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Abstract—Vehicle-to-vehicle safety communications based on
the dedicated short range communication (DSRC) technology
have the potential to enable a set of applications that help avoid
traffic accidents. The performance of these applications, largely
affected by the reliability of communication links, stringently
ties back to the MAC and PHY layer design which has been
standardized as IEEE 802.11p. The link reliabilities depend on
the signal-to-interference-plus-noise ratio (SINR), which, in turn,
depend on the locations and transmit powers of the transmitting
nodes. Hence an accurate network model needs to take into
account the network geometry. For such geometric models,
however, there is a lack of mathematical understanding of the
characteristics and performance of IEEE 802.11p. Important
questions such as the scalability performance of IEEE 802.11p
have to be answered by simulations, which can be very time-
consuming and provide limited insights to future protocol design.
In this paper, we investigate the performance of IEEE 802.11p
by proposing a novel mathematical model based on queueing
theory and stochastic geometry. In particular, we extend the
Matern hard-core type II process with a discrete and non-
uniform distribution, which is used to derive the temporal states
of back-off counters. By doing so, concurrent transmissions from
nodes within the carrier sensing ranges of each other are taken
into account, leading to a more accurate approximation to real
network dynamics. A comparison with ns2 simulations shows
that our model achieves a good approximation in networks with
different densities.

Index Terms—IEEE 802.11p, Vehicular Ad Hoc Networks,
Queueing Theory, Poisson Point Process, Matern Hard-core Point
Process

I. INTRODUCTION

A. Motivation

Vehicle-to-vehicle (V2V) safety communications based on
DSRC at 5.9 GHz shows promising potential to improve
driving safety on the road. With DSRC, every node (i.e.,
vehicle) broadcasts up to 10 safety-related messages every
second, where each message contains GPS information (i.e., a
vehicle’s location, speed, and heading). Vehicles that receive
such messages are able to track the senders, which therefore
helps avoid vehicular collisions. At the lower layers, IEEE
802.11p provides the media access control and physical layer
solution. However, prior studies have shown that IEEE 802.11p
suffers a significant performance degradation when the number
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of nodes increases. It means a plunging delivery ratio of safety-
related messages to recipients, leading to deteriorated tracking
accuracy.

Many efforts have focused on improving the performance
of IEEE 802.11p, most of which are based on simulations
[1], [2]. However, it is extremely time-consuming, if not
impossible, to simulate every case or combination of system
parameters. A mathematical understanding is needed, to help
save computational cost, to determine the fundamental perfor-
mance limits and to provide guidance on the design of novel
solutions. The performance depends critically on the signal-
to-interference-plus-noise ratios (SINRs) at the receivers, and
the signal strength and interference powers are functions of
the distances between the nodes [3]. Realistic values for the
internode distances and hence SINR values are obtained from
geometric network models where nodes are placed on a line
or one the plane according to some random process.

Our goal in this paper is to devise such geometric models
that can accurately capture the temporal and spatial behavior
of this CSMA-based protocol for different network configura-
tions. We use both stochastic geometry and queueing theory
for modeling and analysis of IEEE 802.11p. The model
is exploited to predict the system performance in a more
efficient manner than Network Simulator 2 (ns2) and to better
understand the characteristics of IEEE 802.11p in V2V safety
communications.

B. Related Work

A rich body of literature on the performance analysis of
CSMA-based networks can be found in the research commu-
nity, among which most works are based on queueing theory.
For example, the performance of the carrier-sense multiple
access with collision avoidance (CSMA/CA) scheme has been
analyzed in [4], [5] using a discrete Markov chain model. The
authors focused on one-hop networks (where all the nodes
are within each other’s carrier sensing range). A closed-form
expression of the network throughput was developed with an
assumption of saturated data traffic. Later, researchers applied
the Markov chain approach to a broader set of cases. [6]
investigated the impact of non-ideal channels and capturing
techniques on the throughput of the IEEE 802.11 protocol with
non-saturated data traffic. States for the transmission failures
and states representing the case where no packets exist in the
buffer are added into the model used in [4]. The throughput
as a function of several parameters, such as packet size, is
calculated. Authors in [7] characterized the impact of different
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message generation rates and transmission power levels on the
network capacity in presence of of hidden terminals. Under
some simplifying assumptions, the paper analyzed the hidden
nodes and showed that the channel occupancy or busy ratio can
be used as a feedback measure that quantifies the success of
information dissemination. The work presented in [8] focuses
on developing an accurate model for characterizing the impact
of hidden terminals on the network performance. The authors
pointed out the limitations of using renewal theory with a vari-
able time slot in the literature and proposed a new model with
a fixed-length channel slot. With a simple network topology,
the model developed shows a good match with the simulations.
In [9], [10], the authors investigated the performance of IEEE
802.11p with enhanced distributed channel access capability
where applications with different priorities are divided into
four access categories (ACs) according to their criticalities for
the vehicle’s safety. Since each AC has a separate back-off
process, a AC can be viewed as a "virtual" node. Each virtual
node competes with other virtual nodes as well as real nodes
to get access to channel. The authors assumed that all the
nodes observe the same channel to compute the throughput and
delay using queueing theory, which constitutes an extension
of [4], [5]. However, all the resulting models were either
more complicated or only applicable to simplified network
topologies.

