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Abstract—Characterizing the performance of ad hoc networks is one of the most intricate open challenges; conventional ideas based
on information-theoretic techniques and inequalities have not yet been able to successfully tackle this problem in its generality.

Motivated thus, we promote the totally asymmetric simple exclusion process (TASEP), a particle flow model in statistical mechanics,
as a useful analytical tool to study ad hoc networks with random access. Employing the TASEP framework, we first investigate the

average end-to-end delay and throughput performance of a linear multihop flow of packets. Additionally, we analytically derive the
distribution of delays incurred by packets at each node, as well as the joint distributions of the delays across adjacent hops along the

flow. We then consider more complex wireless network models comprising intersecting flows, and propose the partial mean-field
approximation (PMFA), a method that helps tightly approximate the throughput performance of the system. We finally demonstrate via

a simple example that the PMFA procedure is quite general in that it may be used to accurately evaluate the performance of ad hoc
networks with arbitrary topologies.

Index Terms—Ad hoc networks, throughput, end-to-end delay, statistical mechanics, network topology.
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1 INTRODUCTION

1.1 Motivation

AN ad hoc network is formed by deploying nodes that
possess self-organizing capabilities and typically con-

sists of several source-destination pairs communicating
wirelessly with each other in a decentralized fashion. In
order to conserve energy, yet efficiently deliver packets to
distant nodes, routing is often performed in a multihop
fashion, wherein relay nodes assist in the flow of packet
traffic from the sources to the destinations. Characteristi-
cally, the multihop nature of packet transmissions causes
interweaving of traffic flows, resulting in strong correlations,
or interdependencies between the activities of the nodes.

For instance, since a traffic flow is relayed across several
hops, the packet arrival processes at the nodes (and hence,
the departure processes) are coupled with each other.
Thus, the end-to-end delay in multihop networks, deter-
mined by the joint distribution of the successive delays of a
packet traversing multiple nodes may hardly be expressed
in a product form. Likewise, owing to the existence of
relay nodes that serve multiple packet flows, the through-
puts of the various flows in the network are correlated
with each other.

On account of such intricate interactions, ad hoc net-
works evade familiar link-based decompositions; studying

them using traditional methods such as information theory
becomes intractable and hence has yielded little in the way
of results [1]. This has motivated researchers to turn to other
branches of study, to obtain ideas and methodologies that
help better understand and characterize the dynamical
behavior of multihop networks. Of late, statistical physics
has, in particular, captured the attention of the research
community since it contains a rich collection of mathema-
tical tools and methodologies for studying interacting
many-particle systems [2], [3], [4].

Along similar lines, we employ ideas from the totally
asymmetric simple exclusion process (TASEP) [5], a subfield in
statistical mechanics, to analyze multihop networks. The
focus of this work is the investigation of the end-to-end
metrics, delay and throughput of ad hoc networks with
random access, taking into account the correlations in the
system. Our main contributions are the following:

1. First, we consider a linear network model fed by a
single source and characterize its average delay and
throughput performances. Additionally, we analyti-
cally derive a) the probability mass functions (pmfs)
of the delays incurred by packets at each node along
the flow and b) the joint pmfs of the packet delays
across adjacent nodes in the line network.

2. Second, we consider more complex ad hoc network
models comprising intersecting packet flows. We
introduce an elegant technique, the partial mean-field
approximation (PMFA), which we employ to tightly
approximate the throughput (and end-to-end delay)
performance of such systems. We also demonstrate
via a simple example on how to use the PMFA
approach to accurately study networks with arbi-
trary topologies.
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1.2 Related Work
Most earlier attempts at analyzing ad hoc networks have
neglected the correlations in the system for tractability. An
approximation commonly used in this regard is Kleinrock’s
Independence Assumption [6]. Accordingly, for a densely
connected network involving Poisson arrivals and uni-
form loading among source-destination pairs, the queues
at each link in the network behave independently
regardless of the interaction of traffic across different
links. Kleinrock’s approximation has been used to
characterize the delay performance of wireless systems
(see for example [7], [8]). Under general scenarios,
however, this approximation may be very loose; the
correlations in the system cannot be neglected.

Much of the prior work on the performance analysis of
multihop networks has also focused on very small net-
works, (e.g., two-relay [9] or three-relay networks [10]).
Their results, however, do not directly extend to larger
networks. More recently, discrete-time queuing theory has
been applied to the study of end-to-end delay [11] and
throughput [12] performances of ad hoc networks. The
authors, however, focus specifically on a linear multihop
network model fed with a single flow, and do not consider
intersecting flows. To the best of our knowledge, this is the
first attempt at studying the throughput performances of ad
hoc networks with arbitrary topologies.

The rest of the paper is organized as follows: Section 2
outlines the system and channel model. Section 3 provides
an overview of the TASEP particle flow model, as well as
the matrix product ansatz (MPA), the analytical tools that
we use extensively for our analysis. In Section 4, we
consider a wireless line network model, and characterize its
delay and throughput performances. Section 5 introduces
the PMFA framework, which we use to analyze the
throughput performances of more complex network topol-
ogies. Section 6 concludes the paper.

2 SYSTEM MODEL

We consider an ad hoc network comprising a set of source
nodes intent to deliver packets to a set of destinations over
an infinite duration of time in a multihop fashion. We study
several different network topologies in this paper; the
specifics of each topology will be described in its
corresponding analysis section. Time is slotted to the
duration of a packet, and packet transmissions occur at
slot boundaries. No power control is employed, and the
transmit power at each node is taken to be unity.

2.1 Channel Access Scheme
For analytical tractability, we consider a modified version
of the traditional TDMA MAC scheme which we call
randomized-TDMA (r-TDMA). In r-TDMA, the transmitting
node in each time slot is simply chosen uniformly
randomly from the set of all nodes in the network instead
of being picked in an deterministic fashion (as in
conventional TDMA).

The r-TDMA scheme may also be viewed as a time-
slotted version of the carrier sense multiple access (CSMA)
protocol since in each time slot, only a single transmitter
node gains the right to access the wireless channel. The
only difference between slotted CSMA and r-TDMA is that
in r-TDMA, nodes not having packets in their buffers may

also be scheduled for transmission in some time slots. This,
however, is equivalent to simply “stretching” the time axis.
Also, note that the r-TDMA protocol does not entail spatial
reuse. However, in small networks (which we primarily
consider in this paper), spatial reuse is impractical, and the
performance of the r-TDMA-based network is quite good
(compared to other MAC schemes).

Owing to the presence of (at most) a single transmitter in
each slot, there is no interference in the system; the
probability of a successful transmission across a link,
denoted by ps, is dictated by the SNR model, i.e.,
ps ¼ IPðSNR > !Þ, for some received SNR threshold !.

2.2 Buffering Scheme

We consider the following buffering policy for each flow in
the network, which obeys the following two rules:

1. All the buffering in the network is performed at the
source nodes, while each relay node has a buffer
size of unity for each flow it is associated with. Thus,
all the queuing occurs at the source, while relay
nodes may hold at most one packet (per flow). We
also take that the source nodes are backlogged, i.e.,
they always have packets to transmit.

2. Incoming transmissions are not accepted by relays if
their buffer (corresponding to that flow) already
contains a packet.

These rules together mean that a successful transmission
may occur only when a node has a packet and its target
node’s buffer is empty.

Employing this transmission scheme has several benefits
such as keeping the in-network packet end-to-end delay
small and helping regulate traffic flow in a completely
distributed manner. More details on the benefits of this
“single packet buffering” policy are provided in our earlier
work [13] (and references therein).

3 PRELIMINARIES

We now review the totally asymmetric simple exclusion
process, a subfield in statistical mechanics that deals with
the flow of particles across a lattice grid and studies their
interactions. Later, we will use some results from the
TASEP literature to characterize the delay and throughput
performances of ad hoc networks.

