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Interference and Outage in Mobile Random
Networks: Expectation, Distribution, and

Correlation
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Abstract—In mobile networks, distance variations caused by node mobility generate fluctuations in the channel gains. Such fluctuations
can be treated as another type of fading besides multi-path effects. In this paper, the interference statistics in mobile random networks
are characterized by incorporating the distance variations of mobile nodes to the channel gain fluctuations. The mean interference is
calculated at the origin and at the border of a finite mobile network. The network performance is evaluated in terms of the outage
probability. Compared to a static network, the interference in a single snapshot does not change under uniform mobility models.
However, random waypoint mobility increases (decreases) the interference at the origin (at the border). Furthermore, due to the
correlation of the node locations, the interference and outage are temporally and spatially correlated. We quantify the temporal
correlation of the interference and outage in mobile Poisson networks in terms of the correlation coefficient and conditional outage
probability, respectively. The results show that it is essential that routing, MAC, and retransmission schemes need to be smart (i.e,.
correlation-aware) to avoid bursts of transmission failures.

Index Terms—Correlation, interference, mobility, Poisson point process.
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1 INTRODUCTION

1.1 Motivation

IN wireless networks, interference is one of the
central elements in system design, since network

performance is often limited by competition of users
for common resources [1]. There are four major sources
of randomness that affect the interference in large
networks. The first is multi-path fading, which is the
time variation of the channel strengths due to small-
scale effects. The second one is node placement. In
mobile networks, a random model of spatial locations
is necessary to facilitate the network analysis. A well-
accepted model for the node distribution in wireless
networks is the homogeneous Poisson point process
(PPP) [2], [3], where the number of nodes in a certain
region of area A is Poisson distributed with parameter
λ0A, where λ0 is the intensity. The numbers of nodes
in disjoint regions are mutually independent. The third
one is power control, which helps in the interference
management, energy optimization, and connectivity [4]–
[6]. When power control is implemented locally, the
receiver is not aware of the power levels of other,
interfering, transmitters, the power levels hence become
a source of randomness in wireless networks. In this
paper, however, we do not consider power control. The
fourth one is channel access. ALOHA [7] and CSMA [8]
are two classes of well-accepted random and distributed
medium access control (MAC) protocols.
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For the sake of mathematical tractability and
simplicity, the above four sources of randomness are
often assumed identically and independently distributed
(i.i.d.). For example, the channels are often assumed
to be memoryless; if mobility is at all considered,
the nodes are highly mobile so that the realizations
of node locations are independent in different time
slots; the node activities are not affected by previous
activities. Are those assumptions realistic? In wireless
networks, the i.i.d. assumptions for multi-path channel
realizations, transmit power levels, and data traffic
statistics are reasonable, if nodes transmit in short bursts.
Furthermore, some broadband transmission techniques,
such as frequency-hopping spread-spectrum, nullify the
channel memories as well. For node placement, however,
the situation is different. The correlation between node
locations in different time slots is zero only if a
completely new realization of the node placement is
drawn in each time slot. Network models assuming
independent realizations are impractical since the node
velocities cannot be infinite. If the node placement
follows a certain type of distribution such as a PPP
in each time slot and the nodes do not have infinite
mobility, the node locations in different time slots are
correlated. An extreme case is a static but random
network, where the nodes’ positions are completely
correlated, since the nodes do not move after their initial
placement.

How does mobility affect network structure and
performance? First, it is well known that multi-path
fading is induced by microscopic mobility. A slight
position change of a node induces randomness in
channel gain. On the other hand, when distance is
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considered in a wireless transmission, a significant
change in the transmission distance, macroscopic mobility,
gives rise to another degree of uncertainty: path-
loss uncertainty. In this paper, we denote the multi-
path fading simply as fading and large-scale path-loss
uncertainty as large-scale fading. Both types of fading are
induced by mobility. Second, mobility affects temporal
and spatial correlation. The locations of a node always
show a certain degree of correlation in different time
slots, since the node speed is finite. The quantification
of such correlation is important, since it greatly impacts
the network performance.

1.2 Related work

There is a growing body of literature of large wireless
networks with randomly distributed nodes. Stochastic
geometry [9] and the theory of random geometric
graphs [10] are two increasingly widely used analysis
tools, which have been summarized in [2]. Interference
and outage statistics are obtained in the case where
nodes are Poisson distributed without multi-path fading
[11], [12] and in the presence of fading [13], [14]. For
the node placement models other than homogeneous
Poisson, distance statistics in finite uniformly random
networks are obtained in [15]. Interference and outage
in clustered ad hoc networks are discussed in [16]. Inter-
ference results for ad hoc networks with general motion-
invariant node distribution are presented in [17]–[19].
The interference distribution in doubly Poisson cognitive
networks is analyzed in [20]. In [21], the hardcore point
process is approximated by a non-homogeneous PPP to
evaluate the outage. The performance of spatial relay
networks is analyzed in [22], [23]. Routing in ad hoc
networks is discussed in [13], [24]–[26]. The throughput
and capacity in interference-limited networks have been
derived in [27]–[29]. The spatio-temporal correlation of
the interference and outage in static random networks
has been studied in [30]. The spatial distribution of link
outages in static random networks has been derived in
[31]. The temporal correlation properties of the inter-
ference in static networks has been discussed in [32]
in terms of the node locations, Rayleigh block fading,
and traffic. In [33], the interference correlation is shown
to induce diversity loss in Poisson neworks with multi-
antenna receivers.

Related work on mobile networks includes [34], where
a network of mobile nodes is mapped to a network of
stationary nodes with dynamic links. In [35], different
mobility models and their effects to ad hoc networks are
compared. The stochastic properties of random walk and
random waypoint mobility models are analyzed in [36]
and [37]–[40], respectively. Another way of combining
micro- and macroscopic path loss uncertainty has been
explored in [41], where small-scale fading is interpreted
as a distortion of the point process in modeling the node
locations.