On the other hand, stochastic geometry, in particular point
process theory, has been widely used in the last decade to
provide models and methods to analyze wireless networks, see
[11]–[15] and references therein. Stochastic geometry provides
a natural way of defining and computing critical performance
metrics of the networks, such as the interference distribution,
outage probability and so forth, by taking into account all
potential geometrical patterns for the nodes, in the same
way queueing theory provides response times or congestion,
considering all potential arrival patterns.

To our best knowledge, the first paper using stochastic
geometry to model the reliability of IEEE 802.11p protocol
is [16]. However, it is limited to the analysis of dense
vehicular networks using ALOHA to approximate the CSMA-
based MAC protocol. Similarly, [17], [18] only focus on the
performance analysis of vehicular networks using ALOHA as
the MAC scheme. The connectivity of the vehicular networks
in urban environments has been studied in [19]. A model
based on stochastic geometry has been developed to obtain
the probability of a node to be connected to the origin and the
mean number of connected nodes for a given set of system
parameters. However, the model does not explicitly take into
account the temporal dynamics specific to vehicular networks,
which are caused by factors like periodic traffic and the back-
off process in IEEE 802.11p. The Matern hard-core process
of type II [13, Chapter 3]3 has been used in [20] to analyze
dense IEEE 802.11 networks, in which the nodes’ locations are
placed according to a Poisson point process and the random

3Starting with a basic uniform Poisson point process (PPP) Φb with
intensity λb, add to each point x an independent random variable m(x), called
a mark, uniformly distributed in [0, 1]. All points that have a neighbor within
distance r with a smaller mark are flagged. The remaining (non-flagged) points
form the Matern hard-core process of type II.

back-off counter is modeled as an independent mark that is
associated with each node. However, the mark is assumed to be
uniform between [0, 1] which is not the case for IEEE 802.11p
since the back-off counter takes only integer values from 0 to
W , where W is the maximal value of the back-off counter (a
typical value for W is 15).

C. Contributions

Our main contributions are:
1) We investigate the transmission behavior of V2V safety

communications with non-saturated data traffic using a
continuous-time Markov chain model that is based on a
novel combination of queueing theory and point process
theory. We show that the location distribution of the
transmitting nodes is well modeled ranging from hard-
core processes to PPPs as the network density increases,
in contrast to [16], where only the dense case is studied.

2) A novel Matern hard-core process is proposed to capture
the hard-core effect of CSMA and concurrent transmis-
sions occurring within the same carrier sensing range. In
particular, a modified Matern hard-core process of type
II (called Matern-II-discrete process for the rest of the
paper, whereas the original Matern hard-core process of
type II [20] is henceforth called Matern-II-continuous
process) is used with a discrete and non-uniform mark
distribution to model the temporal information of the
back-off counter and the spatial locations of the trans-
mitting nodes. In this way, nodes with the same back-
off counter value can transmit at the same time with
nonzero probability even if they are within the carrier
sensing range of each other, which makes the model
more realistic.

3) We validate the effectiveness of our model by comparing
it to other mathematical models and simulations from
ns2, which have been calibrated for vehicle-to-vehicle
communications by [1], [21] and will be used to generate
ground truth in this study. The comparisons show that
our model can be applied to networks of different
densities with good accuracy.

D. Organization

The rest of the paper is organized as follows: Section II
introduces the system model. In Section III, queueing theory
and stochastic geometry are used to investigate the distribution
of the transmitting nodes and the back-off counter distribution
in networks with different densities. Section IV proposes and
describes the Matern-II-discrete process in detail. The system
performance is evaluated and compared with other models in
Section V. We conclude our work in Section VI.

II. SYSTEM MODEL

A. Traffic Model

We focus on V2V safety communications using DSRC at
5.9 GHz in the highway scenario where the transmission
ranges of the vehicles are larger than the width of the road.
Therefore, all the nodes can be assumed to be placed on a
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line according to a PPP with intensity λ0. This set of nodes is
denoted as Φ. Each node generates 10 messages every second
as suggested in [22], which is equivalent to the requirement
to transmit a message every 100 ms. These messages go to
the same access category (AC), and traffic in other ACs [23]
is out of the scope of this paper.

