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Abstract—We investigate the stable packet arrival rate region
of a discrete-time slotted random access network, where the
sources are distributed as a Poisson point process. Each of the
sources in the network has a destination at a given distance
and a buffer of infinite capacity. The network is assumed to
be random but static, i.e., the sources and the destinations are
placed randomly and remain static during all the time slots.
We employ tools from queueing theory as well as point process
theory to study the stability of this system using the concept of
dominance. The problem is an instance of the interacting queues
problem, further complicated by the Poisson spatial distribution.
We obtain sufficient conditions and necessary conditions for
stability. Numerical results show that the gap between the
sufficient conditions and the necessary conditions is small when
the access probability, the density of transmitters, or the SINR
threshold is small. The results also reveal that a small change
of the arrival rate may greatly affect the fraction of unstable
queues in the network.

Index Terms—Interacting queues, Poisson bipolar model, ran-
dom access, stability, stochastic geometry.

I. INTRODUCTION

A. Motivation

In large scale wireless networks, concurrent transmissions
lead to interference among terminals. The randomness in the
deployment of the transmitters makes accurate modeling and
analysis of interference complicated. Recently, the introduction
of the point process theory has provided great convenience for
modeling and analyzing the performance of wireless networks
[2]–[4]. However, most of the analytical works assume that
the terminals are backlogged, i.e., that the terminals always
have packets to transmit. In the case that each terminal
provides a buffer for queueing, the problem becomes more
practically relevant and more challenging. For example, a
primary problem is to study the stability of the queues in
the large scale network. It can be observed from the above
description that there are two issues of interest: (a) the random
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arrival of the packets at the terminals; (b) the noise, the
fading, the interference, and the random access protocol that
affect the transmission of these packets. It is complicated
because it involves interacting queues, i.e., the serving rate
of each queue depends on the sizes of all the queues. Most
of the previous works treat these two issues separately. The
approaches based on queueing theory focus on the random
arrival of the packets but ignore the physical layer as well as
the effect of noise and interference [5]–[9]. Other approaches
based on the multi-access information theory focus on the
physical layer and analyze the transmission process but ignore
the random arrival of packets [10]. The approaches based on
queueing theory are often used to analyze the performance of
scheduling algorithms, whereas the approaches based on the
multi-access information theory mostly employ the assumption
that all terminals are backlogged, and thus the results obtained
constitute as upper or lower bounds for the performance of cer-
tain schemes. The analysis of interacting queues requires the
combination of queueing theory and multi-access information
theory and is notoriously difficult to cope with.

The analyses of interacting queues are mostly based on
the slotted ALOHA protocol with the oversimplified physical
layer [11]. In most of the works, a discrete-time slotted
ALOHA system with N terminals is considered. Each terminal
maintains a buffer of infinite capacity to store the incoming
packets. The time is divided into discrete slots with equal
duration, and in each time slot, each terminal attempts to
transmit its head-of-line packet with a certain probability if its
buffer is not empty. A collision occurs if two or more terminals
transmit simultaneously. When a collision occurs, all terminals
involved in the collision retransmit the packet in the next
time slot with the same access probability. For this simplified
system, the exact stability region was characterized for two
[5], [6] and three [7] terminals. When N > 3, only sufficient
conditions and necessary conditions for stability were obtained
[12]–[14].

In practical wireless networks, the interference among trans-
missions cannot be accurately modeled as collisions. The
interaction among the queues at the transmitters in practical
wireless networks is thus more intricate than the aforemen-
tioned discrete-time ALOHA system. In this work, we model
a large-scale wireless network using the Poisson point process
(PPP), in which each transmitter is modeled as one point of
the PPP. Combined with the signal-to-interference-and noise-
ratio (SINR) model for successful reception, we explore the
effect of random traffic arrival and queueing on the stability
of large scale wireless networks.
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B. Contributions

We combine queueing theory and stochastic geometry to
analyze the stability region of a static Poisson network, in
which the transmitters and the receivers are placed randomly at
the beginning and then remain static during all the time slots.
Compared with high-mobility networks in which the nodes
are regenerated independently in each time slot, the static
Poisson network is more challenging to analyze since inherent
correlations of the interference and signal levels persist among
different time slots, due to the common randomness caused
by the static locations of the nodes. Most of the practical
networks are approximately static because the locations of
the terminals cannot drastically change within a short time
period, and the statistics obtained by spatially averaging over
a large region in static networks are of great significance. From
the ergodicity of the PPP, the ensemble averages obtained by
averaging over the point process equal the spatial averages
obtained by averaging an arbitrary realization of the PPP
over a large region. Intuitively, a direct impact of the static
characteristic is that if a transmission fails at a previous time
slot, there is an increased probability that it will also fail in the
next few time slots [15]. If each transmitter maintains a buffer
of infinite capacity to store the packets generated, the network
becomes even more complicated because of the interacting
queues problem. We introduce the notion of ϵ-stability, which
is a generalization of stability suitable for Poisson networks.
By applying the concept of dominance [5], [16], we derive
sufficient conditions and necessary conditions for ϵ-stability.
The numerical results are shown to illustrate the gap between
sufficient conditions and necessary conditions and to reveal
how these conditions vary with system parameters.

C. Related Work

Existing work about the interacting queueing systems are
mostly based on the discrete-time slotted random access
system in which the transmission is failed when two or more
terminals transmit in the same slot. Previous analyses have
yielded only bounds to the stability regions [5]–[9]. Exact
stability regions have been characterized only for cases when
the number of terminals is two [5], [6] or three [7]. The
stability and delay of multi-access systems with an infinite
number of transmitters and with simplified physical layer
is studied in [17]. The work in [18] studied the geometric
properties of the stability region of slotted random access
system. All these works considered the collision-based model,
and the work in [16] investigated the exact stability region of
SINR-based two-user interference channel.

Applications of point process theory to analyze the perfor-
mance of wireless networks can be found in [2]–[4], [10],
[19], [20]. The method is widely adopted in the literature
because it is analytically tractable and reflects the randomness
in the practical deployment of wireless network [21], [22]. The
works related to static Poisson networks include the analysis
of the interference correlation [23], [24] and the local delay
which is defined as the number of time slots required for
a node to successfully transmit a packet [25]–[28]. In this
line of research, an implicit assumption is that the networks

are backlogged. In practice, the packets arrive at each source
randomly, and each source maintains a buffer to store the
packets. The stability and delay of high-mobility networks
are analyzed in [29] using a combination of queueing theory
and stochastic geometry. In the high-mobility network, the
sizes of queues and the serving rates are decoupled; however,
practical networks are mostly static at the time scale of the
transmissions, and the decoupling exploited in high-mobility
networks does not apply.

The remaining part of the paper is organized as follows.
Section II describes the spatial distribution model, the arrival
process, and the access protocol. Section III gives the defini-
tion of stability. Based on the concept of dominance and some
simplifications, Section IV and Section V establish sufficient
conditions and necessary conditions for stability. Section VI
analyzes the asymptotic behaviors and provides the numerical
results. Finally, Section VII concludes the paper.