1.3 Our contributions

The main contributions of this paper are:
1) We calculate the mean interference at the origin and

at the border of a finite network under different
mobility models such as constrained i.i.d. mobility
(CIM), random walk (RW), Brownian motion (BM),
and random waypoint (RWP).

2) We characterize the interference and outage
statistics in mobile random networks and
investigate the effects of different mobility
models to the network performance.

3) We quantify the temporal correlation of the
interference and outage in mobile random
networks, with concrete results on the correlation
coefficient of the interference and conditional
outage probability.

4) We suggest the design of transmission protocols
with correlation-awareness.

1.4 Paper organization

The rest of the paper is organized as follows. System
and mobility models are introduced in Section 2. In
Section 3, the mean interference at the origin and at
the border of a finite mobile network is calculated. The
single-snapshot analysis of the interference and outage
in mobile random networks is discussed in Section 4.
In Section 5, the temporal correlation of the interference
and outage is analyzed. Remarks and conclusions are
presented in Section 6.

2 SYSTEM MODEL

2.1 Network model

We consider the link between a transmitter-receiver pair
in a wireless network with the receiver at the origin o.
Without loss of generality, the link distance is normalized
to one (equivalently, we can say that the path-loss
component is compensated for in the desired link).
Other potential interferers are randomly distributed1.
The initial node placement follows a Poisson point
process Φ(0) on a domain D ⊆ R

2 with intensity λ0.
In a finite network as shown in Fig. 1 (left), D = B(o,R),
where B(o,R) is a disk of radius R centered at o. The
number of nodes M inside B(o,R) is Poisson distributed
with mean λ0πR

2. In an infinite network as shown in
Fig. 1 (right), D = R

2.
The nodes move independently of each other by

updating their positions at the beginning of each time
slot. In a finite network, nodes bounce back when they
reach the boundary so that M remains constant. In an
infinite network, all nodes move freely. In both cases, the
locations of potential interferers follow a homogeneous
or non-homogeneous PPP Φ(t) = {xi(t)} at any time
t ∈ N.

1. We do not consider the assigned receivers of interfering
transmitters, since they do not affect the network geometry in our
analysis.
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(a) Finite network (b) Infinite network

Fig. 1. Illustrations of finite and infinite mobile networks.
The small circles denote mobile nodes and the arrows
show the directions in which they will move in the next
time slot. In (a), the nodes bounce back when they reach
the boundary. In (b), all nodes move freely.

2.2 Mobility models

Different mobility models lead to different spatial
properties of the networks and, in turn, affect the
network performance differently [35]. In this part,
we introduce several well-accepted models. For a fair
comparison between different models, we first define
the average speed of the nodes and set it to the same
level. The speed of node i in one time slot is defined as
vi(t) = ‖xi(t)− xi(t− 1)‖, where t ∈ N and ‖·‖ is the
Euclidean distance. We define

v̄ � E[vi(t)]. (1)

v̄ is the mean speed averaged over all nodes, or
equivalently, over all times for a fixed node. The time
slot is measured at the time scale of mobility, which
is indicated Fig. 2(a). The mean distance that a node
travels in one time slot is assumed much larger than the
radio signal wavelength. The communication time scale,
which will be introduced in the next sub-section, is much
shorter or at the level of the mobility (see Fig. 2(b) and
2(c)).

2.2.1 Constrained i.i.d. mobility (CIM)
The CIM model is first introduced in [34]. Here, we
consider an identical model except for the first time slot
at t = 0. The node location xi(t) is

xi(t) = xi(0) + v̄wi(t), (2)

where the home locations of the nodes are Φ(0) =
{xi(0)}; wi(t) is uniformly at random in B(xi(0), v̄RCIM).
Using the results from [40], we calculate the normalized
mobility range2 RCIM = 45π/128 ≈ 1.1045. The CIM
model is non-Markov. However conditioning on xi(0),
we have xi(t) and xi(t+ s) are i.i.d. for all t, s > 0.

2.2.2 Random walk (RW)
Under the RW model, a mobile node selects a new
direction and speed randomly and independently in

2. The term "normalized" means that the average node speed is equal
to one.

each time slot. Hence, the spatial node distribution
remains uniform [36]. Mathematically, the location of
node i at time t+ 1 for t ∈ N is

xi(t+ 1) = xi(t) + v̄wi(t), (3)

where the distribution of wi(t) is uniformly at random in
B(xi(t), v̄RRW). The normalized mobility range RRW =
1.5, which is straightforward.

2.2.3 Discrete-time Brownian motion (BM)

Under the discrete-time BM model, the node location at
time t+ 1 for t ∈ N is

xi(t+ 1) = xi(t) + v̄wi(t), (4)

where wi(t) = [wi,1(t), wi,2(t)]
T and wi,1(t) and wi,2(t)

are i.i.d. normally distributed i.e., wi,1(t), wi,2(t) ∼
N (0, σ2

)
. After normalization, we have σ =

√
2/π.

Remark. From [13], [36, Lemma 2.2], and [42], the above
mobility models with the bouncing behavior in a finite
network3 preserve the uniform properties of the node
distribution. Consequently for any t, if the initial PPP is
homogeneous, the PPP Φ(t) remains homogeneous. We
categorize CIM, RW, and BM models as uniform mobility
models (UMM).