A message is dropped if it has not been sent out before a
new one arrives. Since the message is beneficial to all nearby
vehicles, broadcast communication is used, which means no
RTS-CTS is exchanged before transmissions and no ACK
is transmitted after a transmission. More specifically, when
a message is available at a node, if the channel is idle,
the message is broadcast immediately. Otherwise, a back-
off counter in [W ] , {0, 1, · · · ,W} is drawn uniformly at
random. W + 1 is called the contention window size; it is
fixed since no ACK feedback is used.

A node has to go through a back-off process if it cannot send
the message immediately, i.e., if its back-off counter is set. The
back-off process executes in a EDCA (Enhanced Distributed
Channel Access) manner where the decrement of the back-off
counter value happens at the beginning. As shown in Fig. 1,
when the channel becomes idle, the node decreases its back-off
counter value immediately by one. It keeps doing so afterwards
each time a time interval δ elapses (δ is called the slot time),
and it freezes the count-down when the channel becomes busy
again. When the value of the back-off counter reaches zero,
if the channel stays idle within the following δ time (i.e., slot
time), the node starts transmitting right after. Otherwise, the
node waits and the transmission will occur immediately after
the channel turns idle next time.

B. Notation

From the above description, one can see that nodes may
stay in different states (e.g., transmitting, back-off, idle) at a
given time. These states (equivalently, called marks in point
processes) need to be carefully understood and noted because
they affect the distribution of interference across the network,
which contributes to the reliability of communications. Hence,
we list key notations used for point processes in Table I.

C. Channel Model

The power received at location y from a node located at
point x, denoted by P (x, y), is given by

P (x, y) = P · Sxy · l(x, y), (1)

where

Time 

Busy channel 

C
o

u
n
te

r 
V

al
u

e 

B
ac

k
o

ff
 

d

Transmitting 

Figure 1: Back-off process in IEEE 802.11p.

• P is the transmit power, which is assumed to be the same
for each node;

• l(x, y) is the path loss or similar between x and y. Similar
to [16], it is modeled as follows:

l(x, y) = Amin
{
r−α0 , d(x, y)−α

}
,

where d(x, y) is the Euclidean distance between x and
y and α is the path loss exponent; we also use the path
loss function in this form:

l(r) = Amin
{
r−α0 , r−α

}
,

where A =
(

λ̃
4πr0

)α
is a dimensionless constant in the

path loss law determined by the wavelength λ̃ and the
reference distance r0 for the antenna far field.

• Sxy is a random variable denoting the fading be-
tween points x and y, and ∀y, the random variables(
Sx1
y , Sx2

y , · · ·
)

are assumed to be i.i.d. exponentially
distributed with mean one, which means the channels are
Rayleigh fading. For the non-fading case, Sxy ≡ 1. In this
paper, we consider both the fading and non-fading cases.

The neighborhood of a node x (denoted as V (x)) is defined
as the random set of nodes in its contention domain, namely
the set of nodes whose messages this node receives with a
power larger than some detection threshold P0, i.e.,

V (x) =
{
y ∈ Φ[W ] : PSyxl(y, x) > P0

}
, x ∈ Φ[W ]. (2)

Equivalently,

V (x) =
{
y ∈ Φ[W ] : d(y, x) < Ryx

}
, x ∈ Φ[W ]. (3)

where

Ryx =

(
PASyx
P0

) 1
α

(4)

is called the carrier sensing range, which is a random variable

related to Syx . In the non-fading case, R = Ryx =
(
PA
P0

) 1
α

is
deterministic.

The impact of the vehicle mobility and direction is neglected
since the node is almost stationary within one packet trans-
mission duration, which is usually less than 1 ms.

III. TEMPORAL CHARACTERISTICS OF V2V
COMMUNICATIONS

In this section, we will show that the vehicular networks
dynamics can be explained using queueing theory.

A. Dense Networks

In [16], the authors claimed that when the network is
dense that 1) after every busy period a node can decrease
the value of its back-off counter only by one; 2) if almost
all the sections of the road are covered by transmissions,
the system performance under the CSMA-based protocol is
similar to that of ALOHA. In other words, this means that
the performance of such networks at high node density can
be analyzed by approximating the slotted-CSMA network
as a slotted-ALOHA network where the set of concurrently
transmitting nodes Φtx forms a PPP. In [16], a slotted-CSMA
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Notation Description
[W ] {0, 1, · · · ,W}, the set of backoff counter values
Φ Entire PPP of intensity λ0

ΦB Φ ∩B,B ⊂ R. Nodes within B
sx(t) State (or mark) of node x ∈ Φ at time t
S A set of states of the nodes. S = [W ]∪{idle}∪ {tx}. i ∈ [W ] is the state where the back-off

counter is i and there is a packet waiting in the buffer to be transmitted. idle is the state where
no packets are in the buffer. tx means that a packet is in transmission.

