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Abstract

Rateless codes have been shown to provide robust error correction over a wide range of binary

and noisy channels. Using a stochastic geometry model, thispaper studies the performance of rateless

codes in the cellular downlink and compares it with the performance of fixed-rate codes. For the case of

Rayleigh fading, an accurate approximation is proposed forthe distribution of the packet transmission

time of K-bit information packets using rateless codes. The two types of channel coding schemes are

compared by evaluating the typical user success probability and the rate. Based on both the analytical

results and simulations, the paper shows that rateless coding provides a significant throughput gain

relative to fixed-rate coding. Moreover the benefit is not restricted to the typical user but applies to all

users in the cellular network.
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Delay and Throughput.

I. I NTRODUCTION

A. Motivation

Rateless codes have generated a lot of interest as a promisingforward error correction (FEC)

technique [2]. Being able to adapt both the code constructionand number of parity symbols

to time-varying channel conditions, rateless codes hold the potential for achieving the capacity

with relatively short delays compared to fixed-rate codes, which have fixed code construction

and codeword length. Since rateless codes are able to transmit information adaptive to channel
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conditions, they are robust to transmissions under no channel state information at the transmitter

[3]. From a coding-theoretic point of view, [2], [4] comparethe performance of rateless codes

and punctured fixed-rate codes as a function of the receive SNR with the conclusion that

rateless codes perform consistently over a wide range of SNRs. For rateless codes, the encoder

implementation complexity is simpler, and a number of contributions in coding theory have led

to substantial reduction in the decoding complexity of rateless codes over noisy channels (see

[2] and references therein). Hence rateless codes have the potential for providing the best FEC

solutions in contemporary and next-generation wireless networks.

Rateless codes were originally developed for packet-level FEC at the application (APP) layer

to recover erased or lost packets [5], [6]. Subsequently, the Shannon theory for such variable-

length codes, i.e., the channel capacity and its achievability have been developed in [7]. At

the APP layer, the sequence of data packets is FEC encoded andcommunicated over an erasure

channel. The packets may get erased (lost) in the channel. Using the received (unerased) packets,

the decoder at the APP layer must recover the lost packets. Rateless codes by virtue of their

exceptional packet recovery properties have been incorporated into several data communication

standards.

In the cellular network context, rateless codes are part of the 3GPP Multimedia Broadcast

Multicast Service (MBMS) standard for broadcast file delivery and streaming services [8]. Fig.

1 shows the protocol stack of the 3GPP MBMS standard. In the protocol stack, the broadcast

and multicast data is protected by FEC present at the two layers, i.e., APP and physical (PHY).

At the PHY layer, each fundamental data unit is a packet of fixed length information bits. The

bits are FEC encoded for reliable transmission over a noisy channel. If the channel conditions

are good, all information bits are successfully decoded andthe packet moves up to higher layers.

Under a bad channel, the information bits are not decoded correctly and the packet is considered

erased (lost). The APP-FEC is based on Raptor codes while the PHY-FEC is based on fixed-rate

turbo or LDPC codes.

Even though the FEC schemes at the two layers have been designed separately to provide

error (or erasure) protection, a cross layer perspective reveals that the goals and requirements

of one layer FEC method compromises the performance of the other layer FEC method. For

example, to obtain the desired APP-FEC protection based on rateless codes, the encoded stream

of packets must be transmitted at a high rate over the channel. This high rate requirement can

only be met by sacrificing the PHY-FEC reliability. On the other hand, designing a very reliable
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Fig. 1. A block diagram view of the protocol stack of the 3GPP MBMS standard [8]. Any type of data to be delivered on

cellular downlink, i.e., streaming (audio, video etc) or download type (file, image, document etc) goes through the protocol stack

layer by layer and is broadcast/multicast to users through PHY layer transmission.

PHY-FEC restricts the rate of transmission over the channel, which makes it infeasible to meet

the high rate requirement of APP-FEC protection. So addressing the tradeoff between APP-

FEC and PHY-FEC becomes a crucial system design issue. One way to address it is to make

the PHY less reliable, i.e., allow the decoding error probability of PHY-FEC to be higher and

compensate for this by the gain due to APP-FEC. The concept of making the PHY less reliable

is also put forth in [9], which advocates to operate the coding rate and outage probability at

a point that maximizes the goodput from a MAC and PHY cross layer perspective, even if it

means comprising PHY reliability. In this paper, we proposea novel way to address the above

tradeoff by using rateless codes for FEC in the PHY layer of the cellular downlink. The goal

is to investigate the potential benefits of using rateless codes for FEC in the PHY layer by

quantifying the resulting performance improvements.

B. Related work

From a wireless communication point of view, rateless codesreceived a lot of interest through

the work of [10]. Rateless codes were employed in a single source-destination pair communica-

tion assisted by relays. With the underlying channel model of fading and shadowing, performance
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of collaborative relaying with mutual information accumulation was studied.

This paper is mainly motivated by the works of [11], [12]. Using tools from stochastic

geometry, [11] shows that rateless codes lead to performance improvements in a single-hop

wireless ad hoc network (WANET). A robust scheme based on rateless codes was proposed

to achieve the ergodic rate density (ERD) in a WANET. The Poisson rain model was used to

show that rateless codes enable the WANET to achieve a higherrate density and havenear

ERD performance with significantly shorter delays than fixed-rate codes. In [12], the meta

distribution of the SIR is proposed as a powerful tool to study the per-user performance in

a wireless network. The meta distribution of the SIR is the distribution of the transmission

success probability conditioned on the point process. It reveals fine-grained information on the

per-user performance which, in turn, leads to insights on packet end-to-end delay, QoS levels

and congestion across the network. Since rateless codes result in per-user rates that are matched

to the instantaneous channel, studying their performance in a framework similar to [12] will lead

to new insights in cellular network design.

C. Contributions

Using a stochastic geometry model, we characterize the performance of cellular downlink

channels when rateless codes are used for FEC in the PHY layerand compare it to the case

of conventional fixed-rate codes. We study the cellular downlink performance under the fixed

information transmission mode where aK-bit information packet is transmitted from a BS to its

served user. We quantify the distribution of the packet transmission time of rateless codes, defined

as the number of channel uses to successfully transmit aK-bit packet. The analytical result leads

to expressions for the success (coverage) probability and the rate on the cellular downlink, and

allows a comparison of rateless codes with fixed-rate codes.We show that with rateless codes in

the PHY layer, the success probability and rate on the cellular downlink increases substantially

relative to fixed-rate codes for a wide range of system parameter values, such as the path loss

exponent and the packet delay constraint. Also we show that rateless PHY-FEC leads to a SIR

gain in the cellular downlink (also referred to asthe horizontal gapin the literature [13], [14])

and provide expressions for the gain as a function of the system parameters. By analysis, we

show that even the worst type of user, in terms of interferer activity, has a throughput benefit.