2.2.4 Random waypoint (RWP)

This model is only strictly defined in a finite region.
Each node uniformly chooses a destination in the region
and moves towards it with randomly selected speed4. A
new direction and speed are chosen only after the node
reaches the destination. Otherwise, it keeps the same
direction and speed for several time slots. The steady-
state node distribution is a non-uniform distribution [38].
We denote the distance of a typical node to the origin
at steady state by L. For D = B(o,R), the probability
density function (pdf) of L is given by

fL(r) =
1

R2

(
−4r3

R2
+ 4r

)
. (5)

The intensity measure of the point process follows as

Λ(B(o, r)) � E(Φ(B(o, r))) = 2λ0πr
2 − λ0πr

4

R2
,

where r � R. The intensity function is thus given by

λ(x) � λ∞(x) = 2λ0 − 2λ0 ‖x‖2
R2

. (6)

2.3 Channel access scheme

We assume that transmissions start at the beginning of
each time slot and that each transmission is finished
within one time slot as shown in Fig. 2(b) and 2(c). The
next transmission (if the node is scheduled to transmit)

3. A more detailed discussion on the border behavior and effects in
mobile networks is presented in [37].

4. In the simulations, the speed is chosen so that the travel distance
is a multiple of the speed.
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Fig. 2. Mobility and transmission time scales. The mobility
(time) slots are indicated in (a). If a node is scheduled to
transmit, each transmission period, which is presented in
gray, is assumed to start at the beginning of each mobility
slot. In (b), the transmission duration is much shorter than
the mobility (time) slot; in (c), the length of transmission
time is comparable to the mobility slot.

starts at the beginning of the next mobility (time)
slot. Slotted ALOHA is assumed as the MAC protocol.
In every time slot t, each node determines whether
to transmit or not independently with probability p.
This channel access scheme minimizes the correlation.
Note that the model is also suitable for the case
where not all transmissions start at the beginning of a
mobility time slot, since spreading out the transmissions
using time division scheduling reduces the density of
interferers. This case is modeled by reducing the transmit
probability p by an appropriate factor.

2.4 Channel model

The attenuation in the wireless channel is modeled as
the product of a large-scale path-loss component and
a small-scale fading component. The path-loss function
g(x) is given by

g(x) =
1

ε+‖x‖α , ε � 0, (7)

where α is the path loss exponent. Two categories of
models are usually considered: the singular path-loss
model where ε = 0 and the non-singular path-loss model
where ε > 0. rg(r) = r/ (ε+ rα) is assumed to be
integrable, i.e.,∫ ∞

ν

rg(r)dr < ∞, ∀ν > 0.

α > 2 is necessary and sufficient to satisfy the
integrability condition.

For the multi-path fading, we consider a deterministic
model (i.e., no fading) and the Rayleigh and Nakagami
fading models in the desired link and the interfering
links. In Rayleigh fading, the pdf of the power fading

gain h is given by

fh(x) = exp(−x).

In the more general Nakagami-m fading model, the pdf
of the power fading gain is given by

fh(x) =
mmxm−1 exp(−mx)

Γ(m)
, m > 0.

If the transmission duration is relatively long, i.e.,
comparable to the length of the mobility (time) slot
(Fig. 2(c)), the packet may observe a large number of
realizations, since the node covers many wavelengths in
distance. With interleaving, the fading will then have a
negligible effect corresponding to a large m or even m →
∞ (no fading). If the transmissions are short (Fig. 2(b)),
on the other hand, fading needs to be accounted for
using the Rayleigh or Nakagami models with small m.

2.5 Total interference and outage probability

At time t, the total interference at the receiver (located
at z) is given by

I(t) =
∑

x∈Φ(t)

Tx(t)hx(t)g(x− z), (8)

where the random variables Tx(t) are i.i.d. Bernoulli
with parameter p due to ALOHA; hx(t) is the multi-path
fading with mean Eh = 1.

The outage probability po is one of the fundamental
performance metrics in wireless networks. In
interference-limited channels, an outage occurs if
the signal-to-interference ratio (SIR) at a receiver is
lower than a certain threshold θ i.e.,

po � P(SIR < θ). (9)

3 MEAN INTERFERENCE

In this section, we calculate the mean interference in a
network under either UMM or RWP mobility. For ε > 0
and α = 4, it is known [5] that the mean interference at
the origin under UMM is given by

E[Io,UMM] =
πpλ0√

ε
arctan

R2

√
ε
. (10)

We have the following proposition about the mean inter-
ference at the origin under the RWP model.

Proposition 1. For α = 4, a finite network of radius R,
and ALOHA with parameter p, The mean interference at the
origin under the RWP model is given by

E[Io,RWP] =
2πpλ0√

ε
arctan

R2

√
ε
− pλ0π

R2
ln

(
1 +

R4

ε

)
. (11)

As R → ∞,
E[Io,RWP] � 2E[Io,UMM], (12)

where “�” denotes an upper bound with asymptotic equality.
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Proof: Under the RWP model, we have from
Campbell’s theorem

E[Io,RWP] = 4πpλ0

∫ R

0

(
r

ε+ r4
− r3

ε+ r4

)
dr.

The rest of the calculation is straightforward.
For ε = 0, we ignore the interfering nodes which are

very close to the origin by setting a guard zone5 B(0, ν),
for any ν > 0. We have the following proposition about
the mean interference at the origin.

Proposition 2. For a finite network of radius R and ALOHA
parameter p, the mean interference at the origin under UMM
is given by

E[Io,UMM] =
2pλ0π

α− 2

(
ν−α+2 −R−α+2

)
, (13)

where ν is the guard radius in the singular path-loss model.
For α = 4, the mean interference at the origin under the RWP
model is given by

E[Io,RWP] = 2pλ0π
(
ν−2 −R−2

)− 4pλ0π

R2
ln

R

ν
. (14)

For α �= 4, we have

E[Io,RWP] =
4pλ0π

α − 2

(
1

να−2
− 1

Rα−2

)
− 4pλ0π

(α− 4)

(
1

να−4R2
− 1

Rα−2

)
. (15)

As R → ∞, we obtain again,

E[Io,RWP] � 2E[Io,UMM].

Proof: Under UMM,

E[Io,UMM] = 2πpλ0

∫ R

ν

r−α+1dr.

and under the RWP model,

E[Io,RWP] = 4πpλ0

∫ R

ν

r−α+1 − r−α+3

R2
dr.

From Proposition 1 and 2, we find that the mean
interference at the origin under the RWP model is
asymptotically twice the mean interference under UMM
when the radius R grows large.

Next we evaluate the mean interference at the border
of a network (i.e., at any z with ‖z‖ = R). For UMM, we
have the following proposition.