3.1 An Overview of TASEPs

The TASEP refers to a family of simple stochastic processes
used to describe the dynamics of self-driven systems with
several interacting particles and is a paradigm for none-
quilibrium systems [5]. The classical 1D TASEP model with
open boundaries is defined as follows: consider a system
with N þ 1 sites, numbered 0 to N . Site 0 is taken to be the
source that injects particles into the system. The model is
said to have open boundaries, meaning that particles are
injected into the system at the left boundary (site 1) and exit
the system on the right boundary (site N). The configuration
of site i, 1 % i % N at time t is denoted by ! ðNÞ

i ½t' (or simply
by !i½t'), which can only take values in f0; 1g, i.e., each site
1 % i % N may either be occupied (denoted as !i½t' ¼ 1) or
empty (denoted as !i½t' ¼ 0). The source, however, is taken to
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be always occupied (!0½t' ( 1; 8t > 0). Also, at t ¼ 0, all sites
other than the source are empty (!i½0' ¼ 0; 0 < i % N).

In the discrete-time version of the TASEP, the move-
ment of particles is defined to occur in time steps.
Specifically, let ð!1½t'; !2½t'; . . . ; !N ½t'Þ 2 f0; 1gN denote the
configuration of the system in time slot t. In the
subsequent time slot tþ 1, a set of sites is chosen at first,
depending on the updating procedure. Then, for every site
chosen, if it contains a particle and the neighboring site on
its right has none, then the particle hops from that site to
its neighbor with a certain probability (which in general, is
site dependent).

In this paper, we consider TASEPs with the random
sequential update wherein a single site is uniformly ran-
domly picked (with probability (w.p.) 1=ðN þ 1Þ) for
transmission in each time step, and particle hopping is
performed as per the aforementioned rules. Formally,
supposing that the ith site is picked in time slot t. Then,
if 1 % i % N ) 1, the particle on site i (if there is any) jumps
to site iþ 1 (provided it is empty) w.p. p, i.e.,

IPð!i½tþ 1' ¼ 0Þ ¼ 1) !i½t'ð1) pþ p!iþ1½t'Þ
IPð!i½tþ 1' ¼ 1Þ ¼ !i½t'ð1) pþ p!iþ1½t'Þ;

and

IPð!iþ1½tþ 1' ¼ 0Þ ¼ ð1) !iþ1½t'Þð1) p!i½t'Þ
IPð!iþ1½tþ 1' ¼ 1Þ ¼ p!i½t' þ !iþ1½t'ð1) p!i½t'Þ:

If i ¼ 0, site 1 remains occupied at time tþ 1 if it was
occupied at time t and gets occupied w.p. "p if it was
empty. Accordingly,

IPð!1½tþ 1' ¼ 0Þ ¼ ð1) "pÞð1) !1½t'Þ
IPð!1½tþ 1' ¼ 1Þ ¼ "pþ ð1) "pÞ!1½t':

If i ¼ N , site N remains empty at tþ 1 if it was empty at
time t, and gets emptied w.p. #p if it was occupied. Thus,

IPð!N ½tþ 1' ¼ 0Þ ¼ 1) ð1) #pÞ!N ½t'
IPð!N ½tþ 1' ¼ 1Þ ¼ ð1) #pÞ!N ½t':

In this manner, the particles are transported from site 0
through the system until their eventual exit at site N . The
quantities ", #, and p may be regarded as the “influx,” and
“outflux” rates and the hopping probability, respectively.

It is apparent from the description of the TASEP model
that it exhibits a similarity to a flow in an ad hoc network.
The sites can be taken to represent the relay nodes and the
particles of the packets. The hopping probability p is
analogous to the link reliability ps while the exclusion
principle models the unit buffer size at the relay nodes.
Also, the random sequential update relates to the r-TDMA
MAC scheme, and the condition !0½t' ¼ 1; 8t, models the fact
that the source node is always backlogged. Fig. 1 depicts the
TASEP-equivalent network flow, wherein we assume that
the source has a large buffer and regulates the packet flow
into a TASEP model.

3.2 The Matrix Product Ansatz Formulation

The starting point for studying the stochastic 1D TASEP
model is to write down its master equation. Let P ð!! ; tÞ denote

the probability of finding the system in the configuration
!! ¼ ð!1; !2; . . . ; !NÞ in time slot t. The master equation
describes the evolution of the system with time and takes
the form

" P ð!! ; tÞð Þ ¼
X

!! 0

!
$ð!! 0; !!ÞP ð!! 0; tÞ ) $ð!! ; !! 0ÞP ð!! ; tÞ

"
;

where "ðP ð!! ; tÞÞ ¼ P ð!! ; tþ 1Þ ) P ð!! ; tÞ, and $ð!! ; !! 0Þ de-
notes the rate of transition from !! to another configuration
!! 0. For further details on the master equation and its
formulation, we refer the reader to [5], [16].

Interestingly, in the long time limit (t ! 1), the
probability of finding the system in any configuration !!
becomes independent of t, i.e., limt!1 "ðP ð!! ; tÞÞ ¼ 0 [5].
The TASEP flow is then said to have reached a steady state.
Solving for the steady-state configuration probabilities is a
formidable task which may be accomplished by considering
recursion-based techniques on the system size (see for, e.g.,
[14], [15]). A more elegant and direct procedure, however, is
to use a matrix product ansatz [16], wherein the probability
of each configuration at steady state is decomposed into a
product of matrices.

According to the MPA formulation [16], the probability
of finding the TASEP system in the configuration !! ¼
ð!1; !2; . . . ; !NÞ at steady state is independent of t and
given by

P ð!!Þ ¼ hW j
QN

i¼1ð!iDþ ð1) !iÞEÞjV i
hW jCN jV i ; ð1Þ

where D and E are square matrices that operate on
occupied and empty sites, respectively, C ¼ Dþ E, and
jV i and hW j are column and row vectors, respectively
(represented here by the “ket” and “bra” notation). In
general, the matrices D;E and vectors V ;W in (1) are all
infinite dimensional.1 A convenient choice of the matrices
and vectors (assuming p > 0) is [5]

D ¼ 1

p

1=# %1 0 0 . . .
0 1 1 0 . . .
0 0 1 1 . . .
0 0 0 1 . . .
..
. ..

. ..
. ..

. . .
.

0

BBBB@

1

CCCCA
;
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1. The only case for which the matrices are finite dimensional (in fact,
scalars) is when "þ # ¼ 1 [16].

Fig. 1. TASEP-equivalent network flow along with the (site dependent)
hopping probabilities "p, #p, and p. The (backlogged) source node with
a large buffer connected to the TASEP particle flow model with N þ 1
sites, each with a buffer size of unity. Filled circles indicate occupied
sites, and the others indicate holes. Jumping from site j to k is possible
only if the configuration ð!j; !kÞ is (1, 0). In the above example, hopping is
not possible between sites i and iþ 1.



E ¼ 1

p

ð1) "pÞ=" 0 0 0 . . .
%2 1) p 0 0 . . .
0 1) p 1) p 0 . . .
0 0 1) p 1) p . . .

..

. ..
. ..

. ..
. . .

.

0

BBBBB@

1

CCCCCA
; ð2Þ

with

hW j ¼ ð1; 0; 0; . . .Þ and jV i ¼ ð1; 0; 0; . . .ÞT ;

where ð*ÞT denotes transpose. Here, %1 and %2 may be
chosen so as to satisfy

%1%2 ¼
1

"#p
½1) p) ð1) "pÞð1) #pÞ':

In conclusion, the MPA provides an analytical frame-
work for describing the asymmetric exclusion process in a
completely algebraic manner. We will employ it extensively
for our analysis, in particular in the next section.

4 THROUGHPUT AND DELAY ANALYSES OF A

WIRELESS LINE NETWORK

We now use some existing results from the random
sequential TASEP literature to study wireless networks. As
a first step in this direction, we consider a simple linear
network model running the r-TDMA MAC scheme and
evaluate the steady-state throughput and the average end-
to-end delay for a packet. Additionally, we use the MPA
framework extensively to characterize the delay pmf
across each hop in closed form and measure the
correlations between the delays experienced by packets
across adjacent hops along the flow.