Simulation results go one step further and indicate that every user in the cellular downlink has

a throughput gain under the proposed scheme irrespective ofits location.
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The remainder of the paper is organized as follows. The system model is presented in Section

II. Section III presents the theoretical results of the paper concerning the distribution of the

packet transmission time of rateless codes. Section IV compares the cellular network performance

under two FEC scenarios, rateless codes and fixed-rate codes. Section V discusses the numerical

results and insights. Section VI concludes the paper. The appendix contains the mathematical

derivations.

II. SYSTEM MODEL

We consider a cellular network in which BSs are modeled by a homogeneous Poisson point

process (PPP)Φ = {Xi}, i = 0, 1, 2, · · · of intensity λ. It is assumed that each BSXi

communicates with one user located uniformly at random in its Voronoi cell, and its location

is denoted byYi. The distance betweenXi and its served userYi is Di. Every BS wishes to

communicateK bits to its served user. When the BSXi is communicating to its userYi, all

other BSs interfere until they have completed their own transmission. Once the interfering BSs

receive the acknowledgment (ACK) signal from their users, they become silent, i.e., they cease to

interfere with the ongoing transmissions. A second case in which every interfering BS transmits

to their usercontinuouslywithout turning off is considered later.
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Fig. 2. A block diagram description of the rateless encoding and decodingoperations in the downlink. The encoder system is

present at the BS side and the decoding process is carried out at the user side. In the diagram, LT stands for Luby Transform.
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Fig. 2 provides a block level overview of the PHY layer FEC encoding and decoding process

of the K-bit information packet at the BS and user, respectively. At the BS, the rateless FEC

encoding is implemented in two stages. TheK information bits are first encoded by a fixed-

rate outer code. The outer code can be a LDPC code, repeat accumulate (RA) code, or a polar

code. The encoded bits output by the outer coder are subsequently encoded by the rateless Luby

Transform (LT) coder. The LT encoded bits are input to the symbol mapper, which maps bits to

finite constellation QAM symbols. The size of the QAM constellation is determined based on the

knowledge of the channel statistics at the BS. The parity symbols are transmitted incrementally

over the channel, where they are corrupted by the interference and thermal noise. To simplify the

theoretical analysis in the paper, we assume that the symbolmapper outputs Gaussian symbols.

At the user side, the receiver collects the channel output symbols and passes them through the

LT decoder, which uses the standard belief propogation or sum-product algorithm for decoding.

The log likelihood ratio (LLR) values output by the LT decoderare input to the fixed-rate outer

decoder. The desired information bits are obtained by applying the hard decision to the soft

values output by the outer decoder. The receiver at user collects the channel output symbols for

everyL channel uses and attempts to decode theK information bits. The transmission of parity

symbols continues until the receiver succeeds to decode alltheK information bits and sends an

ACK to the BS or the delay constraint is reached.

Each BS uses constant transmit powerρ. The wireless propagation channel is affected by

path loss and small-scale fading. We assume a quasi-static fading channel from the serving

BS and also the interfering BSs1. Each packet ofK bits is encoded and transmitted within a

single coherence time over a Rayleigh block fading channel. For a coherence timeTc and signal

bandwidthWc, each packet transmission ofK bits has a delay constraint ofN = TcWc channel

uses. LetTi denote the packet transmission time of BSXi to its userYi. Each BSXi has up toN

channel uses to transmit aK-bit packet, i.e.,0 < Ti ≤ N . The medium access control (MAC)

state of BSXi at time t is thus given byei(t) = 1 (0 < t ≤ Ti), where1(·) is the indicator

function.

1For simplicity, we assume a flat fading channel in the paper, yet the concepts and results apply to OFDM transmission over

frequency selective fading, common in cellular downlink.
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The received signal at userYi is

yi(t) = hiiD
−α/2
i xi +

∑

k 6=i

hki|Xk − Yi|−α/2ek(t)xk + zi, 0 < t ≤ Ti, (1)

wherehki is the fading coefficient from BSs{Xk}, k 6= i to userYi, α is the path loss exponent,

the1st term represents the desired signal from BSXi and the2nd term represents the interference.

The interference power and SINR at userYi at time t are given by

Ii (t) =
∑

k 6=i

ρ|hki|2|Xk − Yi|−αek(t) (2)

and

SINRi (t) =
ρ|hii|2D−α

i

1 + Ii(t)
, (3)

respectively2.

The time-averaged interference3 at userYi up to timet is given by

Îi(t) =
1

t

∫ t

0

Ii(τ) dτ. (4)

The achievable rate at userYi depends on the type of receiver employed. If userYi employs

a matched receiver, the achievable rateCi(t) is given by

Ci(t) =
1

t

∫ t

0

log2 (1 + SINRi (τ)) dτ. (5)

If userYi employs a nearest-neighbor decoder performing minimum Euclidean distance decod-

ing based on only the desired channel gain knowledge at the receiver [15], then the achievable

rateCi(t) is

Ci(t) = log2

(

1 +
ρ|hii|2D−α

i

1 + Îi(t)

)

. (6)

The Ci(t) in (6) is a lower bound to that in (5). This follows by noting that the spectral

efficiency term log2 (1 + SINRi (τ)) in (5) is a convex function ofIi(τ) and subsequently

applying Jensen’s inequality for convex functions toCi(t) in (5). The receiver in (6) is a

practical choice since it requires only an estimate of the channel gain from the serving BS

and no knowledge of the interference power, whereas the receiver in (5) has the demanding

requirement of estimating both the desired channel gain andthe instantaneous interference power

2In (3), the noise power is normalized to1 with the assumption that the transmit powerρ is scaled accordingly.

3For remainder of the paper, the term “average interference” refersto time averaging.
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while receiving data on the downlink channel4. For the remainder of the paper, we assume that

every user employs the practical receiver in (6).