II. SYSTEM MODEL

In order to analyze the stability of the large scale network,
we adopt a simple yet general model. We consider a discrete-
time slotted random access system with transmitters and
receivers distributed as a Poisson bipolar network [3, Def.
5.8], i.e., we model the locations of the transmitters as a
PPP Φ = {xi} ⊂ Rd of intensity λ. Each transmitter is
paired with a receiver at a fixed distance r0 and a random
orientation. In the analysis, we will condition on x0 ∈ Φ
at which a typical transmitter under consideration is located,
where r0 = |x0| is the distance of this point to the origin at
which the corresponding receiver is located (see Fig. 1). The
time is divided into discrete slots with equal duration, and
each transmission attempt occupies one time slot. We assume
that the network is static, i.e., the locations of the transmitters
and the receivers are generated once at the beginning and then
kept unchanged during all time slots.

Fig. 1. A snapshot of the Poisson bipolar network with random access.

We use the Rayleigh block fading model in which the
power fading coefficients remain static over each time slot,
and are spatially and temporally independent with exponential
distribution of mean 1. Let α be the path loss exponent and
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hk,x be the fading coefficient between transmitter x and the
considered receiver located at origin o in time slot k. All
transmitters are assumed to transmit at unit power. The power
of the thermal noise is set as W . We also assume an SINR
threshold model: if the SINR over a link is above a threshold θ,
the link can be successfully used for information transmission
at spectral efficiency log2(1 + θ) bits/second/Hz.

Each transmitter has a buffer of infinite capacity to store
the packets generated. Each transmitter generates packets ac-
cording to a Bernoulli process with arrival rate ξ (0 ≤ ξ ≤ 1)
packets per time slot, i.e., ξ is the probability of an arrival in
any given time slot. The arrival processes of different trans-
mitters are independent. In each time slot, each transmitter
attempts to send its head-of-line packet with probability p if
its buffer is not empty. We assume that the feedback of the
status of each attempt of transmission, either successful or
failed, is instantaneous so that each transmitter is aware of
the outcome. If the transmission attempt fails, the transmitter
retransmits the packet in the next time slot with probability p;
on the other hand, if the transmission attempt is successful,
the transmitter removes the packet from the buffer.

For any time slot k ∈ N+, let Φk be the set of transmitters
that are transmitting in that time slot. The interference at the
typical receiver located at the origin o in time slot k is

Ik =
∑

x∈Φ\{x0}

hk,x|x|−α1(x ∈ Φk). (1)

When the typical transmitter is active, the SINR of the typical
receiver in time slot k is

SINRk =
hk,x0

r−α
0

W +
∑

x∈Φ\{x0} hk,x|x|
−α1(x ∈ Φk)

. (2)

In the proposed network model, each transmitter maintains a
queue with Bernoulli arrival. However, since the realization of
the PPP is irregular, the distances to the interferers are different
from the perspectives of individual receivers. Therefore, there
always are some transmitters that experience poor performance
(i.e., small success probability) while some others experience
good performance (i.e., high success probability). In view
of this, even with the same arrival rate for all transmitters
in the large scale network, the queues of the transmitters
experiencing poor performance may become unstable because
of the low success probability. Therefore, the characterization
of the stability region of such networks is important and
challenging.

Since we condition on Φ having a point at x0, the rel-
evant probability measure of the point process is the Palm
probability Px0 . Correspondingly, the expectation, denoted by
Ex0 , is taken with respect to the measure Px0 . Whether the
transmission of the typical transmitter x0 is successful or not
is uncertain, and the randomness comes from four aspects:
the realization of PPP, the random access, the fading and
the random arrival of traffic. Let Ck

Φ be the event that the
transmission of the typical transmitter x0 succeeds in time
slot k conditioned on the PPP Φ. Ck

Φ is the intersection of
two events: that the transmission is scheduled by the random
access and that the scheduled transmission is successful. Let
Px0(Ck

Φ) = P(SINRk > θ | Φ, x0 ∈ Φ) be the success

probability of the transmission of the typical transmitter x0 in
time slot k conditioned on the PPP Φ. Px0(Ck

Φ) varies with the
index k because the empty or non-empty status of the queues
at the interferers change over time, resulting in interference
variation. In the following discussions, we will show how the
stability depends on the statistical properties of Px0(Ck

Φ).

III. NOTION OF ε-STABILITY

For an isolated transmitter, by the Loynes theorem [30],
if the arrival process and the serving process are stationary,
the sufficient and necessary condition for stability is that the
average service rate is larger than the average arrival rate.
However, strict stability (all queues are stable) for a large scale
network is not achievable (except for the trivial case of ξ = 0)
since there always exist some transmitters whose queues are
unstable in the static Poisson network. Thus, we introduce the
notions of ε-stability and ε-stability region defined as follows.

Definition 1. For any 0 ≤ ε ≤ 1, the ε-stability region Sε is
defined as

Sε
∆
=

{
ξ ∈ R+ : Px0

{
lim

K→∞

1

K

K∑
k=1

Px0(Ck
Φ) ≤ ξ

}
≤ ε

}
. (3)

Definition 2. The supremum of the ε-stability region Sε, i.e.,
ξc , sup Sε, is called the critical arrival rate. The network is
ε-stable if and only if ξ ≤ ξc.

Remark 1. Px0
{
limK→∞

1
K

∑K
k=1 Px0(Ck

Φ) ≤ ξ
}

is the
probability that the queue at the typical transmitter is unstable.
We declare that the network is ε-stable when the probability
that the queue at the typical transmitter is unstable is less than
a certain threshold ε (0 < ε < 1).

Deriving the ε-stability region Sε is equivalent to obtaining
the critical arrival rate ξc, which is rather difficult because of
the interacting queueing problem. Therefore, in the following,
we obtain ξsc and ξnc with ξsc ≤ ξc ≤ ξnc . Then, ξ ≤ ξsc and
ξ ≤ ξnc correspond to a sufficient condition and a necessary
condition for ε-stability, respectively. The gap between ξsc and
ξnc is also investigated in the later sections.

For example, consider a very simple system that consists of
only the typical transmission, i.e., the interference from other
transmitters in the system are ignored. The success probability
for that typical transmitter is p exp (−Wθrα0 ). By applying the
Loynes theorem, we get the condition for stability of the queue
at the typical transmitter ξ0 as

ξ ≤ ξ0 , p exp (−Wθrα0 ) . (4)

In fact, all the sufficient conditions and necessary conditions
in the following sections can be expressed in the form of ξ ≤
βξ0 with 0 ≤ β ≤ 1, where ξ0 captures the effect of noise and
random access while β captures the effect of interference.