The line network model considered comprises a single
source node S intending to deliver packets to a destina-
tion node D in a multihop fashion via N relay nodes (see
Fig. 2). We take the arrangement of nodes to be a regular
lattice with equal separation between adjacent nodes d.
The attenuation in the channel is modeled as the product
of a Rayleigh fading component and a large scale path
loss component with exponent %. Since the fading power
is exponentially distributed, we obtain

ps ¼ Pr½SNR > !' ¼ exp )!N0d
%ð Þ; ð3Þ

for each link in the system. This is equivalent to taking
p ¼ ps in the corresponding TASEP model. We also choose
the (analytically tractable) operating point " ¼ # ¼ 1 for
which the network accepts as many packets as it can (when
the first relay node’s buffer is empty), and also provides the
highest possible service rate.2

When " ¼ # ¼ 1 and p ¼ ps, we may take %1 ¼ 1, and
%2 ¼ 1) ps in ð2Þ so that

D ¼ 1

ps

1 1 0 0 . . .
0 1 1 0 . . .
0 0 1 1 . . .
0 0 0 1 . . .
..
. ..

. ..
. ..

. . .
.

0

BBBB@

1

CCCCA
; E ¼ 1) ps

ps
DT :

For these forms of matrices D and E, and vectors W and V ,
the following two properties hold:

C ¼ DþE ¼ psDE ð4aÞ

pNs hW jCN jV i :¼ &ðNÞ ¼ ð2N þ 2Þ!
ðN þ 2Þ!ðN þ 1Þ! : ð4bÞ

While (4a) is straightforward to establish, (4b) is a
consequence of [16, (80), (81)]. We use these results in the
remainder of this section.

4.1 Steady-State Probabilities and Occupancies

Using (1) along with the forms of matrices and vectors
discussed earlier, the steady-state probabilities can be
computed in a straightforward manner, in particular for
small values of N . As examples, we have for N ¼ 1,

P ð0Þ ¼ hW jEjV i
hW jCjV i ¼ 1=2; and P ð1Þ ¼ hW jDjV i

hW jCjV i ¼ 1=2:

Likewise, one can show for N ¼ 2,

P ð0; 0Þ ¼ P ð0; 1Þ ¼ P ð1; 1Þ ¼ 1=5; and P ð1; 0Þ ¼ 2=5:

Next, we compute the steady-state occupancy of each
node 0 % i % N , defined as the probability that it is
occupied at steady state. Hereafter, we use the notation !i
to denote the configuration of node i, 0 % i % N at steady
state. From (1), we obtain the occupancy of node i to be

IPð!i ¼ 1Þ ¼ hW jCi)1DCN)ijV i
hW jCN jV i

; 0 % i % N:

From [14, (48)], this simplifies to

IE!i ¼
1

2
þ 1

4

ð2iÞ!
ði!Þ2

ðN !Þ2

ð2N þ 1Þ!
ð2N ) 2iþ 2Þ!
½ðN ) iþ 1Þ!'2

ðN ) 2iþ 1Þ: ð5Þ

Note that since !i can take values only in f0; 1g, IPð!i ¼
1Þ ¼ IE!i and IPð!i ¼ 0Þ ¼ 1) IE!i.

Surprisingly, the node occupancies are independent of
ps. Also, notice the particle-hole symmetry,3 i.e., IE!i ¼
1) IE!Nþ1)i. Thus,

PN
i¼0 IE!i ¼ 1þN=2. In a system with

an odd number of relays, the middle relay has an
occupancy of exactly 1=2. The steady-state occupancies
for an r-TDMA-based flow along N ¼ 5 relays in depicted
in Fig. 3.

4.2 Steady-State Throughput

We now derive the throughput of the r-TDMA-based line
network at steady state, defined as the average number of
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2. Equivalently, the rate of packet flow across the r-TDMA-based
network is maximized when " ¼ # ¼ 1.

3. The movement of particles (packets) to the right is equivalent to the
movement of holes (nodes with empty buffers) to the left.

Fig. 2. A regular wireless line network. The backlogged source (node 0)
attempts to deliver packets to the destination via N relays, each with
unit-sized buffer. The hopping probability across each node is ps.



packets successfully delivered (to the destination) in a unit
step of time. We have the following result.

Theorem 4.1. For the r-TDMA-based line network withN nodes,
the throughput at steady state is

T ¼ psðN þ 2Þ
2ðN þ 1Þð2N þ 1Þ

: ð6Þ

Proof. At any instant of time, node N ’s buffer contains a
packet w.p. !N ; furthermore, it is picked for transmission
w.p. 1=ðN þ 1Þ, and the transmission is successful w.p.
ps. Thus, the throughput of the line network is simply

T ¼ psIE!N=ðN þ 1Þ: ð7Þ

Using (5) in (7), we obtain the desired result. tu
Since the network reliability is 100 percent, the through-

put across each link is the same as specified by (7). Noting
that the probability that node i has a packet and node iþ 1
none is IPð!i ¼ 1; !iþ1 ¼ 1Þ ¼ IE½!ið1) !iþ1Þ', T may also be
obtained using any of the N þ 1 equivalent expressions

T ¼ psIE½!ið1) !iþ1Þ'=ðN þ 1Þ; ð8Þ

for any i 2 ½0; N '. The system throughput at steady state is
proportional to the link reliability and upper bounded by
ps=4, but decreases with increasing system size.

Note that instead of picking any of the N þ 1 nodes
randomly, if one only chooses among the nodes having a
packet (as in CSMA), the throughput is improved by a
factor of N þ 1=ð

PN
i¼0 IE!iÞ ¼ 2ðN þ 1Þ=ðN þ 2Þ, i.e., T ¼

ps=ð2N þ 1Þ.

4.3 Average End-to-End Delay at Steady State

In this paper, we are also interested in the in-network delay4

measured by the number of time slots for by the packet at
the head of the source’s queue to be delivered (to the
destination). We first evaluate the average end-to-end delay
incurred by packets along each node in the network. Later,
we derive the complete distribution of the delays.

Corollary 4.2. For the wireless multihop network with N relays
running the r-TDMA scheme, the average delay experienced
by a packet at node i is

IEDi ¼
2ðN þ 1Þð2N þ 1ÞIE!i

ðN þ 2Þps
; 0 % i % N: ð9Þ

Consequently, the average end-to-end delay is

IEDe2e ¼
XN

i¼0

IEDi ¼
2N2 þ 3N þ 1

ps
: ð10Þ

Proof. Recall that the rate of packet flow across each node is
equal to T , and that the average number of packets at
node i, 0 % i % N is IE!i. From Little’s theorem [6], the
average delay at node i is simply IE!i=T . tu

We see that the average end-to-end delay is proportional
to the node occupancies and inversely proportional to the
link reliability. Also, it is interesting to note that the
product of throughput and delay is 1þN=2, which is
independent of ps.

4.4 Delay Distributions

In this section, we analytically derive the pmfs of the
steady-state delays incurred by packets at each node along
the linear flow, i.e., we evaluate IPðDi ¼ kÞ, k + 1, 0 % i % N
in closed form.

To this end, suppose that a packet arrives at a node i in
an arbitrary time slot t (at steady state). The three events
that need to occur in the following order for the packet to be
able to hop to node iþ 1 successfully are:

1. Node iþ 1 has an empty buffer.
2. Node i is picked for transmission.
3. Node i’s transmission is successful.

While (2) occurs w.p. 1=ðN þ 1Þ, (3) happens (indepen-
dently of (2)) w.p. ps. Thus, at time t, if node iþ 1’s buffer is
empty, the delay experienced by the packet at node i is
simply geometrically distributed with mean ðN þ 1Þ=ps, i.e.,

IPðDi ¼ kÞ ¼ ps
N þ 1

1) ps
N þ 1

# $k)1

:

If instead, there is another packet present in node iþ 1’s
buffer, however, no packet at node iþ 2’s buffer, the
probability that the delay at the ith node is k time slots is
equal to the probability that a single successful transmission
(of the packet at node iþ 1) occurs within k) 1 slots, and
then the packet at node i hops in the kth time slot.
Extending this argument, if j nodes adjacent to node i have
a packet, and the jþ 1th adjacent node has none, i.e., if

ð!iþ1; . . . ; !iþj; !iþjþ1Þ ¼ ð1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
j ones

; 0Þ; j + 0;

then the packet at node i will successfully hop to node
iþ 1 in exactly k time steps if j packets (those at nodes
iþ j; iþ j) 1; . . . ; iþ 1 in that order) hop within k) 1 time
slots, and then, the packet present at node i hops (in the
kth time slot).
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Fig. 3. The steady-state occupancy of nodes in an r-TDMA-based flow
along N ¼ 5 relays. Notice the particle-hole symmetry, i.e.,
IE!i ¼ 1) IE!Nþ1)i.