Every interfering BS transmits aK-bit packet to its user and after receiving the ACK signal

becomes silent without further interference to the cellular network leading to a monotonically

decreasing interference, i.e., bothIi(t) and Îi(t) are decreasing functions oft. As a result, the

achievable rate at userYi in (6) is monotonically increasing witht. Based on (6), the time to

decodeK information bits and thus, the packet transmission timeTi are given by

T̂i = min {t : K < t · Ci(t)} (7)

Ti = min
(

N, T̂i

)

. (8)

A characterization of the distribution of the packet transmission timeTi in (8) is essential to

quantify the performance advantages of using rateless codes for PHY-FEC in a cellular network.

III. PACKET TRANSMISSIONTIME

In this section, we present a theoretical analysis of the cellular network performance that is

consistent with the cellular system model in Section II. To analytically study the distribution of

the packet transmission time, we first condition on the origin o ∈ Φ and consider the cell of a

BS placed at the origin, i.e., thetypical cell. The user placed at a uniformly random point in the

typical cell is called thetypical user, and we denote its achievable rate byC(t)5 and the distance

from its BS byD. We note that from (7) and (8), the distribution of the packettransmission

time T depends on the achievable rateC(t), which in turn, depends on the downlink distance

D as per (6).

The distribution of the downlink distanceD is unknown, hence we use an approximation to it

by considering theCrofton cellin place of the typical cell. The Crofton cell is the cell in a Voronoi

tessellation containing the origin but not as its nucleus. For the Crofton cell, the distance from

the origin to the nucleus is Rayleigh distributed [16]. The Crofton cell is larger than the typical

cell, but the two cells have the same distribution to within an unknown constant factor [17]. Thus

usingthe theoretically known distance distribution of the Croftoncell gives a strict upper bound

on the distance distribution of the typical celland hence, the approximation is well justified. So

4In [11], it was shown that for ad hoc networks, the receiver in (6) provides a performance quite close to that of (5) for

practically relevant network settings, with low complexity.

5Note that the achievable ratesCi(t) for all i andC(t) are statistically identical.
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we use the Rayleigh distribution for the downlink distance, i.e.,D ∼ Rayleigh(σ) with a mean

of σ
√

π/2. The parameterσ = 1/
√
2πcλ with c = 1 is the scale parameter of the Rayleigh

distribution. The Rayleigh distribution for the downlink distance for the model considered here

was originally proposed in [18] with a value ofc = 1.25 to get an approximation to the empirical

distribution ofD. However our goal is to use a strict upper bound on the distribution (CDF) of

D and hence we choosec = 1.

Let the location of the typical user be denoted byY0. For notational simplicity, we consider

the translated version of the PPP, i.e.,Φo
−Y0

, such that the typical user is at the origin6. To

characterize the CCDF of the packet transmission timeT , we first note that the CCDFs ofT

and T̂ are related as

P (T > t) =







P

(

T̂ > t
)

t < N

0 t ≥ N.
(9)

Hence we just focus on the CCDF of̂T from now onwards. We consider the two events

E1(t) : T̂ > t

E2(t) :
K

t
≥ log2

(

1 +
ρ|h|2D−α

1 + Î(t)

)

. (10)

Based on standard information-theoretic results, a key observation is that for a givent, the event

E1(t) is true if and only ifE2(t) holds true. Thus

P

(

T̂ > t
)

= P

(

K

t
≥ log2

(

1 +
ρ|h|2D−α

1 + Î(t)

))

(11)

= P

(

ρ|h|2D−α

1 + Î(t)
≤ 2K/t − 1

)

. (12)

Assuming a high enough BS densityλ, we ignore the noise term for the remainder of the

paper. We letθt = 2K/t − 1 and, without loss of generality, setρ = 1. Then, (12) can be written

out as

P

(

T̂ > t
)

= E

[

1− P

(

|h|2D−α

Î(t)
≥ θt

∣
∣
∣D

)]

(a)
= E

[

1− LÎ(t) (θtD
α)
]

, (13)

6For the PPPΦ = {Xi}, Φo , Φ ∪ {o} andΦ
−Y0

, {Xi − Y0}. See [16] for details on this notation.
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where (a) follows from Rayleigh fading andLY (s) = E
[
e−sY

]
is the Laplace transform of

random variableY . An expression for̂I(t), the average interference up to timet at the typical

user, can be obtained from (4):

Î(t) =
∑

k 6=0

|hk|2|Xk|−αηk(t) (14)

ηk(t) =
1

t

∫ t

0

ek(τ) dτ = min (1, Tk/t) . (15)

The marksηk(t) are correlated for differentk, which makes it impossible to find the exact CCDF

in (13). In the following, we discuss three approaches to study the CCDF.

A. Upper Bound

From (12), the CCDF can be upper bounded by considering an upperbound to the interference

Î (t) in (14). Sinceηk(t) < 1 for all k, we have the following upper bound for̂I (t),

Î(t) ≤ I =
∑

k 6=0

|hk|2|Xk|−α. (16)

Hence from (12), an upper bound to the CCDF is given by

P

(

T̂ > t
)

≤ P

( |h|2D−α

I
≤ 2K/t − 1

)

. (17)

Similar to (12), the upper bound in (17) can be written out resulting in the expression (13)

involving I instead ofÎ (t). Thus, the bound to the CCDF ofT can be obtained by evaluating

the Laplace transform ofI in (16) and is given in the following theorem.

Theorem 1. An upper bound on the CCDF of typical user packet transmission time,T in (8),

is given by

P (T > t) ≤ 1− 1

2F1 ([1,−δ] ; 1− δ;−θt)
, t < N, (18)

where2F1 ([a, b]; c; z) is the Gauss hypergeometric function,δ = 2/α and θt = 2K/t − 1.

Proof: Refer to Appendix A.

Now we develop a lower bound to the CCDF of the typical user packet transmission time.
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B. Lower Bound

From (12), the CCDF can be lower bounded by considering a lower bound to the interference

Î (t). Hence, we use the nearest-interferer lower bound toÎ (t) and obtain

P

(

T̂ > t
)

= P

(

|h|2D−α

Î(t)
≤ θt

)

(a)

≥ P

( |h|2D−α

I(t)
≤ θt

)

≥ P

( |h|2D−α

|h1|2|X1|−α 1 (t ≤ T1)
≤ θt

)

(19)

(b)
= P

( |h|2D−α

|h1|2|X1|−α
≤ θt

)

︸ ︷︷ ︸

P1

P (t ≤ T1)
︸ ︷︷ ︸

P2

, (20)

where in (a)I(t) is the instantaneous interference at timet, which is monotonically decreasing

with t, and hence,̂I(t) ≥ I(t). Splitting (19) by conditioning on the eventt ≤ T1 and its

complementt > T1 leads to (b).