Proposition 3. For α = 4, a finite network of radius R,
and ALOHA parameter p, the mean interference at a border
location z with ‖z‖ = R under UMM is given by

E[IR,UMM] =
pλ0√
ε

∫ 1

0

arctan 4R2√
ε
x2

√
1− x2

dx, ε > 0. (16)

5. The guard zone is set to keep the mean interference finite.
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Fig. 3. The mean interference at the origin o and at the
border location z, ‖z‖ = R, under the non-singular path-
loss model.

When R → ∞, we have

lim
R→∞

E[IR,UMM] =
pλ0π

2

4
√
ε
, ε > 0. (17)

Under the RWP model, we have

lim
R→∞

E[IR,RWP] = 0. (18)

Proof: We have

E[IR,UMM] = pλ0

∫
B((R,0),R)

g(x)dx

= pλ0

∫ π/2

−π/2

∫ 2R cos θ

0

rg(r)drdθ,

which equals (16). For the RWP model, the mean inter-
ference at the border is given by

E[IR,RWP] = p

∫
B(0,R)

λ(x)g(x − z)dx

=
2pλ0

R2

∫ π/2

−π/2

∫ 2R cos θ

0

2Rr2 cos θ − r3

ε + rα
drdθ.

Letting R → ∞, we obtain (18).

The following corollary follows from (10) and (17).

Corollary 4. Assume UMM, α = 4, and a finite network of
radius R. When R → ∞,

E[IR,UMM] � 1

2
E[Io,UMM]. (19)

Fig. 3 shows the mean interference at the origin o and
at the border under the non-singular path-loss model.
Both UMM and RWP model are considered. E[IR,RWP]
decreases with R since the node intensity at the border
decreases with increasing R.
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4 SINGLE-SNAPSHOT ANALYSIS OF INTER-
FERENCE AND OUTAGE

In this section, we evaluate the network performance in
a single snapshot. We assume that ε = 0. The mobility
models in Section 2.2 are separated into two categories:
uniform and non-uniform.

4.1 Interference in uniformly mobile networks

Because of the uniformity of the mobility, the mobile
network in any time t can be treated as a correlated
realization of a static network. Hence the existing results
of the interference and outage in static networks in [5],
[11] also apply to uniformly mobile networks.

4.2 Interference in non-uniformly mobile networks

4.2.1 Interference in finite networks without fading

We consider RWP and set D = B(o,R). We evaluate the
interference at the origin o, since the interferer density
decreases with the distance to the origin o (see (6)), which
leads to a lower bound of the network performance. As
we are only interested in the interference distribution in
a single time slot, we can drop the dependence on t and
focus on the generic random variable

I =
∑
x∈Φ

Tx ‖x‖−α
. (20)

There is no closed-form expression for the pdf of
the interference in most cases. However, since the
received power decays according to a power law, only
considering the interference from the nearest interferer
to the receiver provides a good approximation, if the
path-loss exponent α is not too close to 2 [5]. Therefore,
the interference power is approximately

I ≈ I1 = R−α
1 , (21)

where R1 is the distance between the origin to its nearest
interferer. Given a total number of nodes M , we have

P (R1 � r | M) = 1− (1− FL(r))
M

= 1−
(
1−

(
2r2

R2
− r4

R4

))M

,

where FL(r) =
∫ r

0
fL(x)dx and fL(x) is given in (5). Since

M is Poisson distributed with mean pλ0πR
2, the pdf of

R1 is thus given by

fR1(r) =
dEM [P (R1 � r | M)]

dr

= pλ0π

(
4r − 4

r3

R2

)
e
−pλ0π

(
2r2− r4

R2

)
. (22)

From (21) and (22), we obtain the pdf of I1:

fI1(x) = 2pλ0πδ

(
x−δ−1 − x−2δ−1

R2

)
e
−pλ0π

(
2x−δ− x−2δ

R2

)
,

(23)

where δ � 2/α. With deterministic channels, a simple
lower bound on the outage probability is derived using
the nearest-interferer approximation:

pnfo (θ) � P

(
1

I
< θ

)
� P

(
1

I1
< θ

)
= 1− FI1(θ

−1) � pnf(θ).

Calculating explicitly, we have

pnf(θ) = 1− exp

(
−pλ0π

(
2θδ − θ2δ

R2

))
. (24)

4.2.2 Interference in finite networks with fading

When channels are subject to multi-path fading, the
interference power from the nearest interferer is h1I1,
where h1 is the multi-path fading coefficient. Then the
lower bound of the outage probability is given by

pf(θ) = EH

[
P

(
I1 >

H

θ
| H
)]

,

where H � h/h1 and h is the fading gain in the desired
link. In the Rayleigh fading case, the pdf of H is given
by

fH(x) =
1

(x + 1)2
.

We then obtain

pf(θ) = 1−
∫ ∞

0

exp
(
−pλ0π

(
2θδx−δ − θ2δx−2δ

R2

))
(x + 1)2

dx.

(25)
The lower bounds of the outage probabilities and
the simulation results are presented in Fig. 4. For
comparison, the lower bounds and simulation results
under the RW model are also included. The expected
number of nodes in the region E[M ] = 10π ≈ 31.
From the figure, we find that the nearest-interferer
approximation provides a close approximation in terms
of the outage probability, in particular in the lower
threshold regime (small θ), which is the regime of
practical interest. Furthermore, multi-path fading is
harmful to the link connections in mobile networks.

4.2.3 Interference in infinite networks

In infinite networks (D = R
2), the RWP model cannot be

properly defined. However, we can derive the Laplace
transform of the total interference if the node distance
distribution follows (5). The Laplace transform of the
interference is first calculated under a finite radius R,
and then we let R → ∞. Since the mobility model
itself can not be defined, such a result is not the inter-
ference characterization under the RWP model in infinite
networks, but it provides an asymptotic expression as R
gets large.