IV. SUFFICIENT CONDITIONS

In order to derive sufficient conditions for ε-stability, we
consider a dominant system [5], [9], [16]. In the dominant
system the typical transmitter behaves exactly the same as
in the original system. However, for other transmitters in the
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dominant system, when the queue at a transmitter becomes
empty, it continues to transmit “dummy” packets with the
access probability p, thus continuing to cause interference to
other transmissions with probability p. So in the dominant
system, the queue size at each transmitter is always no smaller
than that in the original system, provided the queues start with
the same initial conditions. In the dominant system, the success
probability given Φ is the same for different time slots because
all transmitters always have packets to transmit, and the fading
and the scheduling result of random access are i.i.d. between
different time slots. Denote the success probability conditioned
on the PPP Φ as Px0(CΦ), which is a random variable uniquely
determined by the PPP. The ε-stability region Sε is simplified
into Sε = {ξ ∈ R+ : Px0 {Px0(CΦ) ≤ ξ} ≤ ε}. By deriving
the ε-stability conditions for the dominant system, we get a
sufficient condition for the original system to be ε-stable.

Theorem 1. Given a slotted random access system with the
transmitters distributed as a PPP and with Bernoulli packet
arrivals, a sufficient condition for the system to be ε-stable is

ξ ≤ ξsc, (5)

where ξsc , sup Sε is given by

ξsc = sup

{
ξ ∈ R+ :

1

2
− 1

π

∫ ∞

0

1

ω
Im

{(
ξ0
ξ

)jω

e−jωCδ2F1(1−jω,1−δ;2;p)

}
dω ≤ ε

}
, (6)

with δ = 2/α, Cδ = pλπr20θ
δΓ(1 + δ)Γ(1 − δ), and

2F1(a, b; c; z) is the Gaussian hypergeometric function. Thus,
a lower bound on the critical arrival rate ξc is ξsc, i.e., ξc ≥ ξsc.

Proof: See Appendix A.

Remark 2. ξsc given by (6) could also be written as

ξsc = ξ0 sup

{
β ∈ R+ :

1

2
− 1

π

∫ ∞

0

1

ω
Im
{
β−jωe−jωCδ2F1(1−jω,1−δ;2;p)

}
dω ≤ ε

}
, (7)

where ξ0/ξ in (6) is replaced by 1/β, and β is the parameter
introduced after (4) that captures the effect of the interference.

When λ→ 0, we have Cδ → 0, and (7) becomes

ξsc = ξ0 sup

{
β ∈ R+ :

1

2
+

1

π

∫ ∞

0

sin(ω lnβ)

ω
dω ≤ ε

}
. (8)

Since
∫ 0

−∞
sin(πx)

πx dx =
∫∞
0

sin(πx)
πx dx = 1

2 , when lnβ > 0,
the expression 1

2 + 1
π

∫∞
0

1
ω sin(ω lnβ)dω evaluates to 1;

otherwise when lnβ < 0 it evaluates to 0. Thus, we have

ξsc = ξ0 sup
{
β ∈ R+ : 1 (lnβ > 0) ≤ ε

}
= ξ0, (9)

where 1 (·) is the indicator function. This is exactly the case
where the interference is ignored and only noise affects the
transmission. When λ → 0, the necessary condition (4)
becomes ξ ≤ ξ0. Since ξ ≤ ξsc = ξ0 is a sufficient condition,
we get the exact critical arrival rate as ξc = ξ0.

When θ → 0, the sufficient condition becomes

ξsc=sup

{
ξ ∈ R+ :

1

2
− 1

π

∫ ∞

0

sin (ω ln p− ω ln ξ)

ω
dω ≤ ε

}
=sup

{
ξ ∈ R+ : 1 (ln p− ln ξ < 0) ≤ ε

}
=p. (10)

If θ → 0, the necessary condition (4) becomes ξ ≤ p. Thus,
the exact critical arrival rate is ξc = p. The result coincides
with the intuition that when θ → 0 a transmission is almost
surely successful if it is scheduled. Thus, the outcome of a
transmission attempt is only affected by the access probability.

The following corollary gives a closed-form sufficient con-
dition that is weaker than the one given by Theorem 1 but
easier to evaluate.

Corollary 1. Given a slotted random access system with the
transmitters distributed as a PPP and with Bernoulli arrivals,
a sufficient condition for the system to be ε-stable is

ξ ≤ ξ̃sc, (11)

where ξ̃sc , maxn∈N+ η(n), and

η(n) = ξ0ε
1
n exp

(
− πλδ(1− p)δθδr20

n∑
i=1

((1− p)−i − 1)
Γ(i− δ)Γ(n− i+ δ)

Γ(i+ 1)Γ(n− i+ 1)

)
. (12)

Thus, a closed-form lower bound on the critical arrival rate
ξc is ξ̃sc, i.e., ξc ≥ ξ̃sc.

Proof: For all n ∈ N+, the cdf of Px0(CΦ) is

Px0 {Px0(CΦ) ≤ ξ} = Px0

{
e−n ln(Px0 (CΦ)) ≥ e−n ln ξ

}
. (13)

By applying the Markov inequality, we obtain

Px0 {Px0(CΦ) < ξ} < 1

e−n ln ξ
E
[
e−n ln(Px0 (CΦ))

]
=p−n exp

(
n ln ξ + nθrα0W

)
E
[ ∏
x∈Φ\{x0}

( p

1 + θrα0 |x|−α
+ 1− p

)−n
]

=
( ξ
ξ0

)n
exp

(
− 2πλ

∫ ∞

0(
1−

( p

1 + θrα0 r
−α

+ 1− p
)−n)

rdr
)

=
( ξ
ξ0

)n
exp

(
2πλ

∫ ∞

0

(1 + θrα0 r
−α)n − (1 + (1− p)θrα0 r

−α)n

(1 + (1− p)θrα0 r
−α)n

rdr
)
.

(a)
=
( ξ
ξ0

)n
exp

(
2πλ

n∑
i=0

Ci
n(1− (1− p)i)∫ ∞

0

(θrα0 r
−α)ir

(1 + (1− p)θrα0 r
−α)n

dr
)

(b)
=
( ξ
ξ0

)n
exp

(
πλnδ(1− p)δθδr20

n∑
i=1

((1− p)−i − 1)
Γ(i− δ)Γ(n− i+ δ)

Γ(i+ 1)Γ(n− i+ 1)

)
. (14)
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where Ci
n = n!/(i!(n−i)!) = Γ(n+1)/(Γ(i+1)Γ(n−i+1)) is

the binomial coefficient. (a) holds from the binomial expansion
and the exchange of summation and integral. (b) follows
from the relationship between the beta function B(x, y) =∫ 1

0
tx−1(1 − t)y−1dt and the gamma function and from the

fact that the term for i = 0 equals to zero.
Since the above inequality holds for all n ∈ N+, we have

Sε ⊃
∪

n∈N+

{
ξ ∈ R+ :

( ξ
ξ0

)n
exp

(

πλnδ(1− p)δθδr20

n∑
i=1

((1− p)−i − 1)

Γ(i− δ)Γ(n− i+ δ)

Γ(i+ 1)Γ(n− i+ 1)

)
≤ ε

}
. (15)

Taking the supremum on both sides results in

sup Sε > max
n∈N+

sup

{
ξ ∈ R+ :

( ξ
ξ0

)n
exp

(
πλnδ(1− p)δθδr20

n∑
i=1

((1− p)−i − 1)

Γ(i− δ)Γ(n− i+ δ)

Γ(i+ 1)Γ(n− i+ 1)

)
≤ ε

}
= max

n∈N+
η(n), (16)

where η(n) is given by (12). Letting ξ̃sc = maxn∈N+ η(n), we
get ξ̃sc < sup Sε = ξsc, indicating that ξ ≤ ξ̃sc is also a sufficient
condition for ε-stability which is “looser” than ξ ≤ ξsc.