ΦS(t) Subset of nodes with state s(t) ∈ S ⊂ S.5

Φi↓(t) Nodes that have a packet in the buffer and reduce the back-off counter to i from a different
value by time t

Φi 8 (t) Φi(t)\Φi↓(t), i ∈ [W − 1]. Nodes with a packet in the buffer that select i as back-off counter
value and have not decreased it by time t.

Φ̂tx Set of concurrent transmitting nodes selected by Matern-II-discrete process
Φ̃tx Set of concurrent transmitting nodes selected by Matern-II-continuous process

Table I: Notation
5E.g., Φtx(t) is the set of nodes that transmit at time t, Φ3(t) is the set of nodes with back-off counter value 3 at time t, and Φ[W ](t) is the set of nodes
having a packet waiting to be transmitted at time t.

model is assumed to simplify the analysis. This assumption
may introduce inaccuracies in the model but is an acceptable
approximation in dense networks.

We analyze the distribution of Φtx by studying what hap-
pens after the transmissions of some nodes in Φtx finish. The
assumption we make is that Φidle follows a PPP. If a subset of
Φtx finish their transmissions at time t_4, they leave sections
of the road (intervals of the real line) in which the channel is
sensed idle. We pick any of the sections and call it s1. Nodes
in Φs10 (t) will start transmission immediately. Using queueing
theory, we argue that Φs10 (t) forms a PPP. Define Tp as the
transmission time of a packet followed by two slot times (as
required by IEEE 802.11p). Φs10 (t) = Φs10↓(t) ∪ Φs1

0 8
(t). We

claim that Φs1
0 8

(t) forms a PPP on s1 since the packet arrivals
at each node are independent and Φs1

0 8
(t) can be viewed as an

independent thinning of Φidle((t − Tp)+) where the thinning
probability is the probability that a node has a packet arriving
between (t− Tp)+ and t and chooses its back-off counter to
be 0. However, to understand the distribution of Φs10↓(t), we
need to highlight that the back-off processes of the nodes in
Φs1[W ] are synchronized. In other words, they observe the same
channel states (idle or busy) and start or stop back-off counters
simultaneously.

Synchronization cannot generally be assumed across
nodes in CSMA-based multi-hop networks due to hidden
terminals. As a consequence, we need to understand how
it occurs for nodes in Φs1[W ]. To do so, snapshots of the
nodes’ statuses are recorded in Fig. 2 on a section of the
road at different times. Initially (as shown by the snapshot
at T0), we assume none of the nodes is transmitting. When
the first packet arrives, it is transmitted without back-off
process (since the channel is sensed idle). The following
packets are held if their nodes are within the carrier sensing
ranges of any ongoing transmissions. Nodes within the same
carrier sensing range may synchronize the next transmission.

4We use t_ to note the time just before t and t+ for the time just after t

Figure 2: Snapshots of statuses of nodes on a section of road taken
at four different times, T0, Ti, Tj and Tk with T0 < Ti < Tj < Tk

where Υ denotes the (union of) carrier sensing ranges of transmitting
nodes.

Assume that xj and xk from the snapshot at Ti are two of
those nodes and they are within the carrier sensing range of
xi (denoted as Υi). They both have their back-off counter
values set to zero and start transmissions immediately after
xi finishes. The union of xj’s and xk’s carrier sensing ranges
constitutes Υjk (shown in the snapshot at Tj). In this way,
the region on which transmissions may be synchronized
will increase from Υi to Υjk. The same process happens
on other sections of the road, until almost the whole road
is covered by transmissions (as shown by the snapshot at Tk).

The system now reaches a point where it can be viewed as a
collection of regions on which nodes’ back-off processes are
synchronized and gaps between these synchronized regions.
We can think of s1 as any one of such regions where the
back-off processes of nodes in Φs1[W ] are synchronized. As a
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Figure 3: Markov chain model for the dense case where the nodes’
back-off counter values are modeled as the states of the chain (from
0 to W ) . The transition rates labeled between the states stand for
the number of nodes per second per unit length of road that are able
to change their back-off counter values.

consequence, Φs10↓(t) can be written as the union of Φs11↓(t −
Tp) and Φs1

18
(t − Tp). Applying the same logic iteratively to

Φs11↓(t− Tp) yields

Φs10↓(t) =

W⋃
i=1

Φs1
i 8

(t− iTp). (5)

Since Φs1
i 8

(t− iTp), i ∈ {1, 2, · · · ,W}, are independent PPPs
on s1, Φs10↓(t), as the union of them, is also a PPP [13].
However, it does not mean Φtx follows a PPP on all the
sections in the system which is assumed in [16]. Assume
that after nodes in Φs10 (t) start transmitting, the transmitters
in an adjacent region to s1, named s2, finish transmissions.
Although Φs20 (t2) forms a PPP where t2 > t, there cannot
be any transmitters in s1 ∩ s2. In other words, there may be
sections where the transmitters form a PPP, interleaved with
sections without transmitters. Nevertheless, the transmitters in
the dense case can be well approximated as a PPP as shown
in the simulation later and [16].