Let Tni be the packet transmission time based on interference fromonly the nearest interferer

with the assumption that it is always active. In the following, the distribution ofTni is given.

Proposition 1. The CCDF ofTni is given by

P (Tni > t) = 1− 2F1 ([1, δ] ; 1 + δ;−θt) , (21)

whereδ = 2/α and θt = 2K/t − 1.

Proof: Similar to (11), the CCDF ofTni is given by

P (Tni > t) = P

(
K

t
≥ log2

(

1 +
|h|2D−α

|h1|2|X1|−α

))

. (22)

The RHS of (22) is computed in Appendix B.

Note that the CCDF ofTni in Proposition 1 is the same as the termP1 in (20).P2 = P (t ≤ T1)

is the probability that the nearest-interfererX1 transmits up to timet and unfortunately it does

not seem possible to find an expression. However, in the next subsection, we illustrate the

applicability of P1, with an expression in (21) to study the distribution of the typical user’s

packet transmission time.
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C. Independent Thinning Approximation

For small t, the interference is constant since all BSs are active. Hencethe upper bound in

(18) is very accurate. For moderatet, the interference starts to decrease since successful BSs turn

off and the upper bound is still decent. For larget, however the interference is decaying more

rapidly and the bound in (18) gets loose. Hence we seek to obtain a better analytical expression

for the tail of the CCDF in this section.

To characterize the dependence of the typical user’s transmission time on the time varying

interference of the cellular network, we make a simplifyingapproximation. The assumption is

that the interfering BSs transmit for a random durationT̄k from time t = 0 and then become

inactive, irrespective of their packet success or failure.Statistically theT̄k are assumed iid with

CDFF (t̄) and hence this approximation is termedindependent thinning model. Under this model,

the instantaneous interference at the typical user can be written as

Ĩ (t) =
∑

k 6=0

|hk|2|Xk|−α1
(
t ≤ T̄k

)
. (23)

The average interference at the typical user is given by

Ī (t) =
∑

k 6=0

|hk|2|Xk|−αη̄k(t) (24)

η̄k(t) = min
(
1, T̄k/t

)
.

From now onwards, we just usēη instead ofη̄(t) for brevity.

Under the independent thinning model, the typical user packet transmission timeT is

T̂ = min

{

t : K < t · log2
(

1 +
|h|2D−α

Ī(t)

)}

T = min
(

N, T̂
)

. (25)

The CCDF of the typical user’s packet transmission timeT in (25) is bounded in the following

theorem.

Theorem 2. An upper bound on the CCDF of typical user packet transmission time under the

independent thinning model,T in (25), is given by

P (T > t) ≤







Pub(t) t < N

0 t ≥ N,
(26)
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where

Pub(t) = 1− 1

2F1 ([1,−δ] ; 1− δ;−θt min (1, µ/t))
, (27)

and

µ =

∫ N

0

(
1− 2F1

(
[1, δ] ; 1 + δ; 1− 2K/t

))
dt. (28)

Proof: See Appendix C.
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Fig. 3. The CCDF of the packet transmission time in a cellular network withλ = 1 at α = 3. The curves from both the

network simulation and typical user analysis are shown.

Fig. 3 plots the CCDF of the packet transmission time in a cellular network withK = 75,

α = 3 andN → ∞. The simulation curve corresponds to the network simulation as per the

system model in (7)-(8). A curve showing the fitting of a gammadistribution to the CCDF of

the packet transmission time is also shown and shows a near-perfect match. For the typical user,

the upper bound of (18) and the result of Theorem 2 are shown.

The CCDF of the typical user packet transmission time from the independent thinning approx-

imation given in Theorem 2 serves as a simplified model to the exact cellular network described

in Section II. The analytical results of this section will beused to quantify the performance of

the cellular downlink when rateless codes are used for PHY-FEC. The predicted performance of

cellular network from the results of Theorem 2 will be compared to the actual cellular network

performance based on simulation in Section V.
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IV. PERFORMANCECOMPARISON

In the system model of our paper, every BS communicates a fixed amount of information (K

bits) to its user and becomes silent after ACK signal reception. In the following, we describe

a methodology to quantify the benefits of using rateless codes for PHY-FEC. We study the

performance of a cellular network under two scenarios. In one scenario, the cellular network

employs rateless codes for FEC in the PHY layer while in the second scenario, conventional

fixed-rate codes are used for FEC.

When the cellular network uses fixed-rate codes for PHY layer FEC, each BS encodes aK

bit information packet using a fixed-rate code, e.g., a Reed Solomon code or turbo code, and

transmits the entire codeword ofN parity symbols. The user receives theN parity symbols

over the downlink channel and tries to decode the information bits using the BCJR or Viterbi

algorithm. Depending on the instantaneous channel conditions, the single decoding attempt may

be successful or not.

When the cellular network uses rateless codes for FEC, each BS encodes aK bit packet using

the encoding process illustrated in Fig. 2a. The parity symbols are incrementally generated and

transmitted untilK bits are decoded at the user or the maximum number of parity symbolsN

is reached. The user performs multiple decoding attempts todecode the information packet as

per Fig. 2b. The user decodes theK bits using a potentially variable number of parity symbols.

An outage occurs if theK bits are not decoded withinN parity symbols.

The metrics used to compare the performance of the two FEC approaches are the typical user

success probability and rate, which are defined below for both fixed-rate coding and rateless

coding schemes.

A. Fixed-Rate Coding

The SIR threshold for fixed-rate coding is given byθ = 2K/N − 1. The SIR of the typical

user is given bySIR = |h|2D−α

I
, whereI is given in (16) and similar to Section III,D follows

the same Rayleigh distribution withc = 1. The success probability and rate of the typical user

are defined and given as

ps(N) , P
(
SIR > 2K/N − 1

)

=
1

2F1 ([1,−δ] ; 1− δ; 1− 2K/N )
(29)
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RN , ps(N) log2(1 + θ)

=
K/N

2F1 ([1,−δ] ; 1− δ; 1− 2K/N )
. (30)

The two terms inRN exhibit a tradeoff as a function ofN , namely the success probabilityps(N)

is increasing and the ratelog2(1 + θ) is decreasing withN . Let Nf be the optimal value ofN

to maximizeRN in (30).

