arrives at the end of the queue till it becomes
the HOL packet, is calculated with standard queueing theory.
The probability that there arek packets in the queue is

πk =
(po/p)

k

1− pops

(

1− pps
1− pops

)k−1

(1− po/p), k ≥ 1. (14)

By Little’s theorem,Wr is the average queue size, excluding
the HOL packet, divided by the arrival rate, in this case
pops/d. Using (14), we find that

Wr =
d

pops

∞
∑

k=2

(k − 1)πk = d
po
p

1− pps
ps(p− po)

. (15)

By definition,D = Hs+(N−1)(Hr+Wr), and (13) follows.

Remarks on Proposition 4:Since a packet is received by
the destination everyd slots with probabilitypops, the first
term in (13) is the inverse of the end-to-end throughput
T = pops/d. The second term is the mean total time from
the moment a packet arrives at the end of the queue of the
first relay till it arrives at the destination. It is proportional to
(ps(p− po))

−1, i.e., the inverse of the difference between the
packet service and arrival rates at each relay buffer. Hence, if
N > 1, a necessary condition for finiteD is po < p.

From (13), the following upper bound can be readily ob-
tained, which is tight for “small”p.

Corollary 1 If the source is backlogged,D . D̄, where

D̄ =
d

pops
+

d(N − 1)

(p− po)ps
. (16)

The bound is tight forp → 0.

In the next section, we pursue the optimization ofD̄
over the parametersN, d, po for the cases of extrinsic and
intrinsic interference. We obtain two kinds of results: (a)
Exact expressions or tight bounds on the delay-optimal value
of each parameter, keeping the other parameters fixed, and
(b) asymptotic expressions for the jointly delay-optimal pa-
rameter values, asλex → ∞ for extrinsic interference, and
λ → ∞ for intrinsic interference. Note that, in an interference-
limited network, (12) depends only on the productλexcR

2

for extrinsic interference andλcR2 for intrinsic interference.
Hence, all asymptotic results may equivalently be derived
letting λexcR

2 → ∞ and λcR2 → ∞, respectively. The
delay-optimal parameter values and the respective delay and
throughput are denoted by the superscript “∗”3. For analytical

3We do not employ different notation for the optimal and jointly-optimal
parameter values. To make the distinction clear, we state when the parameters
are separately or jointly optimized.

tractability, we relax the integer constraints onN andd and
let N ∈ [1,+∞), d ∈ [1, N ].

We close this section by suggesting how the framework pre-
sented in this paper can also be employed to compute the delay
in a network where the distanceR of each source-destination
pair is drawn in an iid fashion from a given distribution.
For eachR, we let N(R) = R/r, wherer is an inter-relay
distancer that does not depend onR. Therefore, on average,
the number of hops performed in the network isE[R]/r, where
the expectation is taken with respect to the distribution ofR.
The relevant interferer density isλPPP = λpoE[R]/(rd), and
the mean delay in the network can readily be computed by
(13), where the optimization parameters are nowr, d, po, with
E[R] in place of the common distanceR of the homogeneous
setting.

B. Extrinsic interference

We consider the cases of no intra-route spatial reuse (d =
N ) and intra-route spatial reuse (d < N ) separately.

1) No intra-route spatial reuse (d = N ): In the following
proposition, the delay-optimalN, po are determined.

Proposition 5 Let λPPP = λex and d = N .

• If λexcR
2 > 1, then, for givenpo,

N∗ ∈
{

[√
λexcR,

√
2λexcR

)

po ∈ (0, p/2],
[

1,
√
λexcR

)

po ∈ (p/2, p).
(17)

• For givenN > 1

p∗o =
p

1 +
√
N − 1

. (18)

Proof: See Appendix A.
Remarks on Proposition 5:
1. For givenλex, in the light-traffic regime, i.e.,po → 0,
D̄ ≈ 1/T , so N∗ → √

2λexcR, which is the value ofN
that maximizes the end-to-end throughputT = pops/N =
poe

−λexc(R/N)2/N . As we move into the high-traffic regime,
i.e., po > p/2, the second term of (16), which increases with
N2, dominates the delay. Therefore, a smaller number of hops
is more delay-efficient andN∗ <

√
λexcR.

2. The delay-optimalpo decreases asΘ(1/
√
N). For a given

N , (18) achieves the best tradeoff between throughput and
total time spent in the relay queues.

We now determine the jointly delay-optimal(N, po) as
λex → ∞.

Proposition 6 LetλPPP = λex andd = N . The jointly delay-
optimal (N, po) for λex → ∞ are

N∗ ∼
√

λexcR (19)

p∗o ∼ p

(λexcR2)1/4
. (20)

The respective minimum delay is

D̄∗ ∼ λexcR
2e

p

(

1 +
2

(λexcR2)1/4

)

. (21)

Proof: See Appendix B.
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Remarks on Proposition 6:
1. From (21), it is seen that̄D∗ = Θ(λex). The linear
scaling is due to the factorN2 in (16) and the fact that
N∗ = Θ(

√
λex). Intuitively, a HOL packet has to wait at

leastN slots before a retransmission attempt, and there areN
buffers in the route. The respective delay-optimal throughput
is T ∗ = Θ(p∗o/N

∗) = Θ(λ
−3/4
ex ).

2. The throughput-optimalstrategy for all λex is to set
N =

√
2λexcR (see remark on Proposition 5) andpo = p (if

po = p the delay is infinite, though). So, asymptotically, the
throughput-optimal number of hops is larger than the delay-
optimal number of hops by a factor

√
2. The resulting max-

imum throughput isT = Θ(1/
√
λex). Hence, a throughput

penalty ofΘ(λ
1/4
ex ) is incurred by the delay-optimal policy

due to the fact thatp∗o = Θ(λ
−1/4
ex ).