V. NECESSARY CONDITIONS

The simple condition given in (4) is weak because it
ignores the interference. In the following analysis, we propose
two approaches to derive two different types of necessary
conditions for ε-stability. In the derivation of the type I
necessary conditions, we consider a simplified system in
which only the effect of the nearest interferer is considered.
Since the interference is reduced in the simplified system, a
necessary condition for the typical transmitter to be stable
in the original system is that it is stable in the simplified
system. In the derivation of the type II necessary conditions,
we consider a modified favorable system that drops the packets
in the interfering transmitters that are not scheduled by the
random access or whose transmission failed. In this way, since
the interference is always smaller than that in the original
system and the packets will not accumulate at the interfering
transmitters, the ε-stability region will be a subset for the ε-
stability region of the original system.

A. Type I Necessary Conditions

First we derive type I necessary conditions and consider a
simplified version of the original system, in which only two
pairs of transmitters and receivers are considered. One pair is
the typical pair in the original system, whose transmitter is
located at x0 = (r0, 0) and the corresponding receiver y0 is
located at the origin o. The other pair is the pair containing
the nearest interferer. Let x1 = (rm cosφ, rm sinφ) be the

location of the nearest transmitter, where rm is the distance
from the origin and φ is the angle. Let y1 = (rm cosφ +
r0 cosψ, rm sinφ+ r0 sinψ) be the location of the associated
receiver, where ψ is the angle between x1 and y1 (see Fig.
2). φ and ψ are independent uniformly distributed random
variables in [0, 2π]. The pdf of rm is

frm(r) = 2πλr exp
(
−πλr2

)
. (17)

Fig. 2. The simplified system which consists of two pairs of transceivers,
i.e., the typical transmission and the nearest interfering transmission in the
original system.

A necessary condition for the original system to be ε-stable
is that the probability of the transmitter located at x0 in the
simplified system being unstable is less than ε. Notice that
we only need to consider the stability of the queue at the
transmitter x0, i.e., it does not matter whether the interfering
transmitter’s queue is stable or not. Since rm is a random
variable, it is uncertain whether the queue at the transmitter
x0 is stable or not. However, if rm is given, the stability of the
queue at the transmitter x0 is determined. Therefore, we first
derive a sufficient and necessary condition for the transmitter
x0 to be stable when rm is given.

Consider a dominant system of the simplified system, i.e.,
the transmitter x0 still transmits “dummy” packets when its
queue is empty, thus it keeps causing interference to the
nearest transmission. Unlike the transmitter x0, the nearest
interfering transmitter x1 in the dominant system behaves
the same as in the original simplified system. In fact, a
sufficient and necessary condition for the transmitter x0 in
the simplified system to be stable is that it is stable in the
dominant simplified system. The sufficiency claims that if the
queue at x0 is stable in the dominant simplified system, then it
will be stable in the original simplified system. This is because
the interference in the dominant simplified system is larger
than that in the original simplified system, resulting in smaller
success probability. The necessity claims that if the queue at
x0 is unstable in the dominant simplified system, then it will
be unstable in the original simplified system. Because when
the queue of the transmitter x0 in the dominant simplified
system is unstable, the queue size will grow to infinity without
emptying with non-zero probability. Thus, not all sample
paths of the queue size correspond to transient behavior with
infinitely many visits to 0, and the sample paths will grow
to infinite without emptying with positive probability. Notice
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that as long as the queue at x0 is not empty, the dominant
simplified system and the original simplified system behave
identically if started from the same initial conditions, and
the dominant simplified system is indistinguishable from the
original simplified system under saturation. Thus the infinite
sample path that do not visit 0 in the dominant simplified
system also occur in the original simplified system, and they
constitute a positive proportion of all sample paths. Therefore,
the queue at x0 in the original simplified system is also
unstable. Combining the two parts, we finish the proof of the
sufficiency and the necessity. Therefore, we only need to derive
the sufficient and necessary condition for the transmitter x0 to
be stable in the dominant simplified system. Based on these
ideas, we get the following lemma.

Lemma 1. For the simplified system with given φ,ψ, rm,
the sufficient and necessary condition for the queue at the
transmitter x0 to be stable is

ξ ≤

{
ξ0

(1+(1−p)θs)(1+θm)
p(θm−θs)+(1+θs)(1+θm) if r > rm

ξ0
1+(1−p)θm

1+θm
if rs ≤ rm

(18)

where θs = θrα0 r
−α
s , θm = θrα0 r

−α
m and rs =√

(rm cosφ+ r0 cosψ − r0)2 + (rm sinφ+ r0 sinψ)2.

Proof: See Appendix B.
Lemma 1 gives the sufficient and necessary condition for the

queue at the transmitter x0 to be stable with given φ,ψ, rm.
For the nearest interferer, φ,ψ, rm are random variables.
By applying the results in Lemma 1, we get the following
theorem.

Theorem 2. Given a slotted random access system with the
transmitters distributed as a PPP and with Bernoulli packet
arrivals, a type I necessary condition for the system to be
ε-stable is

ξ ≤ ξn1c , (19)

where

ξn1c , ξ0

(
1− θp

θ +
(
F−1
Z (ε)

)α
)
, (20)

and Z = 1
r0

max{rm, rs} with FZ(z) being the cdf of Z, and
rs is defined in Lemma 1. Thus, a upper bound on the critical
arrival rate ξc is ξn1c , i.e., ξc ≤ ξn1c .

Proof: See Appendix C.
The necessary condition given by Theorem 2 is not in

closed-form, and thus the necessary condition needs to be
obtained through numerical evaluation. In the following, we
derive a closed-form necessary condition by considering the
further simplified system where φ = ψ = −π (see Fig. 3).
For a given rm if the transmitter x0 in the simplified system
is unstable for φ = ψ = −π, it will also be unstable for other
φ and ψ. This is because when φ = ψ = −π, the interference
between the two pairs of transceivers is the smallest among
all φ and ψ. The following lemma gives the sufficient and
necessary condition for the queue at the transmitter x0 to be
stable when φ = ψ = −π with given rm.

Fig. 3. The simplified system when φ = ψ = −π which consists of two
pairs of transceivers.

Lemma 2. For the simplified system when φ = ψ = −π with
given rm (see Fig. 3), the sufficient and necessary condition
for the queue at the transmitter x0 to be stable is

ξ ≤ ξ0
(1 + (1− p)θs)(1 + θm)

p(θm − θs) + (1 + θs)(1 + θm)
, (21)

where θs = θrα0 r
−α
s = θrα0 (rm + 2r0)

−α and θm = θrα0 r
−α
m .

Proof: This lemma is a special case of Lemma 1 by
setting φ = ψ = −π, i.e., rs = rm + 2r0 > rm.