B. Rateless Coding

The SIR threshold for rateless coding at timet is given by θt = 2K/t − 1. The success

probability and rate of the typical user are defined as

ps(N) , 1− P

(

T̂ > N
)

(31)

RN ,
Kps(N)

E [T ]
. (32)

Note that as per (8),T is a truncated version of̂T at N . Let Nr be the optimal value ofN to

maximizeRN in (32)7.

In the following, we quantify the performance gains of usingrateless codes.

1) SIR Gain: In [13], [14], a framework for characterizing the performance benefit of a new

transmission/reception technique compared to a baseline system is presented. The performance

benefit is quantified as a gain in the SIR achievable by the new technique across the cellular

network. If F̄1 and F̄2 represent the CCDFs of the SIRs under the baseline scheme and thenew

technique respectively, then the new technique provides a SIR gain ofG if the relationship

F̄2(θ) ∼ F̄1 (θ/G) , θ → 0, (33)

is satisfied. In [13], it is shown that this asymptotic relationship impliesF̄2(θ) ≈ F̄1 (θ/G) for

all θ. Based on (33), the following proposition provides the performance gain of using rateless

codes for PHY layer FEC.

7The expressions in (29) and (30) are independent of the specific fixed rate code used in the cellular downlink. Each type of

channel code has a probability of decoding error. However the information outage probability, obtained by the complement of the

success probability in (29), can be interpreted as the limiting value of the probability of decoding error achieved by individual

channel codes for large codeword length averaged over fading andpoint process. (See [19] for details). Similar comments apply

to (31) and (32).
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Proposition 2. Rateless coding in cellular downlink leads to a SIR gain ofG = N
µ

relative to

fixed-rate coding under the independent thinning model, where µ = E
[
T̄
]

is the mean interferer

transmission duration given in (28).

Proof: The gain is obtained by comparing the success probabilitiesfor both rateless coding

and fixed-rate coding. Under the independent thinning model, the success probability for rateless

coding can be bounded by evaluating (55) att = N , which yields

p̃s(N) ≥ 1

2F1 ([1,−δ] , 1− δ,−θmin (1, µ/N))
. (34)

Comparing the abovẽps(N) to that in (29) and noting thatµ < N always, we observe that the

relation in (33) is satisfied withG = N
µ
> 1.

The SIR thresholdθ is reduced by a factorN
µ

and hence, the above result under the independent

thinning model proves that rateless coding leads to improved coverage on the cellular downlink.

A key observation is that the SIR gainG is unaffected by the value ofc in the distribution of

D. Both p̃s(N) andps(N) in (29) have the termc in their expressions, thus the relation in (33)

is satisfied for anyc. This further justifies the choice ofc = 1 for mathematical simplicity.

An expression forµ is given in (28), integrating the result of Proposition 1 from 0 to N . If

interferers stay active for a longer duration,µ is large and the gainG is small whereas if the

interferer durations are short, the resulting gainG is large. For the case ofα = 4, the expression

in Proposition 1 admits the simpler form

µ =

∫ N

0

(

1− arctan
√
2K/t − 1√

2K/t − 1

)

dt. (35)

Another way to express the performance benefit offered by rateless codes is discussed below.

For a given value ofN , comparing the success probabilities of both rateless coding and fixed-rate

coding indicates how well rateless coding performs. The success probability gaings is defined

as the ratio of success probability of rateless coding to that of fixed-rate coding. Based on (29)

and (34), a lower bound forgs is given below.

Corollary 1. In cellular downlink, the success probability gain is bounded as

gs ≥ 2F1

(
[1,−δ] ; 1− δ; 1− 2K/N

)

2F1 ([1,−δ] ; 1− δ; (1− 2K/N )µ/N)
. (36)

Both the SIR gainG and the success probability gaings are based on comparing the success

probabilities of the two FEC schemes, butG is the preferred choice since it depends on fewer

parameters. In [13], the key advantages ofG relative togs are discussed.
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2) Rate Gain: The rate gaingr is defined as the ratio of the rates of rateless coding and

fixed-rate coding. Comparing the rates in (30) and (32) gives the following result.

Proposition 3. In cellular downlink, the rate gain of rateless codes relative to fixed-rate codes

is

gr = gs
N

E [T ]
. (37)

Note that N
E[T ]

> 1 can be viewed as a gain in packet transmission time. The transmission

time and the success probability gains act in tandem to produce a rate gaingr > 1.

To compute the rate in (32) analytically under the independent thinning model, the success

probability bound in (34) and the bound

E [T ] ≤
∫ N

0

Pub(t) dt, (38)

on the expected packet time are used. In (38),Pub(t) is obtained from Theorem 2.

The claims of Propositions 2 and 3 are numerically validatedin Section V.

C. Continuous Transmission

We now consider the case where every interfering BS is transmitting continuouslywithout

turning OFF during the entire duration of the typical user reception. The MAC state of interfering

BS Xk at time t is thus given byek(t) = 1, t ≥ 0. Hence, the interference at the typical user

does not change with time and is given byI in (16) and, accordingly, the SIR at the typical user

is time-invariant. We assume that the BS serving the typical user encodes aK-bit information

packet with a rateless code and transmits it using variable number of parity symbols under a

delay constraint ofN . Thus in the continuous transmission case, the result from Theorem 1 can

be used to provide the CCDF of the typical user packet transmission time and is given by

P (T > t) = 1− 1

2F1 ([1,−δ] ; 1− δ;−θt)
, t < N. (39)

In the following, we compare the performance of rateless coding to fixed-rate coding under

the continuous transmission case. The definitions in Sections IV-A and IV-B are valid for this

case also. In terms of success probability, evaluating the RHS of (39) att = N and taking the

complement leads to the same expression as the success probability for fixed-rate coding in (29).

For the rate gain, we compare the expressions in (30) and (32)evaluated based on (39). We

observe that there is a rate gain, which is quantified below.
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Proposition 4. The rate gain of rateless codes in cellular downlink under thecontinuous

transmission case is given by

ḡr =
N

∫ N

0
P (T > t) dt

. (40)

The integral in (40) is dependent on the CCDF expression given in (39). The rate gain satisfies

ḡr > 1.

One additional insight can be obtained from the result for continuous transmission. The gain

gr > 1 predicted in Proposition 3 applies to the typical user and isobtained by the spatial average

of rate gains across the cellular network. Even thoughgr > 1, the gain need not indicate that

every user across the cellular network has a rate benefit, i.e., it is not clear whether a user in

a dense region of the network would experience a rate benefit.But the gainḡr > 1 given in

Proposition 4, again obtained by spatial averaging involves a constant interference to the typical

user. This kind of typical user can be thought of (interpreted) as a user with the worst type

of interferer activity in a practical cellular network. Hence the result in Proposition 4 clearly

indicates that even the user with worst interferer activityin the cellular network has a rate benefit

by using rateless codes for PHY-FEC.