2) With intra-route spatial reuse (d < N ): Given the
inefficiency of a protocol which allows only one node to be
scheduled at a time, we now letd < N . In the following
proposition, we determine the delay-optimalN, po.

Proposition 7 Let λPPP = λex and d ∈ [1, N).

• If 2λexcR
2 > 1, then, for givenpo,

N∗ ∈
{

[√
2λexcR,

√

2(p/po)λexcR
)

po ∈ (0, p/2],
[

1,
√
2λexcR

)

po ∈ (p/2, p).
(22)

• For givenN, d

p∗o .
2

√

δ2 + 4(N − 1)p−1(δ + p−1) + δ
. (23)

The bound is tight forN → ∞.

Proof: See Appendix C.
Remarks on Proposition 7:For givenλex, if po → 0, the upper
bound in (22) goes to infinity. Indeed, forpo → 0, N∗ → ∞
is delay-optimal, sincēD (see (45) in proof) is dominated by
1/T , whereT = pe−λexc(R/N)2−δpo/d, and settingN∗ → ∞
maximizesT . Also, note thatN∗ does not depend ond, which
is easy to see from (45). In contrast,p∗o in (23) is a decreasing
function of δ (i.e., an increasing function ofd), as well asN .

Based on Proposition 7, we now derive the jointly delay-
optimal (N, d, po), asλex → ∞.

Proposition 8 Let λPPP = λex and d ∈ [1, N). The jointly
delay-optimal(N, po, d) for λex → ∞ are d∗ ∼ 1 and

N∗ ∼
√

2λexcR (24)

p∗o ∼ p
√

(1 + δ(1)p)(2λexcR2)1/4
(25)

The respective minimum delay is

D̄∗ ∼
√
2λexceR

p

(

1 +

√

1 + δ(1)p

(2λexcR2)1/4

)

. (26)

Proof: See Appendix D.
Remarks on Proposition 8:
1. In the limit λex → ∞, (slotted) ALOHA is the delay-
optimal MAC protocol. The reason that maximum reuse

minimizes the delay is that,p∗o (as well as the busy probability
of the relay buffersp∗o/p) goes to zero whenλex → ∞. Hence,
ps,i = e−δpo → 1, andD̄ in (16) is proportional tod, making
d = 1 the optimal choice. From (12), it is also seen that the
optimal hop success probability isp∗s ∼ e−1/2.
2. N∗ in (24) is larger than the respective one in (19) by a
factor of

√
2. This is the price paid in terms of resources, i.e.,

relays, for allowing intra-route spatial reuse.
3. The minimum delay scales as̄D∗ = Θ(

√
λex), i.e., there is a

delay gain ofΘ(
√
λex) compared to the case of no reuse. Since

T = pops/d, the respective delay-optimal throughput scales as
T ∗ = Θ(λ

−1/4
ex ), so the throughput gain is alsoΘ(

√
λex).

4. The throughput-optimal strategy selects(N, d, po) to max-
imize T = poe

−λexc(R/N)2−δpo/d. It is clear that, for a given
λex, N → ∞ maximizesT , which reduces the problem to se-
lecting(d, po) to maximizepoe−δ(d)po/d. Since the maximum
throughput is a constant with respect toλex, the throughput
penalty incurred by the delay-optimal policy isΘ(λ

1/4
ex ), as in

the case of no reuse.

C. Intrinsic interference

We now study the case of intrinsic interference, i.e.,λPPP =
λNpo/d. For lack of space (and similarity of the relevant
derivations), we only state the asymptotic results forλ → ∞.
As in the case of extrinsic interference, we considerd = N
andd < N separately.

1) No intra-route spatial reuse (d = N ): The interferer
density is λPPP = λNpo/N = λpo. The jointly delay-
optimal(N, po) whenλ → ∞ are determined in the following
proposition.

Proposition 9 LetλPPP = λpo andd = N . The jointly delay-
optimal (N, po) for λ → ∞ are

N∗ ∼
(

ζλcR2p

2

)1/3

(27)

p∗o ∼
(

p2

4ζλcR2

)1/3

, (28)

whereζ is a constant in(1, 2). The minimum delay is

D̄∗ ∼ e1/ζ
(

ζλcR2

2p

)1/3
(

3

(

ζλcR2

2

)1/3

− 1

p1/3

)

. (29)

Proof: See Appendix E.
Remarks on Proposition 9:
1. The minimum delay scales as̄D∗ = Θ(λ2/3), and the
respective delay-optimal throughput asT ∗ = Θ(λ−2/3). We
can interpret this result by defining the delay and through-
put exponents∆ = limλ→∞ log D̄(λ)/ log λ and τ =
limλ→∞ logT (λ)/ logλ and lettingpo = λ−κ, whereλ > 1.
From (17), it is seen that, for a givenpo, the delay-optimal
N must satisfyN = Θ(

√

po(λ)λ) = Θ(λ
1−κ
2 ). Substituting

in (13), we have that∆(κ) = max{(κ + 1)/2, 1 − κ} and
τ(κ) = −(κ + 1)/2. The value ofκ that minimizes∆(κ) is
1/3, which yields∆(1/3) = τ(1/3) = 2/3.
2. The constantζ arises due to the fact thatN∗ is in the range
(
√

λcp∗oR, 2
√

λcp∗oR) (see proof).
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TABLE III
SCALING LAWS FOR BACKLOGGED SOURCE, FOR THE CASES OF

EXTRINSIC AND INTRINSIC INTERFERENCE.

extrinsic:λex → ∞ intrinsic: λ → ∞
Metric d = N d < N d = N d < N

D̄∗ Θ(λex) Θ(
√
λex) Θ(λ2/3) Θ(

√
λ)

T ∗ Θ(1/
√
λex) Θ(1/

√
λex) Θ(λ−2/3) Θ(1/

√
λ)

N∗ Θ(
√
λex) Θ(

√
λex) Θ(λ1/3) Θ(

√
λ)

d∗ - ∼ 1 - ∼ 1

p∗o Θ(λ
−1/4
ex ) Θ(λ

−1/4
ex ) Θ(λ−1/3) Θ(1/

√
λ)

p∗s Θ(1) Θ(1) Θ(1) Θ(1)

3. The throughputT = pe−λcpo(R/N)2/N is maximized for
po = p andN =

√
2λpcR. The maximum throughput scales

as T = Θ(1/
√
λ), hence the delay-optimal policy incurs a

throughput penalty ofΘ(λ1/6).
2) With intra-route spatial reuse (d < N ): The interferer

density isλPPP = λNpo/d.