Proposition 5. For R → ∞, the Laplace transform of the
total interference converges to

LI(s) = exp
(−2πλ0ps

δ
E[hδ]Γ (1− δ)

)
. (26)
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Fig. 4. Simulation results versus the corresponding lower
bounds of the outage probability for different fading and
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Proof: We start with a finite network of radius R.
From (6), the radial transmitter intensity function is
given by

λ(r) = 4pλ0πr − 4pλ0πr
3

R2
.

Using the probability generating functional (pgfl) to
calculate the Laplace transform, we obtain

LI(s) = exp

⎛
⎝−Eh

⎡
⎣∫ R

0

(
1− exp

(−shr−α
))
λ(r)dr︸ ︷︷ ︸

⎤
⎦
⎞
⎠ . (27)

A(h)

For the integral A(h), we have

A(h) =

∫ R

0

4πpλ0r
(
1− e−shr−α

)
dr − pλ0π

R−2

(
1− e−shR−α

)
−
∫ R

0

αpλ0πshr
−α+3

R2
e−shr−α

dr.

Letting R → ∞ and using the L’Hopital’s rule, we obtain

lim
R→∞

1− e−shR−α

R−2
=

αshR−α−1e−shR−α

−2R−3

(a)
= 0,

where (a) holds for α > 2, and

lim
R→∞

∫ R

0

r−α+3

R2
e−shr−α

dr = lim
R→∞

R−α+2e−shR−α

2
= 0.

Therefore, we have

lim
R→∞

A(h) = 2λ0πs
δhδΓ(1 − δ).

Inserting this into (27) yields the result.
Comparing (26) with [11, (18)], we notice that at the

center of a large disk, the interference generated by
RWP nodes is asymptotically equivalent to the inter-
ference generated by nodes of uniformly mobility with
doubled node intensity as the disk radius R → ∞, which
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Fig. 5. The outage probabilities under the RWP mobility
with different radii R for the case without fading. The
bound (solid curve) is obtained from (28). The curves with
finite R are simulation results.

is in agreement with (12). Without fading, the outage
probability (α = 4) is given by

pnfo (θ) = P(I > θ−1) = erf
(
pπ

3
2

√
θλ0

)
, (28)

where erf(x) = 2
∫ x

0
e−t2dt/

√
π is the error function.

Fig. 5 shows the outage probabilities for RWP
nodes with different radii R by simulations versus
the asymptotic bound. The bound, which is exact for
R → ∞, is calculated using (28). The simulation curves
approach the bound quickly as R increases. Hence, (28)
can be viewed as the upper bound and the asymptotic
expression of the outage probability for large R. For
Rayleigh fading, since E[hδ] = Γ(1 + δ),

pfo(θ) = 1− LI(θ) = 1− exp

(
−2pπ2λ0δθ

δ

sin(πδ)

)
. (29)

The same extra factor 2 is obtained as we compare (29)
to the homogeneous case [28, (6)], which confirms that
RWP mobility increases the interference and outage at
the origin.

4.3 Tightness of the outage lower bound

In this part, we evaluate the tightness of the outage
lower bound we have obtained in finite networks. For
deterministic or Rayleigh fading channel, we have the
following proposition.

Proposition 6. When θ → 0, the outage probability
po(θ) and the outage lower bound p(θ) have the following
relationship

p(θ) ∼ po(θ). (30)

Proof: First we consider the case without multi-
path fading. With similar steps in [11], the ccdf of the
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interference in the infinite case is given by

FI(x) =
1

π

∞∑
k=1

Γ(αk)

k!

(
2λ0pπΓ(1 − δ)

xδ

)k

sin(kπ(1− α)).

(31)
The term 2λ0 in (31) instead of λ0 in [11, (23)] is the
difference between the RWP and uniform mobility cases.
We then have

lim
θ→0

pnf(θ)

pnfo (θ)
= lim

θ→0

1− exp
(
−pλ0π

(
2θδ − θ2δ

R2

))
1
π

∑∞
k=1

Γ(αk)
k! (2λ0pπΓ(1− δ)θδ)

k

(a)
= lim

θ→0

pλ0π
2
(
2δθδ−1− 2δθ2δ−1

R2

)
e
−pλ0π

(
2θδ− θ2δ

R2

)

∑∞
k=1

Γ(αk)
k! δkθδk−1 (2λ0pπΓ(1− δ))

k

(b)
= 1,

where (a) holds because of the L’Hopital’s rule; (b) holds
because of the dominance of the term for k = 1 in the
Taylor series expansion.

Second, we consider Rayleigh fading. From (25) and
(29), we have

lim
θ→0

pf(θ)

pfo(θ)

(a)
= lim

θ→0

∫∞
0

x−δ

(x+1)2 exp
(
−pλ0π

(
2θδx−δ − θ2δx−2δ

R2

))
dy

πδ
sin(πδ) exp

(
− 2pπ2λ0δθδ

sin(πδ)

)
= 1, (32)

where (a) holds because of L’Hopital’s rule.

5 TEMPORAL CORRELATION OF INTER-
FERENCE AND OUTAGE

The interference statistics in mobile networks in a single
time slot have been studied in the previous section, with
concrete results also for the outage statistics. However,
only investigating the interference in a single time slot
is insufficient to design the transmission and routing
schemes in wireless networks, since the interference is
temporally and spatially correlated. Such correlation,
which is caused by the locations of mobile nodes,
affects retransmission and routing strategies greatly.
For example in an ARQ (Automatic Repeat reQuest)
retransmission mechanism, a packet is retransmitted
after a timeout or after a negative acknowledgment
(NACK) received. Intuitively when a link is in outage
and correlation is high, blind retransmissions lead to
a higher failure rate than for independent interference.
Quantifying the correlation is hence necessary. In this
section, we consider uniform mobility models only and
focus on infinite networks (D = R

2). We assume that
ε > 0 in the path-loss expression in (7), since for
ε = 0 some integrals (such as the mean interference) are
infinite.

5.1 Temporal correlation of interference

In this part, we analyze the temporal correlation of
the interference. The spatio-temporal correlation can be
treated similarly. Because of the spatial stationarity of
the point process, it is sufficient to consider the inter-
ference at the origin. The total interference in (8), I(t),
is identically distributed for any t ∈ N. We denote
the temporal correlation coefficient of the interference
between time s and t as ρτ � ρI(t)I(s), where τ = |t− s|.
We have the following proposition about ρτ .