The above process can be approximated using queueing
theory where the counter values k for a given node can be
considered as the states in a continuous-time Markov chain.
As illustrated in Fig. 3, the density of nodes with new arriving
packets can be considered as the mean arrival rate per unit
length, and the density of transmitting nodes as the mean
service rate per unit length. Assume that at steady state, the
mean arrival rate per unit length (denoted as λa) is equal to
the mean service rate per unit length (denoted as µa), that is,
λa = µa. The system acts as if the nodes have saturated data
traffic, i.e., the nodes finishing their transmissions will generate
a new packet and join the queue that consists of the nodes with
back-off counters immediately. Define qki as the transition rate
at which the nodes make a transition from counter k to counter
i. pk represents the steady-state probability where the counter
value is k. By the global balance equations for a continuous-

time Markov chain [24], we have

pk

W∑
i=0

qki =

W∑
i=0

piqik, (6)

where the non-zero transition rates are qk,k−1 =

λa

(
1− k

W+1

)
for k ∈ [W ] and q0,k = λa

W+1 for k ∈ [W ]

(their values labeled in Fig. 3). Therefore, for the dense case
as in [16], we can compute the steady state probability pk as

pk =
2 (W − k)

W (W + 1)
(7)

using queueing theory, combining (6) and
∑W
k=0 pk = 1. Ex-

pression (7) is equivalent to that in the one-hop communication
networks in [5]. The difference is that a discrete-time Markov
chain with variable slot assumption is used in [5] to obtain the
steady state probability pk while our continuous-time Markov
chain model more naturally captures the steady state in any
given time instant.

B. Sparse Networks
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Figure 4: Markov chain model for the sparse case where the nodes’
back-off counter values are modeled as the states of the chain (from
0 to W ) . The transition rates labeled between the states stand for
the number of nodes per second per unit length of the road that are
able to change their back-off counter values.

Inspired by the work in [16], we explore the distribution of
Φtx in sparse networks. According to IEEE 802.11p, a packet
is transmitted immediately upon arrival if the channel is sensed
idle. In sparse networks, a limited number of nodes exist. The
cumulative channel load consumes only a small portion of the
channel capacity, leaving the channel idle most of the time
as observed in [25], which implies that most nodes will send
out their packets without going through any back-off process
(as indicated by λ′a in Fig. 4). Furthermore, as there is a finite
number of nodes within the same carrier sensing range and the
packet arrival process is continuous, the probability that two
nodes within the carrier sensing ranges of each other have
packets arrive at exactly the same time is zero. Therefore,
we will have no pairs of nodes within distance less than
carrier sensing range that start transmissions at the same time,
which can be modeled by the hard-core process described



6

in [20]. However, beyond the space dependence introduced
by the hard-core process, there is time dependence on the
locations of transmitters. In fact, some nodes may have packets
arrive when the channel is sensed busy, which may result
in concurrent transmissions within the same carrier sensing
range. This affects the accuracy of the hard-core process.

C. Networks with Intermediate Density

A relevant question is what the right model is for networks
with intermediate densities. On the one hand, compared with
sparse networks, more transmissions are delayed, increasing
the probabilities of transmission collisions from synchronized
back-off processes (but not as many as in dense networks).
On the other hand, the transmissions may not cover almost
all the sections of the road, leading to a distribution of
transmitters different from the case of dense networks. For
example, it could happen that on some sections of the road the
channel is sensed idle but no nodes have packets and thus no
transmissions take place. As a consequence, the distribution
of the transmitters for intermediate networks cannot purely
be modeled or approximated by hard-core processes or PPPs.
Instead, it should be a hybrid process between hard-core and
Poisson.

D. Observations

Based on the observations above, it is generally true that
all the nodes with back-off counter at tj have chances to
participate in transmissions at ti where ti > tj if the channels
turn idle before ti. From a stochastic geometry perspective, the
concurrent transmitters form a thinned process like the Matern-
II-continuous process. However, to account for the concurrent
transmitters within the same carrier sensing range, we need to
discretize the marks in the Matern-II-continuous process, and
any two nodes having the same mark should not silence each
other. This discrete choice for the marks makes sense since the
back-off counter in IEEE 802.11p takes integer values from 0
to W only and has concurrent transmissions if the counters of
two nodes within each other’s carrier sensing range hit zero
simultaneously.

To obtain the non-uniform distribution from which marks
are drawn, we sample the number of nodes having different
back-off counter values from ns2 simulations. The empirical
probability mass functions (PMFs) for scenarios with different
densities λ0 are shown in Fig. 5.