Proposition 10 Let λPPP = λNpo/d and d ∈ [1, N). The
jointly delay-optimal(N, po, d) for λ → ∞ are d∗ ∼ 1 and

N∗ ∼
√

2λcpR (30)

p∗o ∼
√

p

2λcR2
. (31)

The respective minimum delay is

D̄∗ ∼ 2

√

2eλcR2

p
. (32)

Proof: See Appendix F.
Remarks on Proposition 10:
1. As in the case of extrinsic interference, ALOHA is asymp-
totically delay-optimal. The minimum delay scales asD̄∗ =
Θ(

√
λ), i.e., there is a delay gain ofΘ(λ1/6) compared to

the case of no reuse (Proposition 9). SinceT = pops/d, the
respective delay-optimal throughput scales asT ∗ = Θ(1/

√
λ),

so the throughput gain is alsoΘ(λ1/6). These gains are
achieved by increasing the number of hops fromN∗ =
Θ(λ1/3), whend = N , to N∗ = Θ(

√
λ).

2. The throughput-optimal strategy selects(N, d, po) to maxi-
mizeT = poe

−λcpoR
2/(Nd)−δpo/d. SinceN → ∞ maximizes

T , the maximum throughput is a constant with respect toλ.
Hence, the throughput penalty incurred by the delay-optimal
policy is Θ(

√
λ).

The scaling laws derived throughout Section IV are sum-
marized in Table III. We now provide numerical results for
specific values of the network parameters.

D. Numerical results

Let R = 500 m, b = 3, θ = 6 dB and p = 0.1. In
Fig. 3, D in (13) is plotted vs.λex for the case of extrinsic
interference, andλ for the case of intrinsic interference.D is
numerically optimized overN andpo whend = N (no reuse)
andd = 1 (maximum reuse, or slotted ALOHA). Fig. 4 shows
the respective delay-optimal numbers of hops. The theoretical
expressions for̄D∗ andN∗, derived in this section, are also
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Fig. 3. D in (13) plotted in solid lines vs.λex for extrinsic interference,
and λ for intrinsic interference. Maximum reuse (d = 1) corresponds to a
slotted ALOHA MAC. For each density,D is numerically optimized overN
andpo. The expressions for̄D∗ given, from left to right, in (21), (26), (29)
and (32) are also plotted for comparison (dashed). (R = 500 m, p = 0.1,
b = 3, θ = 6 dB)
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Fig. 4. Delay-optimalN , corresponding to Fig. 3. The solid lines (staircase
curves) correspond to the delay-optimalN found numerically. The dashed
lines correspond, from left to right, to (19), (24), (27) and(30). For extrinsic
interference, the ratio of the delay-optimalN for maximum reuse and no reuse
is

√
2; for intrinsic interference, this ratio increases asλ1/6 (R = 500 m,

p = 0.1, b = 3, θ = 6 dB)

plotted for comparison. Note that, even though asymptotic,
they provide good approximations of the respective minimum
delay and delay-optimal number of hops for a realistic rangeof
densities. Indicatively, for the case of intrinsic interference and
λ = 10−4 m−2, Fig. 4 shows that 3 hops are required when no
reuse is employed, while 9 hops are required with maximum
reuse, when the source-destination distance is 500 m. It is also
apparent that, for the selected parameter values, maximum
reuse outperforms no reuse for all density values, but the
required number of hops is larger. In the case of extrinsic
interference, the ratio of the delay-optimalN for maximum
reuse and no reuse is approximately

√
2, while, for intrinsic

interference, this ratio increases asλ1/6. These observations
are in agreement with the scaling laws listed in Table III.



9

V. GEOMETRIC ARRIVALS

In the previous section we examined in detail a heavy-traffic
scenario, where the source always has packets to transmit. In
this section, we briefly treat the case of geometric arrivalsat
the source. The analysis follows closely the one of Section IV.
We focus on the case of intrinsic interference, i.e.,λPPP =
λNρ/d, and po = p (the cases of extrinsic interference or
po 6= p can be treated very similarly).

The main result is stated in the following proposition. Let
W(x), x ≥ −e−1, denote the principal branch of the Lambert
function [25].

Proposition 11 Assume that a new packet arrives at the
source everyd slots with probabilitya and interference is
intrinsic. If a < p exp(−γp), where γ = λcR2/(Nd) + δ,
then

ps = exp (W(−aγ)) (33)

and
ρ = a exp (−W(−aγ)) . (34)

The mean end-to-end delayD, measured from the moment a
packet arrives at the end of the source queue, isD = D̄ −
N(d− 1), where

D̄ = Nd
1− a

pps − a
. (35)

Proof: The conditiona < p exp(−γp) ensures that the
queues are stable — see [26, Prop. 1]. In this case, the packet
arrival probability to each relay isa. Hence, the probability
that a node is a transmitter isρ = (a/pps) · p = a/ps. From
(12), this results in the following fixed-point equation over ps

ps = exp

(

−γ
a

ps

)

. (36)

Eq. (36) has two solutions if and only ifa < (γe)−1,
which always holds ifa < p exp(−γp). The smaller solution
is increasing ina, on the basis of which it is rejected,
since it represents a network where the hop success prob-
ability increases with increasing traffic. Rewriting (36) as
−aγ/ps exp (−aγ/ps) = −aγ and applying the Lambert
function to both sides, we obtain (33). Sinceρ = a/ps, (34)
follows.