Proposition 7. The temporal correlation coefficient of the
interferences I(s) and I(t), where s �= t, is given by

ρτ =
p
∫
R2 g(x)Ewτ [g(x+ v̄wτ )]dx

E[h2]
∫
R2 g2(x)dx

� p

E[h2]
, (33)

where v̄wτ is the location difference of a node between time s
and t.

Proof: Since I(s) and I(t) are identically distributed,
we have

ρτ � Cov(I(t), I(s))

Var[I(t)]
=

E[I(t)I(s)]− E[I(t)]
2

E[I(t)2]− E[I(t)]2
. (34)

The mean product of I(t) and I(s) (t �= s) is given by

E[I(t)I(s)]

= E

⎡
⎣ ∑
x∈Φ(t)

Tx(t)hx(t)g(x)
∑

y∈Φ(s)

Ty(s)hy(s)g(y)

⎤
⎦

= E

⎡
⎣ ∑
x∈Φ(s)

Tx(t)hx(t)g(x + v̄wτ )
∑

y∈Φ(s)

Ty(s)hy(s)g(y)

⎤
⎦

= E

⎡
⎣ ∑
x∈Φ(s)

Tx(t)Tx(s)hx(t)hx(s)g(x + v̄wτ )g(x)

⎤
⎦+

E

⎡
⎣ x �=y∑
x,y∈Φ(s)

Tx(t)Ty(s)hx(t)hy(s)g(x+ v̄wτ )g(y)

⎤
⎦ , (35)

where v̄wτ is the location difference of a node between
time s and t. Conditioning on wτ and following the proof
of Lemma 1 in [30], we have the conditional temporal
correlation coefficient ρ(τ | wτ ) as

ρ(τ | wτ ) =
p
∫
R2 g(x)g(x+ v̄wτ )dx

E[h2]
∫
R2 g2(x)dx

. (36)

Deconditioning on wτ yields (33). Exploring Ewτ [g(x +
v̄wτ )] in (33), we obtain that ρτ decreases monotonically
with v̄. Hence ρτ is upper bounded by

ρτ � lim
v̄→0

p
∫
R2 g(x)Ewτ [g(x+ v̄wτ )]dx

E[h2]
∫
R2 g2(x)dx

=
p

E[h2]
.

Proposition 7 is then proved.
The spatio-temporal correlation coefficient of the inter-

ference at two given locations is provided in [30, (11)].
For mobile networks, the random position difference of
the nodes in different time slots needs to be averaged
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out. The difference between the static and mobile
networks is that in a static network, the path loss g(x)
does not change in one realization, while g(x(t)) is time
variant in a mobile network. The correlation coefficient
is independent of the intensity λ0, since the interference
scales linearly with λ0.

For a time difference τ , we express the pdf of wτ as
the sum of an atmoic and a diffuse part:

fwτ (z) =

K∑
i=1

aiδ(z − zi) + f̃(z), (37)

where
∑

i ai � 1 and ai (ai > 0) are the probability
masses of wτ at zi; zi are ordered according to the
Euclidean distance to the origin (0 � ‖z1‖ � ‖z2‖ � · · · );
δ(·) is an impulse function; f̃(z) is right-continuous at z.

We also let d � H(supp(wτ )), where H(·) is the
Hausdorff dimension and supp(x) is the support of the
random variable x. We restrict ourselves to d ∈ {0, 1, 2}.
We now have the following theorem about the scaling
property of ρτ .

Theorem 8. If K � 1 and z1 = 0, we have

ρτ ∼ a1p

E[h2]
, v̄ → ∞, (38)

where a1 = P(wτ = 0). For d = 2 and z1 > 0 (or K = 0),
we have

ρτ v̄
2 ∼ pfwτ (0)δε

δπ2

E[h2](1 − δ) sin(πδ)
. (39)

If fwτ (0) = 0, we have

ρτ ∈ o
(
v̄−d

)
. (40)

If fwτ (0) > 0, we have

ρτ ∈ Ω
(
v̄−d

)
. (41)

For d ∈ {1, 2}, K = 0, and fwτ (0) > 0, we have

ρτ ∈ Θ
(
v̄−d

)
. (42)

Proof: Rewriting Ewτ [g(x+ v̄wτ )], we have

Ewτ [g(x+ v̄wτ )] =

K∑
i=1

aig(x+v̄zi)+

∫
Rd

f̃(z)

ε+ ‖x+ v̄z‖α dz

=

K∑
i=1

aig(x+v̄zi)+
1

v̄d

∫
Rd

f̃(t/v̄)

ε+ ‖x+ t‖α dt

(43)

Inserting this in (33) yields (38), (40), (41), and (42). For
d = 2 and z1 > 0, we have

lim
v̄→∞ρv̄2 =

pfwτ (0)
(∫

R2 g(x)dx
)2

E[h2]R2g2(x)dx
,

which yields (39), since∫
R2

g(x)dx =
δπ2

ε1−δ sin(πδ)
,
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Fig. 6. The temporal correlation coefficient ρ1 versus the
mean speed v̄ under different mobility models.
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Fig. 7. The temporal correlation coefficient ρτ versus ε
under the CIM model.

and ∫
R2

g2(x)dx =
δ(1− δ)π2

ε2−δ sin(πδ)
.

Theorem 8 is then proved.
If a node stays in the same location in time s and

t with positive probability, ρτ converges to a constant
when v̄ goes large, since the static portion asymptotically
dominates the temporal correlation. On the other hand,
if a node moves to other locations with probability 1,
the decay of ρτ depends on the Hausdorff dimension d
and fwτ (0). Given τ = 1, Fig. 6 shows ρ1 versus v̄ under
different artificial mobility models, which are described
in Table 5.1.