In Lemma 2, the case where φ = ψ = −π is considered.
For any other φ and ψ with given rm, (21) gives a necessary
condition for the queue at the transmitter x0 to be stable in
the simplified system. Since rm is a random variable and its
probability distribution is given by (17), (21) gives a necessary
condition for the queue at the transmitter x0 to be stable in the
simplified system. The simplified system only considers the
interference from the nearest transmitter; thus (21) will also
be a necessary condition for ε-stability of the original system.
By modifying the proof of Theorem 2 with rs = rm + 2r0,
we obtain the following corollary.

Corollary 2. Given a slotted random access system with
the transmitters distributed as a PPP and with Bernoulli
packet arrivals, a close formed type I necessary condition for
stablility is

ξ ≤ ξ̃n1c , (22)

where

ξ̃n1c , ξ0

(
1 +

(
pθrα0(√

− ln(1−ε)
πλ + 2r0

)α
+ θrα0

)2)−1

. (23)

Thus, a closed-form upper bound on the critical arrival rate
ξc is ξ̃n1c , i.e., ξc ≤ ξ̃n1c .

Proof: See Appendix D.

B. Type II Necessary Conditions

In the following, we derive the type II necessary conditions.
In the derivation, we consider a modified favorable system,
in which the packets in the interfering transmitters that are
not scheduled by random access or whose transmission failed
will be dropped instead of being retransmitted, and thus an
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interfering transmitter is active with probability pξ, decoupled
from the status of other transmitters.

Theorem 3. Given a slotted random access system with the
transmitters distributed as a PPP and with Bernoulli packet
arrivals, a type II necessary condition for the system to be
ε-stable is

ξ ≤ ξn2c , (24)

where

ξn2c , sup

{
ξ ∈ R+ :

1

2
− 1

π

∫ ∞

0

1

ω
Im

{(
ξ0
ξ

)jω

e−jωξCδ2F1(1−jω,1−δ;2;ξp)

}
dω ≤ ε

}
. (25)

Thus, a upper bound on the critical arrival rate ξc is ξn2c , i.e.,
ξc ≤ ξn2c .

Proof: See Appendix E.

Remark 3. If λ → 0 or θ → 0, the necessary condition in
Theorem 3 coincides with the sufficient condition in Theorem
1, indicating that the two conditions are tight for small λ and
θ.

The following corollary gives a simplified type II necessary
condition based on the Markov inequality.

Corollary 3. Given a slotted random access system with the
transmitters distributed as a PPP and with Bernoulli packet
arrivals, a type II necessary condition for the system to be
ε-stable is

ξ ≤ ξ0(1− ε)−
1
t exp

(
− ξCδ2F1(1− t, 1− δ; 2; ξp)

)
, (26)

for all t > 0. For t = 1, we obtain a closed-form type II
necessary condition as

ξ ≤ ξ̃n2c , 1

Cδ
W

(
Cδξ0
1− ε

)
, (27)

where W(z) is the main branch of Lambert W function. Thus,
a closed-form upper bound on the critical arrival rate ξc is
ξ̃n2c , i.e., ξc ≤ ξ̃n2c .

Proof: See Appendix F.
When deriving the type I necessary condition, we only

considered the effect of the nearest interferer and ignored
all other interferers, while in the derivation of the type II
necessary condition, we considered all interferers but ignored
the retransmission mechanism of the interferers. Whether the
type I or the type II necessary condition should be used
depends on whether the nearest interferer or the retransmis-
sion mechanism of the interferers takes the leading position
in affecting the transmission. For example, when the SINR
threshold θ is small and the access probability p is large,
the packets will be highly likely scheduled and transmitted
successfully, and no retransmission happens. Therefore, the
effect of the retransmission mechanism can be neglected,
which makes the type II necessary condition better than the
type I necessary condition.

VI. DISCUSSION OF RESULTS

A. Asymptotic Behaviors

1) p approaching 0: From Corollary 1, as p → 0, the
optimal n to maximize η(n) is nmax = ∞. Thus, we have

ξ̃sc ∼ ξ0, p→ 0. (28)

From Corollary 2, we get

ξ̃n1c ∼ ξ0, p→ 0. (29)

From Corollary 3 and by noticing that W(z) ∼ z as z → 0,
we get

ξ̃n2c ∼ ξ0
1− ε

, p→ 0. (30)

2) ε approaching 0: Corollary 1 shows that ξ̃sc approaches
zero exponentially with attenuation factor 1

nmax
as ε → 0.

From Corollary 2, we get the asymptotic result for ξ̃n1c as
ε→ 0 as

ξ̃n1c = ξ0

(
1 +

(
pθrα0(√

− ln(1−ε)
πλ + 2r0

)α
+ θrα0

)2)−1

∼ (2α + θ)2

p2θ2 + (2α + θ)2
ξ0

+
α2αp2θ2(2α + θ)

((2α + θ)2 + p2θ2)2r0
ξ0

√
− ln(1− ε)

πλ

∼ (2α + θ)2

p2θ2 + (2α + θ)2
ξ0

+
α2αp2θ2(2α + θ)

((2α + θ)2 + p2θ2)2r0
√
πλ

ξ0ε
1
2 . (31)

(31) shows that ξ̃n1c approaches (2α+θ)2

p2θ2+(2α+θ)2 ξ0 with residual
O(ε

1
2 ).

From Corollary 3, letting z0 = ξ0Cδ , we get the asymptotic
results for ξ̃n2c as ε→ 0 as

ξ̃n2c
(a)∼ W (z0)

Cδ
+

W (z0)

Cδz0(1 +W (z0))

(
z0

1− ε
− z0

)
∼ W (z0)

Cδ
+

W (z0)

Cδ(1 +W (z0))
ε, (32)

where (a) follows from the Taylor expansion approximation
of W(z) at z0, i.e. W(z) ∼ W(z0) +

W(z0)
z0(1+W(z0))

(z − z0) as

z → z0. (32) shows that ξ̃n2c approaches W(z0)
Cδ

with residual
O(ε).

3) λ approaching 0: From Corollary 1, as λ → 0, the
optimal n to maximize η(n) is nmax = ∞. The asymptotic
result for ξ̃sc as λ→ 0 is

ξ̃sc ∼ ξ0

(
1− πλδ(1− p)δθδr20

lim
n→∞

n∑
i=1

((1− p)−i − 1)
Γ(i− δ)Γ(n− i+ δ)

Γ(i+ 1)Γ(n− i+ 1)

)
, (33)

which reveals that ξ̃sc approaches ξ0 with a factor of 1−O(λ).
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From Corollary 2, we get the asymptotic result for ξ̃n1c as
λ→ 0 as

ξ̃n1c ∼ ξ0

(
1−

(
pθrα0(√

− ln(1−ε)
πλ + 2r0

)α
+ θrα0

)2)

∼ ξ0

(
1− p2θ2r2α0 πα

(− ln(1− ε))α
λα

)
, (34)

indicating that ξ̃n1c approaches ξ0 with a factor of 1−O(λα).
From Corollary 3 and by noticing that W(z) ∼ z − z2 as

z → 0, we get the asymptotic results for ξ̃n2c as λ→ 0 as

ξ̃n2c ∼ 1

1− ε
ξ0

− 1

(1− ε)2
pλπr20θ

δΓ(1 + δ)Γ(1− δ)(ξ0)
2, (35)

which reveals that ξ̃n2c approaches 1
1−εξ0 with residual O(λ).