The proof of (35) follows the one of Proposition 4. If
a < pps, the packet arrival probability to all nodes isa
and the packet service probability ispps. Due to symmetry,
D = N(H +W ), whereH = d/(pps)− d+ 1 and

W = d
a

pps

1− pps
pps − a

, (37)

and (35) follows.
Remarks on Proposition 11:
1. ps is a decreasing function ofa. In the extreme casea = 0,
the throughput is zero andps = 1.
2. The fixed-point equation (36) is the result of the assumption
that packet successes are iid. Note that similar “decoupling”
assumptions employed in [27] and [28] also resulted in fixed-
point equations for the transmission probability.

3. If the queues are stable, the end-to-end throughput is
T = a/d, since a packet arrives at the destination everyd
slots with probabilitya. For a given end-to-end throughput
requirementT = To, we can show that the number of hops
N∗ that minimizes (35) satisfies the relation

N∗ =
λcR2pTo

(1 +W(−γ∗dTo))
(

peW(−γ∗dTo) − dTo

) , (38)

whereγ∗ = λcR2/(N∗d) + δ. It follows thatN∗ = Θ(λTo)
andD̄∗ = Θ(λTo). This is a manifestation of the scaling law
derived in [3], in the context of our model, which assumes
perfectly placed relays and interferers located accordingto a
PPP.

VI. A PPLICATION

A. Simulated network setting

In the previous sections, we developed an analytical frame-
work to evaluate and optimize the mean total delay from the
source to the destination in the presence of interferers that
form a PPP. In particular, the case of intrinsic interference
was considered, in order to evaluate the delay in a network
with mutually interfering routes. We now examine how the
results of Section IV can be applied in a setting where
backlogged sources have to route packets to their destinations
by employing a common pool of relays. We consider a network
where both the source and relay locations are drawn from
a PPPΠt of total densityλt, and a node is a source with
probability µ, or a relay with probability1 − µ. Therefore,
sources and relays form two independent PPPs,Πs andΠr,
with densitiesλ = µλt andλr = (1−µ)λt, respectively. Each
source has a destination at distanceR and random orientation,
and selects out of the available relays the ones which are
closest to the delay-optimal locations. In each route formed in
this manner, the nodes observe the MAC protocol described
in Section II, in a slot-synchronous manner4.

The simulated network departs from the theoretical model
as relays are not perfectly placed on the line between the
source and destination, and two or more routes may utilize
the same relay. We first discuss the impact of these factors on
the theoretical performance, and then describe our simulation
campaign and results.

B. Imperfect relay placements

For ease of exposition, we considerN > 2, and no reuse,
i.e.,d = N . Assume that the second relay selected is displaced
by x from the ideal position on the source-destination line,
wherex < r andr = R/N is the hopping distance. We derive
the incurred delay penalty for small perturbationsx ≪ r.

Proposition 12 Let x ≪ r = R/N , x > 0, N > 2, be the
displacement of the second relay from the ideal position. When
x → 0, the delay increaseδD̄ = D̄disp − D̄ is given by

δD̄ =
4Nλcpope

λcpor
2

(p− po)2

(

1 + 2λcpor
2 p+ po
p− po

)

x2 +O(x4),

(39)

4The slot boundaries are synchronized, but not the TDMA schedules, i.e.,
P(t) (see Section II) is generally different across routes in a given slott.
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Fig. 5. Crossings of different source-destination pairs atcommon relays for
a network withλ = 10−4 m2, N = 3, R = 500 m and a relay density
λr = 32λ. Utilized (non-utilized) relays are shown with circles (crosses).

whereD̄ is defined in (16).

Proof: From (16),δD̄ is found to be

δD̄ =
Neλcpor

2

pe−λcpo(x2+2crx)
+

Neλcpor
2

pe−λcpo(x2−2crx)
− 2Neλcpor

2

p− po
.

Taking the Taylor series expansion atx = 0, we obtain (39).

Remarks on Proposition 12:Eq. (39) implies that the delay
penalty due to imperfect relay placement is more severe if
po → p, i.e., if the system is operated close to capacity, and
it is proportional toN , if no intra-route reuse is employed.
Moreover, forx ≪ R/N , the penalty is approximately pro-
portional tox2 (and an even function ofx, due to symmetry).
If we set x = (2

√
λr)

−1, which is the expected distance of
the closest relay to the desired point, it follows that the delay
penalty is also roughly inversely proportional to the density of
relays in the network.

C. Route crossings

Each source selects the relays which are closest to the
desired locations on the source-destination line. As shownin
the example of Fig. 5, this results in the utilization of particular
relays by more than one source-destination pair. IfC is the
number of times the typical relay node is actually employed as
a relay in a network where the desired number of hops isN ,
we define thecrossing probabilityPcr,N = P(C > 1|C > 0).
The exact evaluation ofPcr,N appears complicated, hence we
resort to the following approximation. Letx be the typical
relay inΠr . Denote the point process of ideal relay locations
asΠr,ideal, and letz be the closest point ofΠr,ideal to x, and
z′ the second closest. We define asP ′

cr,2, the probability that,
in a two-hop system (i.e., one ideal relay location per source-
destination pair),x is the closest neighbor ofΠr to z′, given
that it is also the closest neighbor toz. Mathematically,

P ′
cr,2 = P

(

arg min
x′∈Πr

|x′ − z′| = x
∣

∣

∣
arg min

x′∈Πr

|x′ − z| = x

)

.
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Fig. 6. Crossing probability vs.λr/λ for N = 2, 3, 4. The simulation results
were obtained forλ = 10−4 sources/m2 andR = 500 m. The theoretical
approximation in (40) is plotted for comparison.