Fig. 7 shows ρτ versus ε. When ε is small, ρτ increases
with α. For α not too close to 2, interferers close to
the origin dominate the interference. Such dominance is
more prominent with larger α and hence causes higher
temporal correlation of the interference. However, ρτ
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Models d fw1(z) Scaling property

The 1st model 2 0.2δ(z) + 0.8f̃ (z), where f̃(z) =

{
1

πR2
1

‖z‖ � R1

0 otherwise,
where R1 = 15/8 ρ1 ∼ 0.2p

E[h2]

The RW model 2 f̃(z) =

{
1

πR2
RW

‖z‖ � RRW

0 otherwise
ρ1v̄

2 ∼ pδεδπ
E[h2](1−δ)R2

RW sin(πδ)

The 3rd model 2 f̃(z) =

{
4

3πR2
3

R3/2 � ‖z‖ � R3

0 otherwise,
where R3 = 9/7 ρ1 ∈ o

(
v̄−2

)
The 4th model 1 f̃(z) =

{
1
4

|z| � 2

0 otherwise
ρ1 ∈ Θ

(
v̄−1

)
TABLE 1

Four types of mobility models.

decreases with α when ε is large. More nodes contribute
to the interference in this case. For large ε, the smaller the
path loss exponent, the more correlated the interference
is.

The integral
∫
R2 g(x)Ewτ [g(x+ v̄wτ )]dx in (33) depends

on the mobility models. In the next several subsections,
we discuss different mobility models individually.

5.1.1 Constrained i.i.d. mobility (CIM)

Corollary 9. The temporal correlation coefficient under the
CIM model ρτ,CIM, where τ � 1, is upper bounded by

ρτ,CIM � p

E[h2]
·min

{
1,

δπεδ

(1− δ)R2
CIM sin(πδ)v̄2

}
, (44)

where RCIM = 45π/128.

Proof: From (43) and the fact that fwτ (0) � fwτ (x),

Ewτ [g(x+ v̄wτ )] �
1

v̄2

∫
R2

fwτ (0)

ε+ ‖x+ t‖α dt. (45)

(44) follows from Theorem 8 after several steps of
calculation, since fwτ (0) = 1/πR2

CIM.
Fig. 8 shows the numerical evaluation of ρτ,CIM from

(33) (solid curves) together with the upper bound from
(44) (dashed curves). The curves converge to the upper
bound fast as v̄ increases.

From (33) and (44), we find that the temporal
correlation under the CIM model, ρτ,CIM, is independent
of τ . This observation is in agreement with the definition
of the CIM model. For the Nakagami-m fading model,
we have E[h2] = m+1

m . In particular, E[h2] = 2 for
Rayleigh fading (m = 1), and E[h2] = 1 for no
fading (m → ∞). ρτ,CIM increases with m, as well as
with the MAC scheme parameter p. Both fading and
random MAC scheduling schemes reduce the temporal
correlation of the interference.

5.1.2 Random walk (RW)

Under the RW model, we focus on the temporal
correlation of the interference between two successive
time slots, i.e., ρ1. By a similar derivation as for the CIM
model, we have the following corollary about ρ1,RW.
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Fig. 8. Numerical evaluation (from (33)) of the temporal
correlation coefficient ρτ versus the mean node speed
v̄ with the corresponding upper bound (from (44)). The
mobility model is CIM.
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mobility model is RW.
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Corollary 10. The temporal correlation coefficient under the
RW model ρ1,RW is upper bounded by

ρ1,RW � p

E[h2]
·min

{
1,

4δπεδ

9(1− δ) sin(πδ)v̄2

}
. (46)

Proof: The calculation is straightforward following
the proof of Corollary 9 since fw1(0) = 1/πR2

RW.
Fig. 9 displays the numerical evaluation of ρ1,RW

from (33) and its upper bound from (46). Again the
convergence is fast.

5.1.3 Discrete-time Brownian motion (BM)

Under the BM model, we have

wτ =

τ∑
i=1

w(i)
(d)
=

√
τw0,

where
(d)
= denotes the equality in distribution and w0

is a two-dimensional Gaussian random variable, i.e.,
N (0, σ2I

)
, where I is the 2-by-2 identity matrix. Hence,

(33) can be rewritten as

ρτ,BM =
p
∫
R2 g (x)Ew0 [g(x+

√
τ v̄w0)] dx

E[h2]
∫
R
g2(x)dx

. (47)

Fig. 10 plots ρ1 versus the mean speed of nodes v̄
under three mobility models. As we observe from the
figure, ρ1 under these three models are asymptotically
proportional to v̄−2. At an identical speed level, ρ1 under
these three models are close. For large τ , we have the
following corollary about ρτ,BM.

Corollary 11. When the time difference τ → ∞, the temporal
correlation coefficient under the BM model is given by

ρτ,BM ∼ Cτ−1, (48)

where

C =
π2εδ

δ(1− δ) sin(πδ)v̄2
,

and ρτ,BM is upper bounded by

ρτ,BM � p

E[h2]
·min

{
1,

π2εδ

δ(1− δ) sin(πδ)τ v̄2

}
. (49)

Proof: Based on Theorem 8, (48) and (49) follow from
(47) after a few elementary steps.

5.2 Outage correlation

In the design of retransmission schemes in wireless
networks, it is often assumed that outage events are
independent across time for the sake of mathematical
simplicity. However, due to the temporal correlation
of the interference, link outage events are temporally
correlated as well. Intuitively speaking, a link in outage
at a given time indicates a higher outage probability
in the next several time slots. Such correlation affects
retransmission and routing schemes greatly and thus
needs to be quantified. The correlation of link outage in
static networks is examined in [30]. In this section, we
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Fig. 10. The interference correlation coefficient ρ1 versus
the mean speed v̄ under three mobility models.

discuss the temporal correlation of the outage in mobile
networks. Rayleigh fading is assumed in the analysis.