4. There is no queueing delay at the source node since it is considered to
be always backlogged.



Let ei;j denote the event that given a packet arrives at

node i (at some time t), j nodes adjacent to it are occupied.

We now compute "ðNÞ
i;j :¼ IPðei;jÞ. We have

IP !iþ1½t' ¼ 1; . . . ; !iþj½t' ¼ 1; !iþjþ1½t' ¼ 0 j packet arrives
at node i

& '

¼
IP !iþ1½t' ¼ 1; . . . ; !iþj½t' ¼ 1; !iþjþ1½t' ¼ 0;packet arrivesat node i

& '

IP ðpacket arrives at node iÞ
¼ P ð!i)1½t) 1' ¼ 1; !i½t) 1' ¼ 0; !iþ1½t) 1'
¼ 1; . . . ; !iþj½t) 1' ¼ 1; !iþjþ1½t) 1' ¼ 0Þ

, 1

P ð!i)1½t) 1' ¼ 1; !i½t) 1' ¼ 0Þ

, IPðthe packet at node i) 1 hops to node iÞ
IPðthe packet at node i) 1 hops to node iÞ

:

Using the MPA formalism, we may write at steady state,

"ðNÞ
i;j ¼ hW jCi)2DEDjECN)i)j)1jV i

hW jCi)2DECN)ijV i

¼ðaÞ hW jCi)1Dj)1CN)i)jjV i
pshW jCN)1jV i ;

ð11Þ

where in ðaÞ, we have used (4a) thrice (twice in the
numerator term and once in the denominator term).

The evaluation of "ðNÞ
i;j is relatively straightforward for

small values of j. For instance,

"ðNÞ
i;0 ¼ hW jCi)2DEECN)i)1jV i

hW jCi)2DECN)ijV i

¼ hW jCi)1ECN)i)1jV i
hW jCN)1jV i

¼ 1) IE! ðN)1Þ
i ;

ð12Þ

and

"ðNÞ
i;1 ¼ hW jCi)2DEDECN)i)2jV i

hW jCi)2DECN)ijV i

¼ hW jCN)2jV i
hW jCN)1jV i

¼ &ðN ) 2Þ=&ðN ) 1Þ:

ð13Þ

In order to compute "ðNÞ
i;j for higher values of j, we use

the following lemmas.

Lemma 4.3. The following relationship holds for j + 2:

"ðNÞ
i;j ¼ "ðNÞ

i;j)1 )"ðN)1Þ
i;j)2 &ðN ) 2Þ=&ðN ) 1Þ: ð14Þ

The proof is presented in the appendix, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TMC.2011.96.

Lemma 4.4. For j + 2, we have

"ðNÞ
i;j ¼

X
j)1
2b c

k¼0

)1ð Þk &ðN ) k) 2Þ
&ðN ) 1Þ

,
"

j) k) 2

k

# $
IE! ðN)k)2Þ

i þ j) k) 2

k) 1

# $#
;

ð15Þ

where IE! ðNÞ
i denotes the occupancy of node i in the flow with

N relays.

The proof is presented in the appendix, available in the
online supplemental material.

Theorem 4.5. The pmf of the packet delay at node i, 0 % i % N is
given by

IPðDi ¼ kÞ ¼
XN)i

j¼0

"ðNÞ
i;j

k) 1

j

# $
$jþ1 1) $ð Þk)1)j; ð16Þ

where $ ¼ ps=ðN þ 1Þ.
Proof. The conditional probability IPðDi ¼ k j ei;jÞ is the

probability that j packets (present at nodes iþ 1; . . . iþ j)
hop out successfully in k) 1 time slots, and then, the
packet at node i is transmitted successfully only in the
kth time slot. Hence,

IPðDi ¼ k j ei;jÞ ¼
k) 1

j

# $
$j 1) $ð Þk)1)j , $:

Summing up the joint pmf IPðDi ¼ k; ei;jÞ over all the
possible values of j (0 % j % N ) i) yields the desired
result, i.e.,

IPðDi ¼ kÞ ¼
XN)i

j¼0

IPðei;jÞIPðDi ¼ k j ei;jÞ; k > 0;

which is equivalent to (16). tu
Fig. 4 plots the delay pmfs at each node in a line network

with N ¼ 3. Note that apart from the delay at the final relay,
none of the other delays are geometrically distributed, i.e.,
they are not memoryless. Also note that D0 + 2. This may
be explained by the fact that whenever a packet hops out of
the source node (node 0), another packet arrives at the head
of the source. Thus, the packet at node 0 has to wait for at
least one time slot (for the packet at node 1 to hop out)
before attempting to hop.

4.5 Joint Delay Distributions

Since the flow of packets in a wireless multihop network is
relayed across multiple links, the delays experienced by a
packet across hops are correlated. As mentioned earlier, the
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Fig. 4. The pmf of the delay incurred by packets at various nodes in the
line network with N ¼ 3. For this plot, all link reliabilities are taken to be
equal to ps ¼ 0:8.



study of delay correlations has often been neglected in prior
work; it is, however, crucial for the design of smarter
retransmission and flow control algorithms.

For instance, suppose it is known that the conditional
delay probability IPðDiþ1 ¼ j j Di ¼ kÞ is high for some
specific value j ¼ ‘, i.e., given that a packet stayed at
node i for k slots, it is likely to be present in node iþ 1’s
buffer for ‘ slots. Node iþ 1 can then decide to hold back
the transmission of a packet for ‘) 1 slots, thus reducing
the number of unnecessary transmissions. Knowing the
spatial delay correlations also helps determine the variance
of the end-to-end delay.

We begin by stating the following simple lemma.

Lemma 4.6. In a multihop wireless network with N nodes, DN is
independent of all the other hop delays. As a special case, when
N ¼ 1, D0 and D1 are independent.

Proof. Irrespective of the delay experienced by a packet at
any arbitrary node, it can hop from node N to the
destination (node N þ 1) if node N is picked, and its
transmission is successful. Thus, DN follows a geometric
distribution with mean ðN þ 1Þ=ps and is independent of
all other delays. tu

We next compute IPðDiþ1 ¼ ‘;Di ¼ kÞ, i.e., the probabil-
ity that a packet will stay at nodes i and iþ 1 for k and
‘ slots, respectively, at steady state? The same procedure
may be extended (with extra care) to evaluate the joint pmfs
of the delays at nodes farther apart.

To this end, let ei;j1;j2 denote the event that given a packet
arrives at node i, we have

ð!iþ1; . . . ; !iþj1 ; !iþj1þ1; !iþj1þ2 . . . ; !iþj1þj2þ1; !iþj1þj2þ2Þ

¼ 1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
j1 ones

; 0; 1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
j2 ones

; 0

0

B@

1

CA:

We first evaluate 'ðNÞ
i;j1;j2

:¼ IPðei;j1;j2Þ. Using the same idea as
in (11), we may write

'ðNÞ
i;j1;j2

¼ hW jCi)2DEDj1EDj2ECN)i)j1)j2)2jV i
hW jCi)2DECN)ijV i

¼ hW jCi)1Dj1EDj2)1CN)i)j1)j2)1jV i
pshW jCN)1jV i

:

Simplifying further, we get

'ðNÞ
i;j1;j2

¼ðaÞ hW jCi)1Dj1)1CDj2)1CN)i)j1)j2)1jV i
p2shW jCN)1jV i

¼ðbÞ &ðN ) 2Þ
&ðN ) 1Þ

"
hW jCi)1Dj1þj2)1CN)i)j1)j2)1jV i

pshW jCN)2jV i

þ hW jCi)1Dj1)1EDj2)1CN)i)j1)j2)1jV i
pshW jCN)2jV i

#

¼ &ðN ) 2Þ
&ðN ) 1Þ

"ðN)1Þ
i;j1þj2

þ 'ðN)1Þ
i;j1)1;j2

h i
:

ð17Þ

To derive ðaÞ, we used (4a) for the term in the numerator,
and to derive ðbÞ, we used the identity C ¼ Dþ E.