For N ≥ 2, we then approximatePcr,N by

P ′
cr,N = (N − 1)P ′

cr,2, (40)

since, for a sufficiently large relay density, (a) a relay is likely
to be utilized by its neighboring points inΠr,ideal, and (b)
the probability of a crossing should increase roughly propor-
tionally with the desired number of hops. In the following
proposition, we derive an expression forP ′

cr,2.

Proposition 13 P ′
cr,2 is given by

P ′
cr,2 =

4/π

1 + λr

λ

∫ +∞

0

dt1

∫ +∞

t1

dt2

∫ π

0

dθ·

t1t2e
−t2

2
− λr

λπ (t
2

1
(π−φ)+t2

2
(φ+θ)+yt1 sinφ) (41)

y =
√

t21 + t22 − 2t1t2 cos θ

φ = tan−1

(

t2 sin θ

t1 − t2 cos θ

)

.

Proof: See Appendix G.
Pcr,N was evaluated by simulation over different relay

densities and network realizations, forN = 2, 3, 4 hops,
λ = 10−4 sources/m2 andR = 500 m. The results are plotted
in Fig. 6, as a function of the ratioλr/λ. Is is seen thatP ′

cr,N

in (40), provides a good approximation ofPcr,N . We can verify
thatPcr,N roughly follows the trend(N − 1)(1 + 2λr/λ)

−1.

D. Simulation results

We let λ = 10−4 m−2, p = 0.1, b = 3, θ = 6 dB and
perform a number of simulations for different values ofN , d,
R, po andλr. The network area is square, with size such that,
on average,2000 sources are included; forλ = 10−4 m−2,
this corresponds to a square side of≈ 4.5 km. For each
operating point, we generateone network topology and run
an experiment with duration100000 slots (at the beginning
of each experiment the node buffers are empty). In order
to resolve conflicts when a relay is selected by more than
one sources, packets with different destinations are stored in
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a common queue and the following rule is applied at any
given slot: if the relay is a receiver for one route and a
transmitter for another, the reception fails; in all other cases,
successful reception follows the SINR criterion (1). In order
to avoid edge effects, for each topology, sample-metrics are
only collected for the routes with the200 innermost sources.
For each operating point, the plotted metrics are obtained by
averaging over routes (where applicable) and time slots.

We first select a relay density ofλr = 4Nλ, whereN is
the desired number of hops, such that, for a given number
of hops, relays are found close to the desired locations with
high probability. We consider two scenarios:R = 500 m and
R = 1000 m, which are10 and20 times the expected closest-
neighbor distance in the source PPP, i.e.,1/(2

√
λ) = 50 m,

respectively. According to (30) and (31), the corresponding
optimal values of(N, po) are(10, 0.01) and(20, 0.005). Since
the relay MA probability is set top = 0.1, these values of
po correspond to a traffic generation rate at10% and 5% of
capacity, respectively (Proposition 3).

In Figs. 7-8, we have plotted the theoretically computed
delay (13) and throughput (T = pops/d), along with the
simulation results, forN ranging from 3 to 10 hops, and
various reuse factors. Figs 7-8 illustrate the general agreement
between theory and simulation; the discrepancy is largest for
small numbers of hops and reuse factors. The main message is
thatd = 1 (maximum reuse) is optimal onceN is sufficiently
large; for smallN , it is more advantageous to space out
transmissions by imposing ad > 1, e.g., forpo = 0.01 and
R = 500 m, d = 2 yields a smaller delay thand = 1 for
N < 4, while for po = 0.005 andR = 1000 m, d = 3 yields
a smaller delay thand = 1 for N < 6. In addition, note
from Fig. 8 that, while there exists a delay-optimal number of
hops, the throughput increases withN since the distance per
hop decreases for fixedR.

The agreement between theoretical and simulation results in
Figs. 7-8 implicitly demonstrates that the theoretical approach

3 4 5 6 7 8 9 10
0

.001

.002

.003

.004

.005

.006

N

T
hr

ou
gh

pu
t (

pa
ck

et
s/

sl
ot

)

 

 

d=1
d=2
d=3
d=4

p
o
=0.005, R=1000m

p
o
=0.01, R=500m

Fig. 8. Throughput vs. number of hops corresponding to Fig. 7.

is valid in the considered regime. In Figs. 9-11, we look
more closely at the assumptions that underly our analysis,
which are listed in Table II. In order to validate the iid
component of the first assumption5, in Fig. 9 we selectN = 4
and d = 1, . . . , 4, and plot: the squares of the cdfs of
the simulated interference power at the origin at odd and
even time slots,P1(x) = P(In,o(t) + In,i(t) ≤ x) and
P2(x) = P(In,o(t + 1) + In,i(t + 1) ≤ x); the simulated
joint interference power cdf at the origin, over odd and even
time slots, i.e.,P12(x) = P(In,o(t)+In,i(t) ≤ x, In,o(t+1)+
In,i(t+ 1) ≤ x); and the product of the individual simulated
cdfs, i.e.,P1(x)P2(x). The match between the curves is very
good for the whole range of interference values and reuse
factors, which implies that, in the considered regime, the
temporal iid assumption is reasonable. This result also agrees
with a recently discovered rule of thumb that the interference
may be considered approximately temporally independent, if
p(1− 2/b) < 0.1 [29].