Corollary 2. The rate gain in cellular downlink by using rateless codes forPHY-FEC satisfies

the relation

1 < ḡr < gr. (41)

Proof: The rate gain̄gr in Proposition 4 is based on the constant interferenceI given in

(16) while the rate gaingr in Proposition 3 is based on the decreasing interferenceÎ(t) in (14).

Note thatÎ(t) ≤ I and hence the packet transmission time gainN
E[T ]

is smaller for the continuous

transmission case. Hence by comparison of (37) and (40), we observe thatgr > ḡr.

The rate gain of the typical user in a practical cellular network is greater than that of the user

with worst interferer activity, i.e.,BS-UE pairs in very dense regions tend to experience gain

representative of̄gr whereas the BS-UE pairs in non-dense regions tend to obtaingr like higher

gain. These insights are clearly illustrated in the next sectionon numerical results.

V. NUMERICAL RESULTS

In this section, we present numerical results that illustrate the performance benefits of using

rateless codes for FEC in the PHY layer of a cellular network.Inspired by [12], the numerical
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results are presented under two frameworks in the subsections below. The first one provides

insights into the typical user’s performance. The second one offers a higher level of detail by

focusing on the per-user performance. The typical user performance is a spatially averaged

measure while the per-user performance quantifies the performance of individual users in a

sample network realization8.

A. Typical User Performance

In this framework, computing either the success probability or the rate based on (29) to (32)

involves spatial averaging of the performance metric over the PPP. This computation can be

accomplished both by simulation and the analytic expressions in Sections IV-A and IV-B. For

the simulation, the cellular network was realized on a square of side60 with wrap-around edges.

The BS PPP intensity isλ = 1. The information packet size isK = 75 bits. The cellular

network performance was evaluated for varying path loss exponentα and delay constraintN .

The network is simulated as per the system model described inSection II while the independent

thinning model of Section III-C is used for the analytical approximation.
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Fig. 4. The success probability as a function of the delay constraintN in a cellular network withλ = 1 at α = 3 andα = 4

for both fixed-rate coding and rateless coding based on (29), (31) and (34) respectively.

In Fig. 4, the success probability is plotted as a function ofthe delay constraint for both fixed-

rate coding and rateless coding based on (29), (31) and (34).It is observed that forα ∈ {3, 4},

8The analytical results of the paper focus on the typical user performance. On the other hand, an analytical study of the

per-user performance is a subject of future work.
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rateless coding leads to a higher success probability relative to fixed-rate coding. In a cellular

network with rateless coding, BSs with good channel conditions transmit theK bits to their

users in a short amount of time and turn OFF. This process reduces the interference for the

remaining BSs, allowing them to communicate to their users with improved SIR conditions.

Hence for a givenN , a cellular network with rateless coding has a higher numberof successful

packet transmissions relative to fixed-rate coding.
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Fig. 5. The typical user rateRN in a cellular network withλ = 1 as a function ofN . In the figure, the solid line corresponds

to fixed-rate coding and the two other line types correspond to rateless coding. For fixed-rate coding, the rate is based on (30)

whereas for rateless coding, the expression in (32) is used for computing the rate. The analytical approximation is obtained by

using (34) and (38).

Fig. 5 shows the rateRN for both fixed-rate coding and rateless coding as a function of

N . For both schemes, there is an optimalN that maximizes the rate, balancing the tradeoff

between increasingps(N) andE [T ] (or N for fixed-rate coding). For rateless coding, the success

probability increases faster, and the expected packet transmission time grows slowly withN

relative to fixed-rate coding. Hence it is observed thatNr is higher thanNf , and the maximal

rate for rateless coding is higher than that of fixed-rate coding. TheNr from simulation and the

analytical results of Theorem 2 match very well, validatingthe independent thinning model.

Fig. 6 plots the typical user rate as a function of the path loss exponentα. For fixed-rate coding,

at eachα, the typical user rate is computed at the maximizingNf . For rateless coding, the rate at

both valuesNf andNr are plotted. Fig. 6 clearly illustrates the performance advantage of using

rateless codes. At eachα, it is observed that the throughput gain is approximately constant when

operating at eitherNf or Nr.
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Fig. 6. The typical user rate in a cellular network withλ = 1 for both fixed-rate coding and rateless coding against the path

loss exponentα. For eachα, the typical user rate for rateless coding at both valuesNf andNr are plotted.

B. Per-user Performance

The numerical results in the previous subsection provide the performance of the typical user,

which is the spatial average of all users’ performance. Whilethe spatial averages allow a

comparison of the average network performance with rateless coding to that with fixed-rate

coding, they do not reveal the behavior of individual BS-UE pairs in a given network realization

[12]. How does a user near to (or far from) the BS benefit from rateless coding? In this subsection,

we attempt to answer the question by focusing on the per-userperformance in a sample network

realization, i.e., conditioned on a PPP realization. The numerical results presented here are based

purely on simulation.

Fig. 7 shows a snapshot of a cellular network with BSs and usersrepresented by× and ◦
respectively. For this sample network realization, the rates achieved by each BS-UE pair for both

FEC schemes is computed. Since the network realization is fixed, the rates are averaged only

over fading. For each pair, the rate for rateless coding is shown first while that for fixed-rate

coding is below it. It is observed that the users very close totheir serving BS achieve the most

benefit.