4) θ approaching 0: When fixing the duration of each time
slot and varying θ, we multiply ξ̃sc with the factor log2(1+ θ)
since the size of each packet is changed. The factor log2(1+θ)
guarantees that when varying θ, arrival rates with different
packet sizes are compared fairly. From Corollary 1, as θ → 0,
the optimal n to maximize η(n) is nmax = ∞. We get the
asymptotic results for ξ̃sc log2(1 + θ) as θ → 0 as

ξ̃sc log2(1 + θ) ∼ p

ln 2
θ. (36)

From Corollary 2, we get the asymptotic results for
ξ̃n1c log2(1 + θ) as θ → 0 as

ξ̃n1c log2(1 + θ) ∼ p

ln 2
θ. (37)

From Corollary 3 and by noticing that W(z) ∼ z as z → 0,
we get the asymptotic results for ξ̃n2c log2(1 + θ) as θ → 0 as

ξ̃n2c log2(1 + θ) ∼ log2(1 + θ)

1− ε
p exp(−θrα0W )

∼ pθ

(1− ε) ln 2
. (38)

Therefore, ξ̃sc log2(1 + θ) and ξ̃n1c log2(1 + θ) approach 0
linearly with the same slope coefficient p

ln 2 , while ξ̃n2c log2(1+
θ) approaches 0 linearly with the slope coefficient p

(1−ε) ln 2 .

B. Comparison of Sufficient and Necessary Conditions

In this subsection, we numerically compare the sufficient
conditions and the necessary conditions derived in the previous
sections.

Fig. 4 shows the maximal arrival rates in sufficient condi-
tions and necessary conditions as functions of p. If p → 0,
all curves converge to 0, which is explained in subsubsection
VI-A1. As p increases, the curves for the non-closed form
sufficient condition (solid line with circle marks) and for the
type I non-closed form necessary condition (solid line with
square marks) first increase then decrease, because the success
probability is limited by the small access probability for small
p and by the large interference for large p.
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Fig. 4. Comparison of sufficient conditions and necessary conditions as
functions of p. The parameters are set as ε = 0.1, θ = 15dB, r0 = 1,
W = 0, α = 4 and λ = 0.05.
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Fig. 5. Comparison of sufficient conditions and necessary conditions as
functions of ε. The parameters are set as p = 0.5, θ = 15dB, r0 = 1,
W = 0, α = 4 and λ = 0.05.

Fig. 5 plots the maximal arrival rates in sufficient conditions
and necessary conditions as functions of ε. If ε→ 0, the curves
for the sufficient conditions and the non-closed form type II
necessary condition approach 0, and other curves approach
different constant values. Fig. 5 reveals that the curves do not
depend strongly on ε. Since the gap between the curves for
the sufficient conditions and that for the necessary conditions
is not large, it can be inferred that the critical arrival rate for
actual ε-stability region does not change much either when
increasing ε. This observation indicates that a small change
in the arrival rate ξ will greatly affect the fraction of unstable
queues in the network.

Fig. 6 plots the maximal arrival rates in sufficient conditions
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Fig. 6. Comparison of sufficient conditions and necessary conditions as
functions of λ. The parameters are set as p = 0.5, ε = 0.1, θ = 15dB,
r0 = 1, W = 0 and α = 4.

and necessary conditions as functions of λ. We observe that
all curves except the one for the closed-form type II necessary
condition converge to the same value, since as λ → 0, the
interference is negligible, and only the noise affects the trans-
mission for the dominant system and the simplified system.
The curve for the closed-form type II necessary condition
becomes loose as λ→ 0 because of the inequalities.
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Fig. 7. Comparison of sufficient condition and necessary condition as a
function of θ. The parameters are set as p = 0.5, ε = 0.1, r0 = 1, W = 0,
α = 4 and λ = 0.05.

Fig. 7 plots the maximal arrival rates times log2(1 + θ)
in sufficient conditions and necessary conditions as functions
of θ. The reason to multiply log2(1 + θ) is the same as
that described in subsubsection VI-A4. If θ → 0, all curves
converge to 0 with the same speed, which is explained in
subsubsection VI-A4; meanwhile if θ gets large, the curves
for the type II necessary conditions and for sufficient condition

TABLE I
SOME SITUATIONS TO USE TYPE I OR TYPE II NECESSARY CONDITION

Case Type Case Type
ε→ 0 Type II p→ 0 Type I
λ→ 0 Type I θ → 0 and p→ 1 Type II

λ > 1/(4r20) Type II

first increase then decrease, because the serving rate is limited
by small rate for small θ, and by small success probability for
large θ. If θ is small, the type II necessary condition is better
than the type I necessary condition because the probability of
dropping a packet is small, thus the modified favorable system
is close to the original system. When θ starts to grow, the type
I necessary condition becomes better since the probability of
dropping a packet increases. However, when θ continues to
grow, the type II necessary condition becomes better again,
because extraordinarily large θ makes a transmission almost
impossible to success in the presence of interference. Since
the derivation of the type I necessary condition only considers
the nearest interferer, the accuracy is worse than the type II
necessary condition.
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Fig. 8. Comparison of sufficient condition and necessary condition as a
function of λ with optimal pair of (p, θ). The parameters are set as ε = 0.1,
r0 = 1, W = 0 and α = 4.

For the case where p and θ can be optimized, i.e., the
transmit probability p and the SINR threshold θ are designable
parameters that can be chosen to maximize the maximal arrival
rate in sufficient conditions and necessary conditions. To
obtain realistic values, we choose θ from [−20, 30] dB. Then,
Fig. 8 plots the maximal arrival rates in terms of sufficient
conditions and necessary conditions as functions of λ when
optimal p and θ are chosen.

If ε → 0, the type II necessary condition is better than
the type I necessary condition since the arrival rate can be
positive to make the network strictly stable (ε = 0) when only
the nearest interferer is considered, which is not consistent
with the original system. If p → 0, a packet is dropped with
high probability, and if λ → 0, the interference caused by
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the interferers except the nearest one can almost be ignored;
thus, in these cases, the type I necessary condition is better.
If θ → 0 and p → 1, the dropping of packets may not
happen, and if r0 is larger than the mean distance to the nearest
interferer 1/(2

√
λ), other interferers cannot be ignored; thus in

these cases, the type II necessary condition will be better. We
summarize the results in Table I, which lists some situations
where it is preferable to use one of the two types of necessary
conditions.