Fig. 10 shows the simulated success probabilities of the
last hop and the worst-interfered hop, i.e., the hop with index
⌊ 1
2⌈N

d ⌉⌋+ 1, that correspond to the set of curves (po = 0.01,
R = 500 m) of Fig. 7. In almost all cases, the curve
corresponding to the worst-interfered hop lies very slightly
below the corresponding one for the last hop, indicating
that the second assumption is also quite reasonable in the
considered regime. Our interpretation of these results is that,
while edge nodes suffer from less intra-route interference, the
inter-route interference is the same (on average); for a path
loss exponentb = 3, it dominates the total interference, such
that edge effects can be safely neglected.

Fig. 11 is concerned with the last assumption of Table II. To
this extent, we have plotted the simulated joint probability of
transmission of two nodes in the same route at distanced hops,
as well as the product of the respective individual probabilities
of transmission. As in Fig. 10, the plotted curves correspond
to the set of curves (po = 0.01, R = 500 m) of Fig. 7. The

5Since the source and relay locations form two independent PPPs, the
interference power is generated from a PPP with very good approximation.



12

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized interference power, x

 

 

 P
1
2(x)

 P
2
2(x)

 P
12

(x)

 P
1
(x)P

2
(x)

d = 1

d = 3

d = 2

d = 4

Fig. 9. Simulated interference power (at origin) cdfs forN = 4, d =
1, . . . , 4 and (po = 0.01, R = 500 m). The x-axis is normalized to one.
P1(x) andP2(x) are the interference power cdfs at odd and even time slots,
andP12(x) is the joint interference power cdf over two consecutive slots. The
conclusion is that the iid assumption is reasonable in the considered operation
regime.
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Fig. 10. Simulated success probabilities of last (solid line) and “worst”
(dashed line) hops corresponding to the set of curves (po = 0.01, R = 500 m)
of Fig. 7. The discrepancy is small due to the dominance of inter-route over
intra-route interference for path-loss exponentb = 3.

results indicate that the joint probability of transmission is
smaller than the product by at most50% for all considered
values ofN andd.

Finally, in Fig. 12, we examine the sensitivity of the delay
with respect to the relay density. We select two operating
points from those in Fig. 7: (N = 5, d = 3) and (N = 10,
d = 1), and let the relay densityλr vary betweenλ and64λ
(note that for these two points, the results in Fig. 7 were
obtained for relay densities20λ and 40λ, respectively). We
observe that the simulated delay converges to the theoreti-
cally predicted value whenλr takes values larger thanNλ.
Moreover, consistent with intuition, performing 10 hops (at
maximum reuse) requires a larger relay density than 5 hops
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Fig. 11. Simulated joint probability that two nodes at distanced hops within
a route are simultaneously transmitting (dashed line) and product of respective
simulated individual probabilities of transmission (solid line), corresponding
to the delay curves of Fig. 7 for (po = 0.01, R = 500 m). The maximum
difference between the two curves is about50% for all reuse factors.
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Fig. 12. Simulated delay vs. relay density for (N = 5, d = 3) and (N =
10, d = 1). The delay converges to the theoretically predicted valuewhen
λr > Nλ. (R = 500 m, po = 0.01)

(at reuse factor 3) for convergence, as the attempted number
of hops is larger. In particular, forλr < 20λ, the bottlenecks
that occur at overutilized relays by multiple sources incura
significant delay penalty, and thus performing 5 instead of 10
hops results in smaller delay.

VII. C ONCLUSIONS

We evaluated the end-to-end delay of multi-hop transmis-
sion in the presence of interferers that form a PPP, under a
TDMA-ALOHA MAC protocol. We considered the case of
an arbitrary interferer density, as well as the case where the
density depends on the number of scheduled nodes per route
and the transmission probability. The delay-optimal number of
hops was determined, and asymptotic expressions were derived
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for large values of the interferer density. Consistent with
intuition, we obtained that, when the source is backlogged,
a random access policy is asymptotically delay-optimal, but
requires more hops than a TDMA-ALOHA protocol.

The theoretical results were applied to a delay-minimizing
routing algorithm for networks with randomly distributed
nodes. We simulated a static network setting, where both
sources and relays formed a PPP, and each source performed
the delay-optimal number of hops to its destination, by routing
to the relays closest to the optimal locations. We confirmed
that the main assumptions on which the analysis is based are
reasonable for small enough MA probabilities; as a conse-
quence, the match between the theoretical and simulated delay
is also satisfactory in this regime. In addition, we assessed
the sensitivity of the delay with respect to imperfect relay
placements and relay-utilization by more than one source-
destination pairs.

In conclusion, this paper combined elements from queueing
theory and the theory of PPPs in order to obtain explicit end-
to-end delay results for multi-hop networks with randomly
placed nodes, fading and interference. These results fill in
the gap between existing work on multi-hop networks, that
has focused exclusively on scaling laws, and existing work
on PPPs that has focused on throughput, without taking into
account the effects of packet buffering.
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APPENDIX

A. Proof of Proposition 5

Settingd = N in (12) and (16)

D̄(N, po) = N

(

1

po
+

N − 1

p− po

)

eλexc(R
N )2 . (42)

The sign of∂D̄/∂N is determined by the function

f(N) = (p/po − 2) (N2 − 2λexcR
2) + 2N(N2 − λexcR

2).

We examine the two ranges ofpo separately:
• po ∈ (0, p/2]: If po ∈ (0, p/2), ∂D̄/∂N < 0 for N ≤√

λexcR and ∂D̄/∂N > 0 for N ≥
√
2λexcR. If p =

po/2, thenf(N) = 0 yieldsN∗ =
√
λexcR. This proves

the first branch of (17).
• po ∈ (p/2, p): We setN =

√
αλexcR, α ≥ 1. Then

f(N)/(λexcR
2) =

2
√

αλexcR2(α− 1) + (p/po − 2) (α− 2) >

2
√

αλexcR2(α− 1)− (α− 2) >

2
√
α(α− 1)− (α− 2) >

(2
√
α− 1)(α− 1) ≥ 0,

sincep/po > 1, λexcR
2 > 1 andα ≥ 1. This proves the

second branch of (17).