A few observations can be easily made from this plot.
First, the PMF is not uniform. It is skewed towards small
counter values. The maximally skewed curve is obtained from
(7). Second, the empirical PMF for different densities can
be approximated by an affine function of k. Assume that it
follows the form

pk = b− ak, (8)

where b ≥Wa ≥ 0. Since
∑W
k=0 pk = 1, we have

pk =
1

W + 1
+
W

2
a− ak. (9)

where 0 ≤ a ≤ 2
W (W+1) . a should be a function of the density

λ0. To obtain concrete results of a(λ0), we can estimate it from

ns2 simulations or using queueing theory. Here, we proceed
with the former method. In the following section, we will use it
as the counter distribution or mark distribution for the Matern-
II-discrete process.
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Figure 5: Estimated probability mass function of the nodes’ back-
off counter compared with the uniform PMF and maximally skewed
PMF: node density λ0 = 0.033, 0.066, 0.132 for the sparse, inter-
mediate and dense cases, respectively.

IV. MATERN-II-DISCRETE PROCESS

Section III discussed the temporal characteristics of vehic-
ular networks from a queueing theory perspective where the
distribution of backoff counter is derived and the concurrently
transmitting nodes are analyzed. Based on the analysis, we
propose the Matern-II-discrete process to approximate the
distribution of the concurrent transmitters of IEEE 802.11p
in vehicular networks in this section.

A. Model Description

As mentioned in the system model, Φ[W ] is the set of nodes
that have a packet waiting to be transmitted. Assume that it is a
one-dimensional homogeneous PPP with density λ < λ0, i.e.,
an independent thinning of Φ. Denote by Φ̂tx the set of nodes
selected by the CSMA-based broadcast protocol to transmit
at a given time. Φ̂tx is a dependent thinning of Φ[W ] built
as follows: each point of Φ[W ] is attributed an independent
mark which is discrete non-uniformly distributed in [W ]. The
discrete mark mimics the discrete back-off counter values. A
point x of Φ[W ] is selected in the Matern-II-continuous process
if its mark is smaller than or equal to that of any other point
of Φ[W ] in its neighborhood V (x). Hence, Φ̂tx is defined by

Φ̂tx =
{
x ∈ Φ[W ] : m(x) ≤ m(y) for all y ∈ V (x)

}
, (10)

where m(x), denoting the mark of point x, models the back-
off counter of the node and has the PMF given in (9), i.e.,
P (m(x) = k) = pk.

This model captures the fact that CSMA will grant a
transmission opportunity to a given node if this node has the
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minimal back-off counter among all the nodes in its carrier
sensing range and the fact that a node will be kept from
transmitting if another node in its carrier sensing range already
transmits. This is similar to the Matern-II-continuous process.
The difference is that the marks have a discrete and non-
uniform distribution instead of a continuous and uniform dis-
tribution, and hence this model can also include the concurrent
transmissions since the probability of two nodes with the same
mark is not equal to zero, i.e., P (m(x) = m(y)) 6= 0. This
is a more accurate assumption in IEEE 802.11p for V2V
communications as discussed in Section III-C.

B. Retaining Probability

Let p∗ = P0
{

0 ∈ Φ̂tx

}
be the Palm probability of retaining

the typical point of Φ[W ] in the thinning defining Φ̂tx. p∗ can
be rewritten as

p∗ =
W∑
k=0

Px
(
x ∈ Φ̂tx | m(x) = k

)
pk. (11)

Similar to the argument in [20], the following theorem can be
obtained:

Theorem 1. Given the probability mass function pk of the
back-off counter and Rayleigh fading, the probability for a
typical node to be retained in the thinning from Φ[W ] to Φ̂tx

is

p∗ =

W∑
k=0

exp (−λFX (k) c) pk (12)

with

FX(k) =

{ ∑k−1
i=0 pi, if k > 0

0, if k = 0.
(13)

c = 2π

∫ +∞

0

e−Kmax(r0,r)
α

rdr, (14)

where K = P0/PA. For α = 2, c = πe−Kr
2
0

(
1
K + r2

0

)
.

The proof is omitted since it is similar to the case with
uniform and continuous counter in [20]. The following corol-
laries give the retaining probability for the two special cases of
the back-off counter distribution. One is the uniform discrete
distribution corresponding to the sparse case, and the other the
discrete distribution corresponding to the dense case.

Corollary 1. For pk = 1
W+1 , the retaining probability is

p =
1

W + 1
· 1− e−λc

1− e−λc/(W+1)
, (15)

where c is given in (14).

Proof: Insert pk = 1
W+1 into (12), and it is straightfor-

ward to obtain the result.
As λ→ 0, p→ 1, which means all nodes will transmit with

probability one if the system is extremely sparse. Also, note
that as W → ∞, p → 1−e−λc

λc , which is the probability for a
node to be granted transmission in the Matern-II-continuous
process [20]. Hence, our mark distribution assumption gener-
alizes the uniform mark distribution.