VII. CONCLUSIONS

In this paper, we investigated the stable packet arrival rate
region of the discrete-time slotted random access network with
the transmitters and receivers distributed as a static Poisson
bipolar process. Each transmitter in the network maintains
a buffer of infinite capacity to store the incoming packets.
We employed tools from queueing theory as well as point
process theory and studied the stability of this system using the
concept of dominance. We introduced the notion of ε-stability,
and obtained sufficient conditions and two types of necessary
conditions for ε-stability. Numerical results show that the gap
between the sufficient conditions and the necessary conditions
is small when the access probability, the density of transmitters
or the SINR threshold is small. The results also reveal that a
small change in the arrival rate will greatly affect the fraction
of unstable queues in the network.

APPENDIX A
PROOF OF THEOREM 1

The success probability for the typical transmission condi-
tioned on Φ in the dominant system is denoted as Px0(CΦ) =
pPx0(SINR > θ | Φ), which is evaluated as

Px0(CΦ) = pPx0
(
hk,x0

r−α
0 > θ (W + Ik) | Φ

)
(a)
= pEx0 [exp (−θrα0 (W + Ik)) | Φ]
= pEx0

[
exp

(
− θrα0W

−
∑

x∈Φ\{x0}

θrα0 hk,x|x|−α1(x ∈ Φk)
)
| Φ
]

= ξ0
∏

x∈Φ\{x0}

(
pEx0

[
exp

(
− θrα0 hk,x|x|−α

)
| Φ
]
+ 1− p

)
(b)
= ξ0

∏
x∈Φ\{x0}

( p

1 + θrα0 |x|−α
+ 1− p

)
. (39)

where (a) and (b) follow because the fading coefficients
{hk,x} are i.i.d. exponential distributed random variables
with unit mean. The moment generating function of Y ∆

=
ln (Px0(CΦ)) is

MY (s) = E
[
es ln(P

x0 (CΦ))
]

= (ξ0)
sE
[ ∏
x∈Φ\{x0}

( p

1 + θrα0 |x|−α
+ 1− p

)s]
= (ξ0)

s exp
(
− 2πλ

∫ ∞

0

(
1−

( p

1 + θrα0 r
−α

+ 1− p
)s)

rdr
)

= (ξ0)
s exp

(
− sCδ2F1(1− s, 1− δ; 2; p)

)
. (40)

The cdf of Y , denoted by FY (y) = P (Y ≤ y), follows from
the Gil-Pelaez Theorem [31] as

FY (y) =
1

2
− 1

π

∫ ∞

0

Im{e−jωyMY (jω)}
ω

dω. (41)

The probability that the transmitter x0 in the dominant
system is unstable is given by the cdf of Px0(CΦ), which is

Px0 {Px0(CΦ) ≤ ξ} = Px0 {Y ≤ ln ξ}

=
1

2
− 1

π

∫ ∞

0

Im{e−jω ln ξMY (jω)}
ω

dω. (42)

The condition for the queue at the typical transmitter in the
dominant system to be stable is Px0 {Px0(CΦ) ≤ ξ} ≤ ε. By
combining (40) and (42), we obtain

1

2
− 1

π

∫ ∞

0

1

ω
Im
{
(ξ0)

jω exp
(
− jω ln ξ

− jωCδ2F1(1− jω, 1− δ; 2; p)
)}

dω ≤ ε. (43)

Therefore, we get the results in the theorem.

APPENDIX B
PROOF OF LEMMA 1

In the dominant simplified system, the transmitter x0 is
active with probability p. The probability that the nearest
interfering transmitter x1 is scheduled and also successful is

p1 = p2P
{

h1r
−α
0

h2r
−α
s +W

> θ

}
+ p(1− p)P

{
h1r

−α
0

W
> θ

}
(a)
= ξ0

(
p

1 + θrα0 r
−α
s

+ 1− p

)
. (44)

where h1 is the fading coefficient between the transmitter and
the receiver of the nearest pair of transceiver, and h2 is the
fading coefficient between the transmitter x0 and the receiver
y1. (a) follows because h1 and h2 are both exponentially
distributed. In the following, we divide the proof into two
cases, i.e., ξ ≥ p1 and ξ < p1.

1) The case where ξ ≥ p1: When ξ ≥ p1, the queue
at the nearest interfering transmitter x1 is unstable and will
never be empty, thus x1 will cause interference to the typical
transmission with probability p. Therefore, when ξ ≥ p1 the
probability that the transmitter x0 is scheduled and successful
is

p0 = p2P
{

h3r
−α
0

h4r
−α
m +W

> θ

}
+ p(1− p)P

{
h3r

−α
0

W
> θ

}
= ξ0

(
p

1 + θrα0 r
−α
m

+ 1− p

)
. (45)

where h3 is the fading coefficient between the transmitter x0
and the receiver y0, and h4 is the fading coefficient between
the nearest interfering transmitter x1 and the receiver y0.

If rs > rm, by comparing (44) with (45), we have ξ >
p1 > p0, which implies that the queue at the transmitter
x0 is unstable for the case ξ ≥ p1. This can be explained
intuitively by the concept of “stability rank” [9], which states
that if a queue is unstable, the queues with higher rank than
the said queue are unstable as well. The interference from
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the transmitter x0 to the receiver y1 is less than that from
the nearest interfering transmitter x1 to the receiver y0 when
rs > rm, which means that the queue at x0 has higher rank
than the queue at x1; Thus, when the queue at the nearest
interferer x1 is unstable, the queue at the transmitter x0 is
also unstable.

If rs ≤ rm, the queue at x1 has higher rank than the queue
at x0. By comparing (44) with (45), we have p0 ≥ p1, which
implies that the queue at the transmitter x0 is stable for p0 ≥
ξ ≥ p1 and unstable for ξ > p0.

2) The case where ξ < p1: When ξ < p1, the queue of the
nearest interfering transmitter x1 is empty with probability 1−
ξ/p1 and is nonempty with probability ξ/p1. Therefore, when
ξ < p1 the probability that the transmitter x0 is scheduled by
random access and successful is

p′0 = p2
ξ

p1
P
{

h3r
−α
0

h4r
−α
m +W

> θ

}
+

(
p(1− p)

ξ

p1
+ p

(
1− ξ

p1

))
P
{
h3r

−α
0

W
> θ

}
= ξ0

(
pξ

p1

1

1 + θrα0 r
−α
m

+ 1− pξ

p1

)
. (46)

To make the queue at the transmitter x0 stable, the arrival rate
should satisfy ξ ≤ p′0, i.e.,

ξ ≤ pp1

p1 exp (Wθrα0 ) + p2 − p2 1
1+θrα0 r−α

m

= p1

(
p

1 + θrα0 r
−α
s

− p

1 + θrα0 r
−α
m

+ 1

)−1

= ξ0

(
p

1 + θrα0 r
−α
s

+ 1− p

)
(

p

1 + θrα0 r
−α
s

− p

1 + θrα0 r
−α
m

+ 1

)−1

. (47)

If rs > rm, it can be verified that the right side of the above
inequality is less than p1. Therefore, for the case ξ < p1, the
queue at the transmitter x0 in the dominant simplified system
will be stable only when the inequality (47) is satisfied.

If rs ≤ rm, the right side of the above inequality is larger
than p1. Therefore, for the case ξ < p1, the queue at the
transmitter x0 in the dominant simplified system will be stable.