We obtain closed-form expressions for 'ðNÞ
i;j1;j2

considering
the following two cases:

Case 1: j1 ¼ 0. From (17), we obtain

'ðNÞ
i;0;j2

¼ hW jCi)1EDj2ECN)i)j2)1jV i
hW jCN)1jV i

¼ hW jCiDj2ECN)i)j2)1jV i
pshW jCN)1jV i

) hW jCi)1Dj2þ1ECN)i)j2)1jV i
pshW jCN)1jV i

¼ "ðNÞ
iþ1;j2

)"ðNÞ
i;j2þ1:

ð18Þ

Case 2: j1 > 0. Using the recursive equation (17),we obtain

'ðNÞ
i;j1;j2

¼ &ðN ) j1 ) 1Þ
&ðN ) 1Þ

"ðN)j1Þ
iþ1;j1þj2

þ
Xj1

s¼2

"ðN)j1)1þsÞ
i;sþj2

 !
:

The following theorem establishes the joint pmfs
between delays across adjacent hops in the network.

Theorem 4.7. The joint pmf of the delays at nodes i and iþ 1 is
given by

IPðDiþ1 ¼ ‘;Di ¼ kÞ ¼
Xs1

j1¼0

Xs2

j2¼0

X2j1þj2

j¼j1

'ðNÞ
i;j1;j2

k) 1

j

# $

, ‘) 1

2j1 þ j2 ) j

# $
$2j1þj2þ2 1) $ð Þkþ‘)2)2j1)j2

þ
Xs3

j1¼0

X2j1)1

j¼j1

'ðNÞ
i;j1;j2

k) 1

j

# $
‘) 1

2j1 ) 1) j

# $
$2j1þ1

, 1) $ð Þkþ‘)1)2j1 ;

ð19Þ

where $ ¼ ps=ðN þ 1Þ, s1 ¼ minfk) 1; N ) i) 1g, s2 ¼
minfkþ ‘) 2j1 ) 2; N ) i) 1) j1g, and s3 ¼ minfk) 1;
ðkþ ‘) 1Þ=2g.

The proof is presented in the appendix, available in the
online supplemental material.

The conditional delay pmf may be obtained by using (19)
together with (16). Fig. 5 plots the conditional delay pmfs
IPðD1 ¼ ‘ j D0 ¼ kÞ in a line network with N ¼ 3 and
ps ¼ 0:8, for several values of ‘ and k.
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Fig. 5. The conditional delay pmfs IPðD1 ¼ ‘ j D0 ¼ kÞ for several values
of ‘ and k.



4.6 Empirical Results

Evaluating the joint pmfs between delays across nodes
lying farther apart can be performed by essentially
following the aforementioned procedure, but it gets
computationally intensive and unwieldy. Instead, we resort
to simulation and present the behavior of the spatial delay
correlation coefficients. The correlation coefficient between
delays at nodes i and j is defined as

(i;j ¼
IE Di ) IEDið Þ Dj ) IEDj

& '! "

)Di)Dj

;

where )Di and )Dj represent the standard deviations of the
delays at node i and j, respectively.

Fig. 6 plots the empirical values of correlation
coefficients across one-, two- and three-hop neighbors in
an r-TDMA-based wireless network with N ¼ 10 relays
and ps ¼ 0:8. Observe that all the delay correlation
coefficients are nonpositive. This can be explained by
noting that if the transmission of a packet is delayed at
any node, the adjacent nodes’ buffers get emptied so that
the packet traverses faster across them. Likewise, if the
waiting time of a packet at any particular node is small,
the neighboring relay node buffers are still occupied and
therefore it takes longer for the packet to get transported
across the system. Also, delays across hops closer to the
destination, and delays across nodes farther apart are
relatively lightly correlated compared to the correspond-
ing values near the source node. In fact, 8i, (i;N ¼ 0, since
DN is independent of all other delays (which is also a
consequence of Lemma 4.6).

5 MORE COMPLEX TOPOLOGIES

So far, we have only considered the linear wireless network
model. In this section, we consider more complex ad hoc
networks comprising intersecting routes, i.e., networks
consisting of flows that travel through common relays.
We also propose the partial mean-field approximation, a
statistical mechanics-based tool which may be used to
approximate the throughput performance of networks with
arbitrary topologies.

5.1 Two Two-Hop Flows via a Common Relay

We begin by considering the network model depicted in
Fig. 7. It comprises two source nodes S1 and S2 (each
numbered 0 with respect to (w.r.t) its corresponding flow)
intending to deliver packets to destinations D1 and D2

(each numbered 2), respectively, each via a common relay
node R (numbered 1). Here, we take that the relay node has
a buffer size of two since it accommodates two flows.
Furthermore, the r-TDMA dictates that in any time slot,
only one of the three nodes (S1, S2, or R) is (uniformly)
randomly picked (w.p. 1=3) for transmission. Let ps denote
the reliability of each link. Whenever R is picked, any one
of the following event occurs:

1. If the relay’s buffer has no packet, it obviously does
not transmit anything.

2. If the relay’s buffer contains only one packet
(intended for either of the destinations), that packet
is transmitted.

3. If the relay’s buffer has two packets (to be forwarded
to both the destinations), it transmits either the
packet intended for D1 w.p. q or the packet meant
for D2 w.p. 1) q. Note that priority-based routing
may be modeled by setting q ¼ 1 (prioritizing the
first flow) or q ¼ 0 (for the second flow). q ¼ 0:5
models having equal priorities for the flows.

For notational convenience, let ! ½i'j represent the steady-
state configurations for the buffers across the two flows,
i ¼ f1; 2g, for each of the three nodes involved in each flow,
numbered j ¼ f0; 1; 2g. By definition, ! ½1'0 ¼ ! ½2'0 ¼ 1 and
! ½1'2 ¼ ! ½2'2 ¼ 0. We shall now derive the steady-state
throughput, T ½1', for the first flow; T ½2' may simply be
obtained by replacing q by 1) q.

Using the fact that for each flow, the throughput across
each link is the same (8), we get from 1-3,

IE
!
1) ! ½1'1

"
¼ IE

!
! ½1'1

&
1) 1) qð Þ! ½2'1

'"
; ð20Þ

and

IE
!
1) ! ½2'1

"
¼ IE

!
! ½2'1

&
1) q! ½1'1

'"
ð21Þ

for the first and second flows, respectively. In order to solve
the above equations analytically, we can use the mean-field
approximation (MFA) [5], according to which all the
correlations between the buffer occupancies are neglected.
Mathematically, the MFA takes that
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Fig. 6. The correlation coefficients (i;iþ1, (i;iþ2, and (i;iþ3 for ps ¼ 0:8 in a
multihop r-TDMA-based system with N ¼ 10 relays. The delay correla-
tions across nodes farther apart and closer to the destination are seen to
be relatively light.

Fig. 7. The two flows S1 ! R ! D1 and S2 ! R ! D2, each occurring
via the relay node R are represented by solid and dashed arrows,
respectively. When the relay node contains two packets, it routes either
the packet meant for D1 w.p. q or the one for D2 w.p. 1) q. The
probability of a successful transmission across all links is ps.