One way to quantify the performance of the entire sample network realization is to observe

the performance values as a function of the BS-UE distance. The insights from Fig. 7 are verified

in Fig. 8, which shows the ratio of rates of the two FEC schemesfor every BS-UE pair in the

cellular network simulation square of side60 as a function of the BS-UE distance. This plot
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Fig. 7. Rates of BS-UE pairs in a sample realization of a cellular network withλ = 1 at α = 4 andN = 50. For each pair, a

ratio of rates is shown. The rate for rateless coding is shown at the top andthat for fixed-rate coding is shown below it.
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Fig. 8. The ratio of rate with rateless coding to the rate with fixed-rate coding for every BS-UE pair as a function of the BS-UE

distanceD in a sample cellular network realization withλ = 1 at (a)α = 3 andN = 60 and (b)α = 4 andN = 50.
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clearly illustrates thatevery user in the cellular network with PPP realization has a throughput

gain > 1 by using rateless codes. Since a PPP is inclusive of other point processes9, the insight

from Fig. 8 is very supportive of using rateless codes for PHY-FEC. On average, it may appear

that the closer a user is to its serving BS, the larger its gain.But more details can be obtained

from Fig. 8. For a specific value ofD, it is observed that the different BS-UE pairs with such a

D can possibly achieve different throughput gains. For example from Fig. 8a, the BS-UE pairs

with a distance of0.1 may achieve a gain anywhere from1 to around7. Similarly for a distance

of 0.6, the gains can be from1 to 4. In Fig. 8a, the plotted rates have been averaged over the

fading process, and hence for a specific value ofD, the different gains depend on the interferer

locations. For a fixedD, smaller cells have nearby interferers leading to a lower gain whereas the

bigger cells have interferers further away and hence achieve a higher gain. Similar observations

hold true for Fig. 8b also.
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Fig. 9. The per-user rates for rateless coding and fixed-rate coding ina cellular network realization as a function ofD at (a)

α = 4 andN = 60 and (b)α = 3 andN = 75.

Fig. 9 plots the per-user rates for both rateless coding and fixed-rate coding against the BS-

UE distanceD. Again a sample cellular network realization is consideredand the per-user rates

9More precisely, considering the probability space of counting measures(N ,N,Pλ), wherePλ is the distribution of the

uniform PPP of intensityλ, any realizationϕ of a stationary point process of intensityλ belongs to the outcome spaceN of

the uniform PPP.
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are averaged over the fading process. Similar to Fig. 8, it isobserved that a throughput gain

is present for every value ofD. The per-user performance results presented in Figs 8 and 9

fully support and validate the performance benefits shown for the typical user, i.e., the potential

coverage and throughput improvements on the cellular downlink by using rateless codes in the

PHY layer apply not just to the typical user but to every user in the cellular network, irrespective

of its location within a cell either nearby or far away from a BS.

One more key additional insight can be obtained from Fig. 9 that was not captured in the

typical user analysis. Since rateless codes adapt the amount of redundancy to instantaneous

channel conditions, i.e., the BS-UE distance and interfererlocations in Fig. 9, the users close to

the serving BS get much higher rates under rateless coding relative to fixed-rate coding. For a

sample network realization, these higher per-user rates under rateless coding will lead to positive

effects on network congestion, packet end-to-end delay, and QoS levels. The interaction of the

two cross layer FEC schemes, PHY-FEC and APP-FEC depends on the user location in a cell.

The users close to the BS have good SIR conditions, hence they require less (few) FEC resources

for successful data reception, which can be handled by PHY-FEC only without engaging the

APP-FEC. The users further away from the BS require more FEC protection for data reception.

Also for these users, depending on the type of data (streaming or file delivery), the relative

amount of PHY-FEC and APP-FEC, i.e., whether to use a high ratePHY-FEC and low rate

APP-FEC or vice versa, can be optimized accordingly10.

C. Practical Considerations

The current cellular networks employ a basic form of an adaptive modulation and coding

scheme (MCS) [20]. Prior to the start of packet transmission,the downlink SINR is estimated

using pilot symbols and mapped into a corresponding4-bit CQI index. This CQI is fed back to

the BS, which selects the appropriate QAM constellation sizeand code rate. The code rate is

fixed before transmission, i.e., no adaptation to time-varying channel conditions (which include

interference) occurs. As illustrated in the paper, the lackof adaptivity of an MCS to channel

variations leads to rate loss. In addition, the CQI feedback is subject to estimation error, and

transmitted together with other control information pertaining to multiple subcarriers over a noisy

feedback channel. Thus, the efficiency of 4G LTE MCS in matching the rate of transmission

10For rateless codes, a high (low) rate FEC means a small (large) numberof parity symbols over a short (long) delay constraint.
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to the instantaneous channel conditions is limited. This issue can be addressed by employing

rateless codes shown in Fig. 2 for PHY-FEC. At the BS, the CQI index can be used to choose an

optimal degree distribution for the inner (LT) code and a fixed code rate for the outer code along

with a QAM constellation size. Due to the LT code component, the number of parity symbols

to decodeK information bits are adapted to the instantaneous channel conditions leading to

channel matched rates.

5G cellular networks are envisioned to incorporate a host ofnew wireless concepts and

technologies like mm-wave transmission, massive MIMO, extreme BS densities and cooperation

(amorphous networks). All of these techniques will create dynamically changing channel condi-

tions, and the underlying PHY layer needs to be adaptive and responsive to channel fluctuations

for the new schemes to integrate and work efficiently. This can be accomplished by employing

rateless codes for PHY layer FEC11.

VI. CONCLUSION

The paper proposes rateless codes as a viable FEC technique in the PHY layer of a cellular

downlink setting and investigates its performance advantage over fixed-rate codes. The focus

is on the case of fixed information transmission from every BS to its user using a variable

number of parity symbols. An independent thinning model wasproposed to study the effects

of time-varying interference on the packet transmission time. Under this model, it was shown

that rateless coding in the PHY layer leads to a SIR gain in thecellular downlink. The potential

of rateless codes to improve the coverage probability, provide a throughput gain for every user

in the network, and achieve per-user rates which lead to efficient network operation relative to

fixed-rate codes was clearly demonstrated through numerical results representing both spatially

averaged and per-user performance measures for practically significant network scenarios. The

results of the paper hint that when rateless codes are incorporated into PHY-FEC, the two cross

layer FEC schemes can potentially coexist in a seamless fashion and be adaptive to instantaneous

11While a study of the implementation complexity of rateless codes and fixed-rate codes is beyond the scope of this paper,

[21] provides some light. In [21], the performance of Raptor codes and Reed-Solomon codes are compared for a streaming

application. The processing requirements, defined as the number of XOR operations for encoding and decoding, for a Raptor

code grow only linearly with the source size whereas for a Reed-Solomoncode, they grow quadratically. For a given packet

loss rate, the Raptor codes require fewer resources than Reed-Solomon codes thus exhibiting a superior tradeoff between packet

loss protection and complexity.
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channel conditions relative to the tradeoff exhibited between the two in the case of fixed-rate

PHY-FEC.
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APPENDIX A

PROOF OFTHEOREM 1

For I in (16), the Laplace transform can be expressed as

LI|D(s) = exp

(

−πλEh

[∫ ∞

D

(

1− e−s|h|2v−α

)

dv2
])

= exp

(

−πλ

∫ ∞

D

(

1− 1

1 + sv−α

)

dv2
)

.