Combining the cases ξ ≥ p1 and ξ < p1, the queue at the
transmitter x0 in the dominant simplified system is stable if
and only if

ξ ≤


ξ0

(
p

1+θrα0 r−α
s

+ 1− p
)

·
(

p

1+θrα0 r−α
s

− p

1+θrα0 r−α
m

+ 1
)−1

if rs > rm

ξ0

(
p

1+θrα0 r−α
m

+ 1− p
)

if rs ≤ rm

Thus, (48) also gives the sufficient and necessary condition
for the queue at the transmitter x0 to be stable in the original
simplified system.

APPENDIX C
PROOF OF THEOREM 2

According to Lemma 1, if rs > rm, from (48) we have

ξ ≤ ξ0

(
p

1 + θrα0 r
−α
s

+ 1− p

)
(

p

1 + θrα0 r
−α
s

− p

1 + θrα0 r
−α
m

+ 1

)−1

≤ ξ0

(
p

1 + θrα0 r
−α
s

+ 1− p

)
. (48)

Since Lemma 1 gives a sufficient and necessary condition
for the transmitter x0 to be stable in the simplified system
when φ,ψ, rm are given, comparing (48) and (48), we obtain
a necessary condition as

ξ ≤ ξ0

(
p

1 + θrα0 (max{rm, rs})−α + 1− p

)
. (49)

According to (3) and Lemma 1, when φ,ψ, rm are random
variables, a necessary condition for the simplified system to
be stable is

ε ≥ P

{
ξ ≥ ξ0

(
p

1 + θrα0 (max{rm, rs})−α + 1− p

)}

= P

{
1

r0
max{rm, rs} ≤

(
θ
ξ + pξ0 − ξ0

ξ0 − ξ

)1/α
}
. (50)

Let Z = 1
r0

max{rm, rs}, and denote the cdf of Z as FZ(z),
whose closed-form expression is hard to derive. (50) can be
written as

ε ≥ FZ

(
1

r0
max{rm, rs} ≤

(
θ
ξ + pξ0 − ξ0

ξ0 − ξ

)1/α
)
, (51)

which is equivalent to

ξ ≤ ξ0

(
1− θp

θ +
(
F−1
Z (ε)

)α
)
. (52)

Therefore, we obtain the necessary condition in Theorem 2.

APPENDIX D
PROOF OF COROLLARY 2

According to (3) and Lemma 2, rm is a random variable
in the original system. Thus, a necessary condition for the
original system to be ε-stable is

ε ≥ P
{
ξ ≥

(rαm + θrα0 ) ((rm + 2r0)
α
+ (1− p)θrα0 ) ξ0

(rαm + (1 + p)θrα0 ) ((rm + 2r0)
α
+ (1− p)θrα0 ) + p2θ2r2α0

}
.

Since f(x) = x
1+x is an increasing function, we obtain a

necessary condition for the original system to be ε-stable as

ε > P

{
ξ ≥ ((rm + 2r0)

α + θrα0 )
2
ξ0

((rm + 2r0)α + θrα0 )
2
+ p2θ2r2α0

}
= P

{
(ξ0 − ξ) ((rm + 2r0)

α + θrα0 )
2 ≤ ξp2θ2r2α0

}
. (53)
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Since the inequality ξ0 − ξ > 0 is satisfied from (4), we have

ε > P
{
rm ≤

(√
ξp2θ2r2α0
ξ0 − ξ

− θrα0

)1/α

− 2r0︸ ︷︷ ︸
A

}
. (54)

When A ≤ 0, the probability at the right side of the inequality
is zero; thus the above inequality (54) always holds. When
A > 0, using the probability distribution of rm given by (17),
we have

ε > 1− exp
(
−πλA2

)
, (55)

and thus

0 < A <

√
− ln(1− ε)

πλ
. (56)

Combining the cases of A ≤ 0 and A > 0, we have(√
ξp2θ2r2α0
ξ0 − ξ

− θrα0

)1/α

− 2r0 <

√
− ln(1− ε)

πλ
. (57)

Solving the above inequality, we get the result in the corollary.

APPENDIX E
PROOF OF THEOREM 3

By introducing the modified system, an interfering trans-
mitter is active with probability ξp. Similar to the derivations
of (39), we get

Px0(CΦ)

= ξ0
∏

x∈Φ\{x0}

(
ξpEx0

[
exp

(
− θrα0 hk,x|x|−α

)
| Φ
]
+ 1− ξp

)
= ξ0

∏
x∈Φ\{x0}

( ξp

1 + θrα0 |x|−α
+ 1− ξp

)
. (58)

Letting Y ∆
= ln (Px0(CΦ)), the moment generating function

of Y is

MY (s) = (ξ0)
s exp

(
− ξsCδ2F1(1− s, 1− δ; 2; ξp)

)
. (59)

The cdf of Y can be derived as follows by applying the
Gil-Pelaez Theorem given by (41).

FY (y) =
1

2
− 1

π

∫ ∞

0

Im{e−jωyMY (jω)}
ω

dω. (60)

The probability that the queue at the typical transmitter in
the modified system is unstable is

Px0 {Px0(CΦ) ≤ ξ}
= Px0 {ln (Px0(CΦ)) ≤ ln ξ}

=
1

2
− 1

π

∫ ∞

0

Im{e−jω ln ξMY (jω)}
ω

dω. (61)

The condition for the queue at the typical transmitter in the
modified system to be stable is Px0 {Px0(CΦ) ≤ ξ} ≤ ε. By
combining (59) and (61), we get the condition for the queue

at the typical transmitter in the modified system to be stable
as

1

2
− 1

π

∫ ∞

0

1

ω
Im
{
(ξ0)

jω exp
(
− jω ln ξ

− jωξCδ2F1(1− jω, 1− δ; 2; ξp)
)}

dω ≤ ε. (62)

Therefore, we get the necessary condition for the original
system to be ε-stable.

APPENDIX F
PROOF OF COROLLARY 3

For all t > 0, by applying Markov inequality, we obtain

Px0 {Px0(CΦ) < ξ}
= Px0

{
(Px0(CΦ))

t < ξt
}

> 1− ξ−tE
[
(Px0(CΦ))

t
]

= 1− (ξ0)
tξ−tE

[ ∏
x∈Φ\{x0}

( ξp

1 + θrα0 |x|−α
+ 1− ξp

)t]
= 1− (ξ0)

tξ−t exp
(
− ξtCδ2F1(1− t, 1− δ; 2; ξp)

)
. (63)

Solving the following inequality, we get a type II necessary
condition given by (26).

1− (ξ0)
tξ−t exp

(
− ξtCδ2F1(1− t, 1− δ; 2; ξp)

)
≤ ε.

When t = 1, we obtain

Px0 {Px0(CΦ) < ξ} > 1− ξ0ξ
−1 exp(−ξCδ). (64)

Let W(z) be the main branch of Lambert W function,
defined by z = W(z)eW(z) for any complex number z.
Solving the inequality

1− ξ0ξ
−1 exp(−ξCδ) ≤ ε, (65)

we get a closed-form type II necessary condition in the
corollary.
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