Finally, setting∂D̄/∂po|po=p∗

o
= 0 yields (18).

B. Proof of Proposition 6

Substitutingpo = p/(1 +
√
N − 1) in (42), we obtain

D̄ = Np−1
(

1 +
√
N − 1

)2

eλexc(R
N )

2

. (43)

Setting∂D̄/∂N |N=N∗ = 0

N∗ +
N∗(N∗ − 1)√

N∗ − 1
− λexcR

2

N∗

(

1 +
2
√
N∗ − 1

N∗

)

= 0. (44)

If λex → ∞, (44) is satisfied only ifN∗ → ∞. LettingN∗ →
∞, we obtain (19). Substituting (19) in (18) and (43), we
obtain (20) and (21), respectively.

C. Proof of Proposition 7

From (12) and (16),

D̄(N, d, po) = d

(

1

po
+

N − 1

p− po

)

eλexc(R
N )2+δpo . (45)

The sign of∂D̄/∂N is determined by the function

f(N) = N(N2 − 2λexcR
2)− 2λexcR

2 (p/po − 2) . (46)

We examine the two ranges ofpo separately:

• po ∈ (p/2, p): ∂D/∂N > 0, for N ≥
√
2λexcR, which

proves the second branch of (22).
• po ∈ (0, p/2]: If po ∈ (0, p/2), ∂D/∂N < 0 for

N ≤ √
2λexcR. If po = p/2, ∂D/∂N = 0 yields

N∗ =
√
2λexcR. This proves the lower bound in the

first branch of (22). In order to prove the upper bound,
we setN =

√

2α(p/po)λexcR, α ≥ 1. Then

f(N)/(λexcR
2) =

√

2α(p/po)λexcR (2αp/po − 2)− 2 (p/po − 2) >

2
(√

2 (p/po − 1)− (p/po − 2)
)

>

2(
√
2− 1) (p/po − 1) > 0,

since α ≥ 1, p/po > 2 and λexcR
2 > 1/2. This

concludes the proof of the upper bound.

For the proof of the second statement, we set

∂D̄

∂po

∣

∣

∣

∣

po=p∗

o

= − 1

p∗2o
+

δ

p∗o
+

N − 1

(p− p∗o)
2
+
(N − 1)δ

p− p∗o
= 0. (47)

This equation holds only if

− 1

p∗2o
+

γ

p∗o
< −N − 1

p2
− (N − 1)δ

p
. (48)

Solving overp∗o,

(N − 1)

(

1

p2
+

δ

p

)

(p∗o)
2 + δpo − 1 < 0,

which is equivalent to (23). ForN → ∞, p∗o → 0, therefore
(48) becomes an equality. This proves the tightness of the
bound.
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D. Proof of Proposition 8

Assume that, forλex → ∞, N∗ → ∞. Then, from (23), it
follows thatp∗o ∼ p/

√

N∗(1 + δ(d∗)p). Setting (46) equal to
zero atN = N∗ and substitutingp∗o, we obtain

(N∗)3−2λexcR
2N∗−2λexcR

2
(

√

N∗(1 + δ(d∗)p)− 2
)

∼ 0,

or N∗ ∼ √
2λexcR. Finally, substitutingN∗ andp∗o in (45)

D̄∗ ∼ d∗p−1
(

√

N∗(1 + δ(d∗)p) +N∗
)√

e,

Henced∗ ∼ 1 and (26) follows.
We now return to the assumption thatN∗ → ∞ for λex →

∞. If N∗ = Θ(1) for λex → ∞, then (45) implies that̄D∗ =
eΘ(λex). Therefore,N∗ = Θ(1) is rejected, and the proof is
concluded.

E. Proof of Proposition 9

Settingλ = λpo and d = N in (12) and (13), we obtain
that ps = e−λcpo(R/N)2 and

D̄(N, po) = N

(

1

po
+

N − 1

p− po

)

eλcpo( R
N )2 . (49)

The jointly optimal (N∗, p∗o) are found by solving the
system∂D̄/∂N = 0 and∂D̄/∂po = 0. After some manipu-
lations, we obtain

λcR2

(N∗)2

(

1

p∗o
+

N∗ − 1

p− p∗o

)

=
1

(p∗o)
2
− N∗ − 1

(p− p∗o)
2
,

λcR2

(N∗)2

(

1

p∗o
+

N∗ − 1

p− p∗o

)

=
1

2p∗o

(

1

p∗o
+

2N∗ − 1

p− p∗o

)

.

Equating the right-hand sides

2N∗ − 1

p/p∗o − 1
+

2N∗ − 2

(p/p∗o − 1)
2 = 1. (50)

For λ → ∞, we either havep∗o = Θ(1) or p∗o → 0:
• If p∗o = Θ(1), (50) demands thatN∗ = Θ(1). From (49),

this implies thatD̄∗ = eΘ(λ).
• If p∗o → 0, then, from (50), it is necessary thatN∗ → ∞,

which also implies thatp∗o ∼ p/(2N∗). Moreover, using
the same steps as in the proof of Proposition 5, we can
show that, sincep∗o < p/2, it is necessary thatN∗ =
√

αλp∗ocR, whereα ∈ (1, 2). SettingN∗ =
√

αλp∗ocR
in p∗o ∼ p/(2N∗), we obtain (27) and (28). Substituting
(27) and (28) in (49) results in (29). Since, in this case,
D̄∗ = Θ(λ2/3), the casep∗o = Θ(1) is rejected, which
concludes the proof.