Hence,

LI|D (θtD
α) = exp

(

−πλ

∫ ∞

D

(

1− 1

1 + θt (D/v)α

)

dv2
)

(a)
= exp

(

− πλD2 θδt

∫ θt

0

δ

(1 + y) yδ
dy

︸ ︷︷ ︸

H(t)

)

, (42)

where (a) follows from the substitutiony = θt (D/v)α.

The functionH (t) in (42) can be written as

H (t) =
δθt
1− δ

2F1 ([1, 1− δ] ; 2− δ;−θt) .

The upper bound in (17) admits the expression (13) withI as the interference term. Based on

the discussion at the beginning of Section III, we use the following distribution for the downlink

distanceD ∼ Rayleigh
(

1/
√
2πλ

)

. Hence using (42), the CCDF bound in (17) can be written

as

P

(

T̂ > t
)

≤ E
[
1− exp

(
−πλH (t)D2

)]

= 1− 1

H (t) + 1
. (43)

TheH (t)+1 term in (43) can be written in simpler form based on the hypergeometric identity

δβ

1− δ
2F1 ([1, 1− δ] ; 2− δ;−β) + 1 ≡ 2F1 ([1,−δ] ; 1− δ;−β) . (44)

Hence the CCDF bound can be simplified as

P

(

T̂ > t
)

≤ 1− 1

2F1 ([1,−δ] ; 1− δ;−θt)
. (45)
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APPENDIX B

PROOF OFPROPOSITION1

To compute (22), letV = D/|X1|. The distribution ofV is known [22, Lemma 3].

P (Tni > t) = P

( |h|2
|h1|2

V −α ≤ θt

)

(46)

= 1− E

[

E

[

exp
(
−θt|h1|2V α

)
∣
∣
∣V
]]

= 1− E

[
1

1 + θtV α

]

= 1−
∫ 1

0

1

1 + θtvα
dv2

= 1−
∫ 1

0

δyδ−1

1 + θty
dy

= 1− 2F1 ([1, δ] ; 1 + δ;−θt) .

APPENDIX C

PROOF OFTHEOREM 1

From (9), the CCDF ofT is the same as the CCDF of̂T when t < N and is0 elsewhere.

The CCDF ofT̂ has the same form as in (13) with the interference term being replaced by

Ī (t) in (24), for which the Laplace transformL (·) is given by [16]

LĪ(t)|D(s) = exp

(

−πλEh,η̄

[∫ ∞

D

(

1− e−s|h|2η̄v−α

)

dv2
])

.

Letting s = θtD
α,

LĪ(t)|D (θtD
α)

= exp

(

−πλEh,η̄

[∫ ∞

D

(

1− e−θtDα|h|2η̄v−α

)

dv2
])

= exp

(

−πλEη̄

[∫ ∞

D

(

1− 1

1 + θt (D/v)α η̄

)

dv2
])

(a)
= exp

(

−πλD2δθδtE

[∫ θt

0

(

1− 1

1 + η̄y

)
dy

y1+δ

])

, (47)

where (a) follows from the substitutiony = θt (D/v)α.

For notational simplicity in (47), we define

H(t) , δθδtE

[∫ θt

0

(

1− 1

1 + η̄y

)
1

y1+δ
dy

]

. (48)



28

Using the fact thatD ∼ Rayleigh
(

1/
√
2πλ

)

, from (13) the CCDF ofT̂ is given as

P

(

T̂ > t
)

= E
[
1− exp

(
−πλH(t)D2

)]

= 1− 1

H(t) + 1
. (49)

The CCDF of T̂ depends on the distribution of interferer packet timeT̄ through the term

H(t). In the following, a simple expression forH(t) is derived.

H(t) = δθδtE

[∫ θt

0

η̄

[1 + yη̄] yδ
dy

]

=
θtδ

1− δ
E [η̄ 2F1 ([1, 1− δ] ; 2− δ;−θtη̄)] (50)

=
θtδ

1− δ

[
∫ t

0

t̄

t
2F1

(

[1, 1− δ] ; 2− δ;−θt
t̄

t

)

dF (t̄)

+ (1− F (t)) 2F1 ([1, 1− δ] ; 2− δ;−θt)

]

, (51)

whereF (t̄) = P
(
T̄ ≤ t̄

)
, which is assumed to be given.

Combining (49) and (51) leads to an expression for the CCDF ofT̂ . Although exact, the

expression forH(t) in (51) is computationally intensive since it involves an integral over the

hypergeometric function for every value oft.

Hence a simpler upper bound is derived forH(t) by writing it as an expectation over the

following function of T̄ ,

g
(
T̄
)
=

1

1 + ymin
(
1, T̄ /t

)

H(t) = δθδt

∫ θt

0

E
[
1− g

(
T̄
)] 1

y1+δ
dy. (52)

The functiong
(
T̄
)

is convex inT̄ . Letting µ = E
[
T̄
]
, using Jensen’s inequality for convex

functions results in the following upper bound forH(t) in (52)

H(t) ≤ δθδt

∫ θt

0

(1− g (µ))
1

y1+δ
dy

= δθδt

∫ θt

0

min (1, µ/t)

[1 + ymin (1, µ/t)] yδ
dy

=
δ

1− δ
θt min (1, µ/t) 2F1

(

[1, 1− δ] ;

2− δ;−θt min (1, µ/t)
)

, Hub(t). (53)
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Thus combining (49) and (53), an upper bound for CCDF is given by

P

(

T̂ > t
)

≤ 1− 1

Hub(t) + 1
. (54)

For Hub(t) in (53), applying the hypergeometric identity of (43) simplifies the above upper

bound and yields

P

(

T̂ > t
)

≤ 1− 1

2F1 ([1,−δ] ; 1− δ;−θt min (1, µ/t))
. (55)

To complete the proof, we need to provide an expression for the mean interferer packet

transmission timeµ. We specify the interferer packet time distribution to follow the distribution

of packet transmission time based on the always active nearest interferer case given in Proposition

1. Thus,

µ =

∫ N

0

(
1− 2F1

(
[1, δ] ; 1 + δ; 1− 2K/t

))
dt (56)

(a)
= K log 2

∫ ∞

1

1− 2F1 ([1, δ] ; 1 + δ; 1− v)

v log2 v
dv, N → ∞.

where (a) follows from the substitutionv = 2K/t.
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