IE
!
! ½j'i ! ½l'k

"
¼ IE! ½j'i IE! ½l'k ;

for all (valid) node pairs ði; kÞ and flow pairs ðj; lÞ.
For this example in particular, we assume that

IE½! ½1'1 ! ½2'1 ' ¼ IE! ½1'1 IE! ½2'1 . Employing the MFA and the simpli-

fied notation IE! ½1'1 ¼ x, IE! ½2'1 ¼ y in (20) and (21), we obtain

1) x ¼ x) ð1) qÞxy
1) y ¼ y) qxy:

Solving the above equations simultaneously, we obtain the
only meaningful solution as

x ¼ 2q þ 3)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q2 ) 4q þ 9

p

4q
:

Since the channel access probability for each node in the
system is 1=3, we see that the throughput for the flow
S1 ! R ! D1 is given by

T ½1'ðqÞ ¼ psIE!
½1'
1

3
¼ psð2q ) 3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q2 ) 4q þ 9

p
Þ

12q
: ð22Þ

When q ¼ 1, i.e., when the first flow is always given priority
over the second flow, T ½1'ð1Þ ¼ ps=6. On the other hand,
when q ¼ 0, we use the L’ Hôpital rule to see that T ½1'ð0Þ ¼
ps=9. When both flows are prioritized equally, T ½1'ðqÞ ¼
T ½2'ðqÞ ¼ psð

ffiffiffi
2

p
) 1Þ=3. The achievable set of throughput for

the first flow, T ½1' is plotted in Fig. 8 for different values of
ps. For comparison, we have also shown empirical results,
which match the theoretical ones (20) closely, in particular
when ps is small.

5.2 Two Three-Hop Flows via a Common Relay

We next consider the case where again, the two source
nodes S1 and S2 intend to deliver packets to different
destinations D1 and D2, respectively. Here, however, we
take that in each flow, packets traverse two hops each, one
of which is the common relay. Evidently, the common relay
may be the node numbered 1 or the node numbered 2 (see
Fig. 9). The channel access probability for each node is 1=5.

5.2.1 Common Relay: Node 1

We first analyze the case wherein the common relay is the
node numbered 1. Since the throughput across each link is
the same (for each flow), we obtain at steady state,

1) IE! ½1'1 ¼ IE
!
! ½1'1

&
1)

&
1) q

'
! ½2'1

'&
1) ! ½1'2

'"
¼ IE! ½1'2 ;

and

1) IE! ½2'1 ¼ IE
!
! ½2'1

&
1) q! ½1'1

'&
1) ! ½2'2

'"
¼ IE! ½2'2 :

Evidently, when q ¼ 1, the second flow (the one without

the priority) does not affect the throughput across the first

flow. Following (5), IE! ½1'2 ¼ 2=5; T ½1'ð1Þ ¼ psIE!
½1'
2 =5 ¼ 0:08ps.

For general q, we may use the MFA to analytically

evaluate the throughput. Indeed, setting IE! ½1'1 ¼ x, IE! ½2'1 ¼ y,

IE! ½1'2 ¼ u, and IE! ½2'2 ¼ v, we obtain the following set of

four equations:

1) x ¼ u;

u ¼ xð1) uÞð1) ð1) qÞyÞ;
1) y ¼ v;

v ¼ yð1) vÞð1) qxÞ;

which may be solved numerically. It is easily seen that
when q ¼ 0, the first flow does not affect the throughput
across the second flow. From (5), IE! ½2'1 ¼ 3=5, so that

IE! ½1'1 ¼ 9)
ffiffiffiffiffi
65

p

4
- 0:234;

and T ½1'ð0Þ ¼ IE! ½1'1 ps=5 - 0:047ps.

5.2.2 Common Relay: Node 2

We now consider the case when the common relay is the
node numbered 2. For this scenario, we have

1) IE! ½1'1 ¼ IE
!
! ½1'1

&
1) ! ½1'2

'"
¼ IE

!
! ½1'2

&
1) ð1) qÞ! ½2'2

'"
;

and

1) IE! ½2'1 ¼ IE
!
! ½2'1

&
1) ! ½2'2

'"
¼ IE

!
! ½2'2

&
1) q! ½1'2

'"
:

Using similar arguments as earlier, we obtain T ½1'ð1Þ ¼
0:08ps. When q ¼ 0, IE! ½2'2 ¼ 3=5, and employing the MFA,
we have T ½1'ð0Þ ¼ ð11)

ffiffiffiffiffi
85

p
Þ=30 - 0:06ps.

The above analysis suggests that the throughput across
the flow is higher when the bottleneck node is closer to the
destination (also see Fig. 10). This is explained by the fact
that the node occupancies monotonically decrease with
proximity to the destination.
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Fig. 8. Steady-state throughput across the first flow, T ½1' versus q for
several values of the link success probability ps. The results obtained
numerically (dashed lines) closely approximate the empirical results
(solid lines).

Fig. 9. The two three-hop flows S1 ! R1 ! R ! D1 and S2 ! R2 !
R ! D2, each occurring via the relay R are represented by solid and
dashed lines, respectively. In this case, the common relay is the node
numbered 2.



5.3 Multiple Flows via a Common Relay
Next, we consider a network topology comprising multiple
(>2) flows passing through a common relay (see Fig. 11).
Here, the source nodes S1; S2; . . . ; Sn attempt to deliver
packets to their corresponding destinations D1;D2; . . . ;Dn,
through a common relay node R (that has a buffer size of n).
We also take that routing is priority based with packets
intended for D1 having the highest priority and those meant
for Dn the lowest. Thus, the relay node transmits the packet
meant for node k, 1 % k % n, only when it does not have
other packets corresponding to the destination nodes Dj,
j < k in its buffer.

Since the throughput of each flow is conserved, we
obtain the following set of equations:

1) IE! ½1'1 ¼ IE! ½1'1

1) IE! ½2'1 ¼
&
1) IE! ½1'1

'
IE! ½2'1

..

.

1) IE! ½n'1 ¼
Yn)1

i¼1

&
1) IE! ½i'1

'
IE! ½n'1 :

Solving the above set of equations using the MFA yields
IE! ½k'1 ¼ k=ðkþ 1Þ, 1 % k % n. In this case, the channel access
probability for each node is 1=ðnþ 1Þ, so that

T ½k' ¼ 1) IE! ½k'1

nþ 1
¼ 1

ðkþ 1Þðnþ 1Þ ; 1 % k % n: ð23Þ

5.4 The Partial Mean-Field Approximation

While the MFA tightly approximates the throughput
performance of networks comprising short flows, it can
get loose, in particular when the flows in the network
traverse several nodes, since it neglects the correlations
between all the node occupancies. In this section, we
present the partial mean-field approximation, which (as we
shall see later) is more accurate than the MFA. Later, in
Section 5.5, we illustrate (via a simple example) how to
employ the PMFA framework to evaluate the throughput
performance of a network with an arbitrary topology.

We begin by considering a scenario where two general
multihop flows (of arbitrary lengths) both pass through a
common relay node. Suppose that source node S1 delivers
data to D1 in a multihop fashion via N1 nodes, while S2
forward packets to D2 via N2 relays, each via a common
relay node R (see Fig. 12). We take that R is numbered
1 % n1 % N1 w.r.t. the first flow, and 1 % n2 % N2 w.r.t. the
second flow.

In principle, the MFA may be used to compute the
steady-state throughput of each flow. Indeed, we get for the
first flow

1) IE! ½1'1 ¼ IE
!
! ½1'1

&
1) ! ½1'2

'"
¼ * * *

¼ IE
!
! ½1'n1

&
1) ! ½1'n1þ1

'&
1) 1) qð Þ! ½2'n2

'"

¼ * * * ¼ IE
!
! ½1'N1)1

&
1) ! ½1'N1

'"
¼ IE! ½1'N1

;

and the second flow

1) IE! ½2'1 ¼ IE
!
! ½2'1

&
1) ! ½2'2

'"
¼ * * *

¼ IE
!
! ½2'n2

&
1) ! ½2'n2þ1

'&
1) q! ½1'n1

'"

¼ * * * ¼ IE
!
! ½2'N2)1

&
1) ! ½2'N2

'"
¼ IE! ½2'N2

:

Employing the MFA, the above set of N1 þN2 equations
may be solved for the N1 þN2 buffer occupancies, and
consequently, the throughput of the networks at steady
state for any 0 % q % 1. However, as aforementioned, the
MFA neglects all the correlations between the node
occupancies.
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Fig. 10. Steady-state throughput across the first flow, T ½1' versus q for
ps ¼ 0:75 for different locations of the common relay node. The results
obtained numerically (dashed lines) closely approximate the empirical
results (solid lines).