F. Proof of Proposition 10

SettingλPPP = λNpo/d in (12) and (16), we obtain

D̄(N, d, po) = d

(

1

po
+

N − 1

p− po

)

e

(

λcR2

Nd
+δ

)

po . (51)

Setting ∂D̄/∂po = 0 and ∂D̄/∂N = 0 at (N, d, po) =
(N∗, d∗, p∗o), we have

1

(p∗o)
2
− N∗ − 1

(p− p∗o)
2
− δ(d∗)K =

λcR2

N∗d∗
K, (52)

N∗

p∗o(p− p∗o)
=

λcR2

N∗d∗
K,

whereK ,
(

1
p∗

o
+ N∗−1

p−p∗

o

)

. Equating the right-hand sides and
rearranging terms

N∗

p∗o(p− p∗o)
+

N∗ − 1

(p− p∗o)
2
+

δ(d∗)(N∗ − 1)

p− p∗o
=

1

(p∗o)
2
− δ(d∗)

p∗o
.

(53)
For λ → ∞, we either havep∗o = Θ(1) or p∗o → 0:

• If p∗o → 0, then (53) yields

N∗p∗o + (N∗ − 1)(p∗o)
2
(

p−1 + δ(d∗)
)

∼ p,

or N∗ ∼ p/p∗o. Substituting this condition in (52) yields
p∗o ∼

√

pd∗/(2λcR2), so N∗ ∼
√

2λcR2p/d∗. From
(51), we obtainD̄∗ ∼ 2

√

2d∗ep−1λcR2. Therefore,d∗ ∼
1 and (30)-(32) follow.

• If p∗o = Θ(1), it is necessary thatN∗d∗ = Θ(λ), other-
wise, from (51)D̄∗ = eΘ(λ). Therefore,D̄∗ = Θ(λ).
Since this scaling is worse thanΘ(

√
λ), this case is

rejected, which concludes the proof.
2. d∗ = Θ(N∗): From (33), it is necessary thatN∗ = Θ(λTo)
for a non-vanishingps. From (35), it follows thatD̄∗ =
Θ(N∗d∗) = Θ((λTo)

2). Since this scaling is worse than
Θ(λTo), this case is rejected, which concludes the proof.

G. Proof of Proposition 13

SinceΠr is a PPP, we assume, without loss of generality,
that the typical relay is located at the origin, i.e.,x = (0, 0).
ThenP ′

cr,2 can be written as

P ′
cr,2 =

Er1,r2,θ

[

e−λrA(B(z,r1)∪B(z′,r2)})
]

Er1

[

e−λrA(B(z,r1))
] ,

wherer1 = |z|, r2 = |z′|, θ = ∠(z, z′), B(z, r1) is the disc
with centerz and radiusr1, andA(·) denotes area. Ifθ ∈
[0, π), geometric calculations lead to

A(B(z, r1) ∪B(z′, r2)) = (π−φ)r21 +(φ+ θ)r22 + yr1 sinφ,

wherey = |z − z′| andφ = ∠(z, z − z′). For N = 2, by the
displacement theorem [9],Πr,ideal is a PPP with densityλ.
Thereforeθ is uniformly distributed in[0, 2π), the joint pdf
of (r1, r2) is f(r1, r2) = 4(λπ)2r1r2e

−λπr2
2 , r2 > r1, and

the pdf ofr1 is f(r1) = 2λπre−λπr2
1 , r1 > 0. Performing the

expectations overr1, r2, θ, taking into account the symmetry
for θ ∈ [0, π) and θ ∈ [π, 2π), and making the change of
variablest1 =

√
λπr1, t2 =

√
λπr2, we obtain (41).
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Telecomunicacions de Catalunya (CTTC), Barcelona, Spain.His research
interests lie in the areas of wireless communications, stochastic geometry
and random networks, and energy harvesting systems.

Martin Haenggi (S95, M99, SM04) is a Professor
of Electrical Engineering and a Concurrent Professor
of Applied and Computational Mathematics and
Statistics at the University of Notre Dame, Indi-
ana, USA. He received the Dipl.-Ing. (M.Sc.) and
Dr.sc.techn. (Ph.D.) degrees in electrical engineering
from the Swiss Federal Institute of Technology in
Zurich (ETH) in 1995 and 1999, respectively. After
a postdoctoral year at the University of California
in Berkeley, he joined the University of Notre Dame
in 2001. In 2007-2008, he spent a Sabbatical Year

at the University of California at San Diego (UCSD). For bothhis M.Sc.
and Ph.D. theses, he was awarded the ETH medal, and he received a
CAREER award from the U.S. National Science Foundation in 2005 and
the 2010 IEEE Communications Society Best Tutorial Paper award. He
served an Associate Editor of the Elsevier Journal of Ad Hoc Networks
from 2005-2008, of the IEEE Transactions on Mobile Computing (TMC)
from 2008-2011, and of the ACM Transactions on Sensor Networks from
2009-2011, and as a Guest Editor for the IEEE Journal on Selected Areas
in Communications in 2008-2009 and the IEEE Transactions onVehicular
Technology in 2012-2013. He also served as a Distinguished Lecturer for
the IEEE Circuits and Systems Society in 2005-2006, as a TPC Co-chair
of the Communication Theory Symposium of the 2012 IEEE International
Conference on Communications (ICC’12), and as a General Co-chair of
the 2009 International Workshop on Spatial Stochastic Models for Wireless
Networks (SpaSWiN’09) and the 2012 DIMACS Workshop on Connectivity
and Resilience of Large-Scale Networks, and as the Keynote Speaker of
SpaSWiN’13. Presently he is a Steering Committee Member of TMC. He
is a co-author of the monograph “Interference in Large Wireless Networks”
(NOW Publishers, 2009) and the author of the textbook “Stochastic Geometry
for Wireless Networks” (Cambridge University Press, 2012). His scientific
interests include networking and wireless communications, with an emphasis
on ad hoc, cognitive, cellular, sensor, and mesh networks.