Let At denote the event that the link is in outage at
time t, i.e., At �

{
SIR(t) = h(t)

I(t) < θ
}

, where the distance
of the desired link is normalized to one as indicated in
Section 2.1. The joint probability of the events As and
At is given in (50) in the next page, where (a) follows
from the independence of h(s) and h(t); (b) follows from
the identical distribution of I(t) and I(s); (c) follows
from the averaging over Tx and hx; (d) holds from the
probability generating functional (pgfl) of the PPP.

The direct evaluation of (50) seems hopeless, since the
joint distribution of the two correlated random variables
I(t) and I(s) is hard to obtain. However, we find
that P(As, At) is upper bounded by the joint outage
probability in static networks.

Proposition 12. The conditional outage probability P(At |
As) is upper bounded by

P(At | As) � 1− LI(θ) +
(B − 1)L2

I(θ)

1− LI(θ)
, (51)

where

B � exp

(
λ0p

2

∫
R2

(
θg(x)

1 + θg(x)

)2

dx

)

= exp

(
δπ2(1− δ)θ2λ0p

2

(ε + θ)2−δ sin(πδ)

)
. (52)

Proof: We have

P(At | As) =
P(At, As)

P(At)
� lim

v̄→0

P(At, As)

P(At)
.

The calculation of the joint outage probability in static
networks (limv̄→0 P(As, At)) is similar to [30, Section IV]
under the non-singular path-loss model.

Corollary 13. The conditional outage probability P
(
At | Ās

)



12

P(As, At) = P(h(s) < θI(s), h(t) < θI(t))
(a)
= EI(s),I(t) [(1− exp (−θI(s)))(1− exp (−θI(t)))] ,

(b)
= 1− 2E[exp(−θI(t))] +

E

⎡
⎣exp

⎛
⎝−θ

∑
x∈Φ(s)

(Tx(s)hx(s)g(x) + Tx(t)hx(t)g(x+ v̄wτ ))

⎞
⎠
⎤
⎦

(c)
= 1− 2LI(θ) +

E

⎡
⎣ ∏
x∈Φ(s)

(
p

1 + θg (x)
+ 1− p

)(
p

1 + θg (x+ v̄wτ )
+ 1− p

)⎤⎦
(d)
= 1− 2LI(θ) + Ewτ

[
exp

(
−λ0

∫
R2

1−
(

p

1 + θg (x)
+ 1− p

)
·(

p

1 + θg (x+ v̄wτ )
+ 1− p

)
dx

)]
. (50)

———————————————————————————————————————————————————–
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Fig. 11. The conditional outage probabilities P(At | As)
and P

(
At | Ās

)
together with the unconditional outage

probability P(At) versus the threshold θ under the CIM
model. The dashed curve is the unconditional outage
probability; the dash-dotted curve is the upper bound
of P(At | As) from (51); the solid-line curve is the exact
expression of P(At | As) via simulations; the stars are
P(At | Ās) via simulations; the × is the lower bound of
P
(
At | Ās

)
from (53).

is lower bounded by

P
(
At | Ās

)
� 1−BLI(θ), (53)

where B is from (52).

Proof: The proof is similar to the proof of Proposition
12.

Fig. 11 and 12 display the simulation evaluations of
the conditional outage probability versus the threshold
θ and the MAC scheme parameter p, respectively,
together with the upper and lower bounds from (51)
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Fig. 12. The conditional outage probabilities P(At | As)
and P

(
At | Ās

)
together with the unconditional outage

probability P(At) versus the MAC scheme parameter p
under the CIM model.

and (53). The CIM model is used in the simulation. The
unconditional outage probability P(At) is always smaller
than P(At | As). The outage evaluation in a single
time slot ignores the information about previous link
states and thus provides an over-optimistic evaluation
of the network performance. On the other hand,
P(At) > P

(
At | Ās

)
, as expected. The discrepancy

between P(At | As) and P(At) is larger when P(At) is
low (or θ is low), since the conditioning makes a larger
difference in this regime. Conversely, the discrepancy
between P

(
At | Ās

)
and P(At) is larger when P(At) is

high (θ is high). In the two extreme cases where the
threshold θ → ∞ or θ → 0, the conditioning does not
make a difference any more.
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6 REMARKS AND CONCLUSIONS

In this section, we summarize the results we have
obtained in this paper and draw conclusions.

• Macroscopic mobility: We treat macroscopic mobility
from a large-scale fading perspective. Fluctuations
of the path loss induced by mobility constitute
another type of fading in wireless channels besides
multi-path effects. To make the difference clear,
we may speak of fading induced by microscopic
mobility (multi-path fading) and fading induced by
macroscopic mobility.

• Mean interference and outage probability: The mean
interference at the origin under the RWP model is
asymptotically twice the interference under UMM,
which leads to higher outage probability, while the
interference at the border is lower. Also for RWP, the
interference at the border decreases to zero as the
network radius goes large. These observations lead
us to an important research direction: the design
of location-aware routing algorithms. However, the
decreasing interference is due to the smaller node
intensity near the border, which means that fewer
nodes can be chosen as receivers. The trade-off
between the locations of destinations (or relays) and
the interference should be considered.

• Temporal correlation of interference: The mobility
models affect the correlation coefficient of the inter-
ference ρ. The more degrees of freedom the node
explores, the faster ρ decays with the mobility range.
Multi-path fading and random MAC schemes also
reduce the interference correlation.

• Temporal correlation of outage: Conditioned on the link
being in outage at time t, the outage probability in
the next several time slots is higher compared to
the unconditional outage probability. On the other
hand, if a transmission is successful, the conditional
success probability is higher in the next several
time slots. Hence, the design of new retransmission
schemes with correlation-awareness is important.
For example, if a transmission is successful, the
node should transmit more often in successive
time slots (higher transmit probability) in order to
take advantage of the outage (success) correlation.
Conversely, if a link is in outage, several silence
slots should be added before the transmitter starts
another try, since blind retransmission worsens
the network performance. If fewer transmitters are
concurrent, the success probability increases due
to the decreased interference power. It in turn
lowers the number of retransmissions. The trade-
off between delay and network throughput, and
fairness and throughput should be explored as well.
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