Fig. 11. n flows S1 ! D1, S2 ! D2; . . . ;Sn ! Dn passing through a
common relay node R. When routing, packets intended for D1 are taken
to have the highest priority, and those meant for Dn, the lowest.

Fig. 12. Two multihop flows S1 ! D1 and S2 ! D2 across N1 and N2

nodes each occur via a common relay node R. The common relay is
numbered n1 and n2 w.r.t. the first and second flows, respectively.



We now present a tighter approximation, which we term
the partial mean-field approximation, wherein the correla-
tions between the occupancies of nodes involved in
intersections alone are neglected.5 The basic idea behind
PMFA is to “cut” the network flow into constituent linear
flows, and to use the fact that the throughput across each
cut (or linear segment) in the flow is the same. To this end,
we present the following lemma.

Lemma 5.1. Consider an r-TDMA-based ad hoc network with
N nodes (the channel access probability for each node is
1=ðN þ 1Þ). Let ps denote the packet success probability
across each link in the network. The throughput across a cut
in the network comprising n nodes with influx and outflux
rates and hopping probability ", #, and ps, respectively, (see
Fig. 1) is given by

T ð";#; nÞ ¼
ps=ðN þ 1Þ ,minf";#g n ¼ 0

ps=ðN þ 1Þ , Zð";#; n) 1Þ
Zð";#; nÞ n + 1;

8
<

:

where Zð";#; 0Þ ¼ 1 and

Zð";#; nÞ ¼
Xn

i¼1

ið2n) 1) iÞ!
n!ðn) iÞ!

ð1=#Þiþ1 ) ð1="Þiþ1

1=# ) 1="
; n + 1:

Proof. Proving the case n ¼ 0 is straightforward; the rate of
packet flow across the cut is the minimum of the influx
and outflux rates, multiplied by the channel access and
success probabilities (1=ðN þ 1Þ and ps, respectively). For
the case n + 1, the throughput across the flow is (7)

T ð";#; nÞ ¼ psIE!n
N þ 1

¼ ps
N þ 1

hW jCN)1jV i
hWCN jV i

:

From [14, (39)], the lemma is established. tu

We now show how to use the PMFA framework to
evaluate the throughput for the multihop network shown
in Fig. 12. First, we cut each flow across S ! D at the
common relay node R to form two line network flows.
Thus, the flow S1 ! D1 is split into flows S1 ! Rn1 and
Rn1 ! D 1. Now, the flow S1 ! Rn1 may be modeled as a
line network flow across n1 ) 1 relay nodes (considering
Rn1 as the destination node for that flow); it has an influx
rate of 1 and an effective outflux rate of #ð1Þ

eff ¼ 1) IE! ½1'n1
.

Likewise, for the latter flow spanning N1 ) n1 relays
(through nodes Rn1 to D1), the effective influx rate is
"ð1Þ
eff ¼ IE½! ½1'n1

ð1) ð1) qÞ! ½2'n2
Þ', and the outflux rate is 1. Since

the throughput across each cut is the same, we have

T
&
1;#ð1Þ

eff ; n1

'
¼ T

&
"ð1Þ
eff ; 1; N1 ) n1

'
: ð24Þ

Similarly, considering the second flow, we obtain

T
&
1;#ð2Þ

eff ; n2

'
¼ T

&
"ð2Þ
eff ; 1; N2 ) n2

'
; ð25Þ

where #ð2Þ
eff ¼ 1) IE! ½2'n2

and "ð2Þ
eff ¼ IE½! ½2'n2

ð1) q! ½1'n1
Þ'.

One may then use (24) and (25) in conjunction with
Lemma 5.1 to solve for the two unknowns IE! ½1'n1

and
IE! ½2'n2

, and subsequently evaluate the throughputs across
the two flows.

5.5 A Toy Example

We now describe how to use the PMFA to approximate the
throughput performance of networks with arbitrary topol-
ogies. As intuitively expected, the PMFA method outper-
forms the MFA method. For the purpose of illustration, we
consider a simple example comprising two six-hop flows
across two common relays (see Fig. 13). The packet routing
priorities for the first flow S1 ! D1 at the common relay
nodes R1 and R5 are q1 and q2, respectively. We evaluate the
throughput only for the first flow; the computation of the
throughput of the second flow is quite similar.

The main idea to use is that for each flow, the throughput
into a common relay node equals the throughput out of it.
Accordingly, we make some “cuts” along the multihop
flow, and equate the throughputs across the constituent
linear flows. For the toy example shown in Fig. 13, we make
two cuts I and II along the flow.

Now, for notational convenience, let IE! ½1'1 ¼ x, IE! ½1'5 ¼ y,
IE! ½2'1 ¼ z, and IE! ½2'5 ¼ w. Since the rate of packet flow across
each cut is the same, we obtain for the two flows, S1 ! D1

and S2 ! D2,

T ð1; 1) x; 1Þ ¼ T ðxð1) ð1) q1ÞzÞ; 1) y; 3Þ;
T ð1; 1) x; 1Þ ¼ T ðyð1) ð1) q2ÞwÞ; 1; 1Þ;

and

T ð1; 1) z; 1Þ ¼ T ðzð1) q1xÞ; 1) w; 3Þ;
T ð1; 1) z; 1Þ ¼ T ðwð1) q2yÞ; 1; 1Þ;

respectively. The above four equations may be solved to
obtain the unknowns x, y, z, and w. The channel access
probability for each node is 1=10; the steady-state through-
put is T ½1' ¼ psð1) xÞ=10.

Alternatively, one may use the MFA to evaluate the

throughput across the first flow at steady state. For simplicity

of notation, let IE! ½1'1 ¼ x1, IE!
½1'
2 ¼ x2, IE!

½1'
3 ¼ x3, IE!

½1'
4 ¼ x4,

IE! ½1'5 ¼ x5, IE!
½2'
1 ¼ x6, IE!

½2'
2 ¼ x7, IE!

½2'
3 ¼ x8, IE!

½2'
4 ¼ x9, and

IE! ½2'5 ¼ x10. We obtain the following 10 equations:
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Fig. 13. A toy example consisting of two multihop flows S1 ! D1 and
S2 ! D2. The packet routing priorities at the common relay nodes R1

and R5 are q1 and q2, respectively. The dotted lines I and II represent two
cuts along the flow.

5. The PMFA gives exact performance results in networks without
intersections, i.e., for a linear flow of packets. The MFA, on the other hand,
is fairly inaccurate [14].



1) x1 ¼ x1ð1) x2Þð1) ð1) q1Þx6Þ
1) x1 ¼ x2ð1) x3Þ
1) x1 ¼ x3ð1) x4Þ
1) x1 ¼ x4ð1) x5Þ
1) x1 ¼ x5ð1) ð1) q2Þx10Þ
1) x6 ¼ x6ð1) x7Þð1) q1x1Þ
1) x6 ¼ x7ð1) x8Þ
1) x6 ¼ x8ð1) x9Þ
1) x6 ¼ x9ð1) x10Þ
1) x6 ¼ x10ð1) q2x5Þ;

which may be solved numerically to obtain the steady-
state occupancies for any q1; q2. Again, we have T ½1' ¼
ð1) x1Þps=10. Compared to the PMFA method, the MFA
approach, however, neglects correlations between the
occupancies of all pairs of nodes, and in particular,
between the occupancies of nodes R2, R3, and R4.