Corollary 2. For pk = 2(W−k)
W (W+1) , the retaining probability is

p̄ =

W∑
k=0

2(W − k)

W (W + 1)
exp

(
−λck (2W + 1− k)

W (W + 1)

)
, (16)

where c is given in (14).

Proof: Inserting pk = 2(W−k)
W (W+1) into (12), we obtain (16).

As λ → ∞, p̄ → 2
W+1 , which is the probability of the

back-off counter to be zero. It means that when the system
is extremely dense, only the nodes with back-off counter zero
have a chance of transmitting. This is intuitive. From Theorem
1 and Corollaries 1 and 2, it is easy to see that the retaining
probability is lower bounded by p and upper bounded by p̄.

V. PERFORMANCE EVALUATION

Based on the newly proposed Matern-II-discrete process, we
can evaluate the performance metric of interest for vehicular
networks. It is well accepted that a packetized transmission is
considered successful if the signal-to-interference-plus-noise
ratio (SINR) is greater than some threshold [13]. So we define
the transmission success probability as follows.

Definition 1. The transmission success probability is the
probability of successful transmission from node x to node
y at distance r = ‖x− y‖,

p (r, T, α) , P (SINR ≥ T ) , (17)

where SINR =
P ·Sxy (r)·l(r)
I(y)+N , I(y) is the interference at the

receiver y, and N is the noise power.

It is one of the most important metrics in evaluating
the performance of vehicular networks. We will analyze the
transmission success probability for ALOHA and CSMA and
compare the transmission success probabilities for different
models in the next subsection.

A. Transmission Success Probability for ALOHA

First, we define the thinning probability in the ALOHA
MAC scheme. At any given time, the probability that a node
is transmitting can be computed as p = Tp/τ , where τ = 0.1
s is the packet generation period.

For comparison, the transmission success probability of
ALOHA is given by the following theorem:

Theorem 2. The transmission success probability with path
loss exponent α = 2 and distance r is

p (r, T, 2) = exp
(
−λ0p

√
πTr

)
exp

(
−NTr2/PA

)
(18)

in the Rayleigh fading case, and it is

p(r, T, 2) = 1− erf

(
λ0p
√
π√

1/Tr2 −N/PA

)
(19)

in the non-fading case.
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Proof. (18) is directly from [16]. For the non-fading case, the
probability density function of the interference is [16]

fI(y) =
λ0p√
1/PA

y−
3
2 e−

λ20p
2πPA

y . (20)

Since ∫ a

0

fI (y) dy = 1− erf

(
λ0pπ

1
2√

a/PA

)
, (21)

it follows that

p (r, T, 2) = P
(
PA

r2
≥ T (I +N)

)
(22)

= 1− erf

(
λ0p
√
π√

1/Tr2 −N/PA

)
. (23)

B. Transmission Success Probability for CSMA

Since it is difficult to derive the transmission success prob-
ability for the Matern-II-discrete process model theoretically,
an estimator similar to that in [20] is used to estimate the
transmission success probability of the new model. First, the
locations of the nodes with packets are sampled according
to a PPP on the interval [0, L]. The density of this PPP is
determined by the density of nodes with back-off counter at
any given time instant, which include those from the previous
time and the new arrivals. The power fading coefficient from
each transmitting node to any other location is exponential
with mean one (Rayleigh fading). The interference is evaluated
as the sum of the powers of all other concurrent transmitting
nodes. The Matern-II-discrete process Φ̂tx with discrete and
non-uniform counter is simulated using (10). To get rid of
the border effect, the interval [0, L] is considered as circular.
The counter distribution is given by (9) with slope a estimated
from simulation data.

The transmission success probability is calculated using the
estimator

p̂a (r, T, 2) =
1

2
E

∑x∈Φ̂
[0,L]
tx

[1B + 1C ]∣∣∣Φ̂[0,L]
tx

∣∣∣ | Φ̂[0,L]
tx 6= ∅

 ,
(24)

where B =
{
PASxx+rr

−2

I(x+r)+N ≥ T
}

and C =
{
PASxx−rr

−2

I(x−r)+N ≥ T
}

.

B (or C) is the event that for a given node x ∈ Φ̂tx the SINR
at distance r right (or left) from x is greater than or equal to
the threshold T .