Fig. 14 plots the (steady state) throughput T ½1' across the
first flow versus q1 for q2 ¼ 0:5, obtained upon using both
the MFA and PMFA approaches, as well as simulation
results. The plots show that the throughput evaluation
from the PMFA framework closely matches the empirical
result and is more accurate compared to the results
yielded by the MFA approach, in particular, for high q1.

6 CONCLUSIONS

In this paper, we have employed ideas from the TASEP
literature to study multihop networks with random access.
Specifically, we have showcased the MPA framework as a
handy tool for characterizing the packet delay pmfs and the
throughput performance for a linear multihop flow. We
also introduced the PMFA framework, a more accurate
version of the MFA, which helps quantify the throughput
performances of complex ad hoc network models compris-
ing intersecting flows.

The TASEP particle-flow model bridges the gap
between statistical mechanics and wireless networking. It
is useful for providing closed-form expressions for the

average end-to-end delay and throughput of the multihop
line network and has the advantage of obviating the
cumbersome queuing-theoretic analysis. Furthermore, the
results obtained are scalable with the number of nodes and
thus can provide helpful insights into the design of
wireless networks. We wish to promote TASEPs as a
useful tool to analyze the performance of ad hoc networks
and hope that this introductory work instigates interest in
solving other relevant wireless networking problems
employing ideas from statistical mechanics.
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APPENDIX

PROOF OF LEMMA 4.3

Proof: Using the fact that C = D + E, we obtain

∆(N)
i,j =

〈W |Ci−1Dj−2(C − E)CN−i−j |V 〉
〈W |CN−1|V 〉

=
〈W |Ci−1Dj−2CN−i−j+1|V 〉

〈W |CN−1|V 〉

−
〈W |Ci−1Dj−3DECN−i−j |V 〉

〈W |CN−1|V 〉

(a)
= ∆(N)

i,j−1 −
〈W |CiDj−3CN−i−j+1|V 〉

ps〈W |CN−1|V 〉

= ∆(N)
i,j−1 − ∆(N−1)

i,j−2

〈W |CN−2|V 〉
ps〈W |CN−1|V 〉

,

which is equivalent to (13), upon using property (3b).
Here, (a) is derived using (10) and (3a).

PROOF OF LEMMA 4.4

Proof: The proof involves induction. Using (11) and
(12) in (13), we obtain for the case j = 2,

∆(N)
i,2 = Eτ (N−2)

i

η(N − 2)

η(N − 1)
,

which satisfies (14). Similarly, using (13) for j = 3, we
have

∆(N)
i,3 = Eτ (N−2)

i

η(N − 2)

η(N − 1)
−

η(N − 3)

η(N − 1)
,

which conforms with (14).

Suppose that (14) is valid for the cases j = m, m − 1,
m > 2. Now, consider the case j = m + 1. From (13), we

have

∆(N)
i,m+1 = ∆(N)

i,m − ∆(N−1)
i,m−1 η(N − 2)/η(N − 1)

=

$m−1

2 %
∑

k=0

(−1)k
η(N − k − 2)

η(N − 1)
×

[
(

m − k − 2

k

)

Eτ (N−k−2)
i +

(
m − k − 2

k − 1

)
]

−
η(N − 2)

η(N − 1)

$m−2

2 %
∑

k=0

(−1)k
η(N − k − 3)

η(N − 2)
×

[
(

m − k − 3

k

)

Eτ (N−k−3)
i +

(
m − k − 3

k − 1

)
]

=

(
m − 2

0

)
η(N − 2)

η(N − 1)
Eτ (N−2)

i +

$m−1

2 %
∑

k=1

(−1)k

η(N − k − 2)

η(N − 1)

[(
m − k − 2

k

)

Eτ (N−k−2)
i +

(
m − k − 2

k − 1

)
]

+

$m−2

2 %+1
∑

k=1

(−1)k η(N − k − 2)

η(N − 1)
[
(

m − k − 2

k − 1

)

Eτ (N−k−2)
i +

(
m − k − 2

k − 2

)
]

=

(
m − 2

0

)
η(N − 2)

η(N − 1)
Eτ (N−2)

i +

$m−1

2 %
∑

k=1

(−1)k

η(N − k − 2)

η(N − 1)

[
[(

m − k − 2

k

)

+

(
m − k − 2

k − 1

)]

Eτ (N−k−2)
i +

[(
m − k − 2

k − 1

)

+

(
m − k − 2

k − 2

)]
]

+ (−1)m/2 η (N − m/2 − 2)

η(N − 1)
1[m is even],

where the last term involves an indicator function since
it occurs only when $(m − 2)/2% + 1 '= $(m − 1)/2%, i.e.,
when m is even. Using the identity

(
r

s

)

+

(
r

s − 1

)

=

(
r + 1

s

)

, (21)

we obtain

∆(N)
i,m+1 =

"m/2#
∑

k=0

(−1)k
η(N − k − 2)

η(N − 1)
×

[
(

m − k − 1

k

)

Eτ (N−k−2)
i +

(
m − k − 1

k − 1

)
]

. (22)

We see that (14) is valid for the case j = m + 1 as well.
By induction, the lemma holds.

PROOF OF THEOREM 4.7
Proof: We condition on the event ei,j1,j2 , which hap-

pens w.p. κ(N)
i,j1,j2

. For clarity, we treat the following two
cases separately.
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Case 1: 0 ≤ j1 ≤ N − i − 1
Since Di = k by assumption, at least j1 packet hops
(for the ones at nodes i + j1, . . . i + 1, in that order)
occur within k − 1 slots. In addition, Di+1 = !, thus
the packets at nodes i + 1, . . . i + j1 hop out twice,
which also means that j2 other packet hops (from nodes
i + j1 + 2, . . . , i + j1 + j2 + 1 to their respective adjacent
nodes) occur, all within k+!−2 slots. The flow length of
N nodes also places a constraint on the possible values
that j1 and j2 can take. Thus, the following hold:

(i) j1 ≤ k − 1.
(ii) 2j1 + j2 ≤ k + ! − 2.

(iii) i + j1 + j2 + 1 ≤ N .

Equivalently, we have

• 0 ≤ j1 ≤ min{k − 1, N − i − 1}, and
• 0 ≤ j2 ≤ min{k + ! − 2j1 − 2, N − i − 1 − j1}.

The conditional joint pmf P(Di+1 = !, Di = k | ei,ji,j2)
is equal to the sum of the probabilities of having j
successful packet hops, j1 ≤ j < 2ji + j2, occurring
in k − 1 time slots, then the packet at node i hopping
successfully to node i + 1 in the kth time slot, then
2j1 + j2 − j successful transmissions occurring in ! − 1
slots, and finally, the packet at node i + 1 hopping to
node i + 2 in the k + ! th time slot.
Case 2: j1 = N − i
For this case, when a packet arrives at node i, the config-
uration of the nodes i+1, . . . , N is simply (τi+1, . . . τN ) =
(1, . . . , 1). As in Case 1, at least j1 packet hops (for
the ones at nodes i + j1, . . . i + 1, in that order) occur
within k − 1 slots. However, once the packet at node N
is delivered to the destination, it does not hop further.
Thus, Di+1 = ! would mean that 2j1 − 1 (and not 2j1)
successful transmissions must occur in k + ! − 2 time
slots. The following constraints hold:

(i) j1 ≤ k − 1.
(ii) 2j1 − 1 ≤ k + ! − 2.

Putting together (i) and (ii), 0 ≤ j1 ≤ min{k− 1, (k + !−
1)/2}.

The conditional joint pmf P(Di+1 = !, Di = k | ei,ji,j2)
is obtained by adding up the probabilities of having j
successful packet hops, j1 ≤ j < 2ji−1, occurring in k−1
time slots, then the packet at node i hopping successfully
to node i+1 in the kth time slot, then 2j1−1−j successful
transmissions occurring in ! − 1 slots, and lastly, the
packet at node i + 1 hopping to node i + 2 in the k + !
th time slot.

Summing up P(Di+1 = !, Di = k, ei,ji,j2) over all
possible values of j1 and j2 considering both the cases
yields the joint pmf, which is the same as (18).