∣∣∣Φ̂[0,L]
tx

∣∣∣ indicates the number of nodes in Φ̂tx

in the interval [0, L].
The Matern-II-continuous process is formed by dependent

thinning with the following definition

Φ̃tx =
{
x ∈ Φ[W ] : mb(x) < mb(y) for all y ∈ V (x)

}
,
(25)

where mb(x) is the mark of x ∈ Φ[W ], which is uniformly
distributed on [0, 1] [20]. The estimator of the transmission
success probability of the Matern-II-continuous process is

given in a similar way:

p̂b (r, T, 2) =
1

2
E

∑x∈Φ̃
[0,L]
tx

[1B + 1C ]∣∣∣Φ̃[0,L]
tx

∣∣∣ | Φ̃[0,L]
tx 6= ∅

 .
(26)

C. Performance Comparison

We compare the transmission success probabilities for
ALOHA, Matern-II-discrete process and Matern-II-continuous
process, while using simulations from ns2 as the baseline.
ns2 has been widely accepted by the research community due
to its capability to accurately simulate communications in a
large variety of wireless environments. For vehicle-to-vehicle
broadcast service in highway scenarios, the articles [1], [21]
describe work carried out to further improve the realism of
simulations and a large number of publications therefore used
ns2 to provide ground truth data (e.g., [16]). In this paper,
we rely on the ns2.34 simulator. We implemented the EDCA
back-off process and calibrated it with work in [22]. We set
up a circular road of L = 10 km and randomly place the
nodes. The speed of the vehicles is ignored because they barely
move in the transmission time of one single packet and only
relative positions matter. All other simulation parameters are
summarized in Table II.

Parameter Value
carrier frequency 5.9 GHz

packet size 414 Byte
noise floor −99 dBm

transmit power 10 dBm
broadcasting contention window (W + 1) 16

periodicity 100 ms
slot time δ 13µs
modulation BPSK

broadcast rate 6 Mbps
path loss exponent α 2
path loss constant A −17.86 dBm
reference distance r0 1

SINR threshold T 7 dB
simulation length L 10 km

Table II: Simulation Parameters

Fig. 6 shows the transmission success probabilities of the
various models for the non-fading case under different node
densities λ0. Fig. 6(a) validates that the concurrent transmitters
in IEEE 802.11p form a hard-core process in the sparse case
as discussed in Section III-B. For the near distance (less
than 300 m), the transmission success probability of the ns2
simulations is very close to that of two Matern type II models.
There is little difference between the Matern-II-continuous
and Matern-II-discrete processes since the probability that
nodes within each other’s carrier sensing range are transmitting
simultaneously is zero in the sparse case.

For the intermediate-density case, the Matern-II-discrete
process produces a lower transmission success probability than
the Matern-II-continuous process as it allows for nodes to
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have the same marks. Although none of the three models
can match ns2 simulations very well due to the complexity
of networks with intermediate densities, the Matern-II-discrete
process provides the closest approximation within 100-200 m,
which is the most critical range to vehicular safety [2], [26],
[27].

In the dense case, the Matern-II-discrete process matches the
ns2 simulation precisely. The transmission success probability
for ALOHA is also close to that of the ns2 simulation in the
dense case as claimed in [16] while it seems to be a very
loose lower bound for the sparse and intermediate cases. The
transmission success probability for the Matern-II-continuous
process for the intermediate and dense cases look alike because
there is saturation phenomenon in its intensity λb, i.e., λb is
upper bounded by λb,max = 1

2R , where R is the carrier sensing
range in (4). For the non-fading case, R is fixed, and hence
the maximum average number of retained nodes on a road
of length L from the Matern-II-continuous process is upper
bounded by L

2R , which is independent of λ.
For the fading case, the performance of the Matern-II-

discrete process shows the same trend as in the non-fading
case. However, ALOHA seems to have good performance as
well. This can be explained by the fact that fading randomizes
the interference and therefore the actual network is perceived
as an equivalent Poisson network. A similar observation was
made in [28] in the case of cellular networks. In other words,
fading dampens the hard-core effect and makes the transmitter
distribution look more like a PPP to the receivers. In addition,
the lack of RTS/CTS may further reduce the hard-core effect.

VI. CONCLUSIONS

In this paper, we explored the geometric modeling of DSRC
for V2V safety communications by using tools from stochastic
geometry and queueing theory. Firstly, we analyzed the dis-
tribution of transmitters for networks with different densities.
We found that without considering fading, by increasing the
network density, the transmitter distribution changes from a
hard-core model to a PPP model. With fading, the randomness
of interference increases, which makes the networks appear as
an equivalent Poisson network. In other words, the transmitters
behave like a PPP from the receivers’ perspective. Secondly,
we proposed to use a non-uniform discrete distribution to
replace the uniform distribution for the marks in the Matern-
II-continuous process. The resulting Matern-II-discrete pro-
cess therefore retains concurrent transmitters within the same
carrier sensing range and thus approximates the network dy-
namics more precisely than the Matern-II-continuous process.
Thirdly, we compared our models with simulations from ns2.
The results show that our model performs well in a wide range
of network densities.
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