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Abstract—Gauss-Poisson processes (GPPs) are a class of clus-
tered point processes, which include the Poisson point process
as a special case and have a simpler structure than general
Poisson cluster point processes. A key property of the GPP
is that it is completely defined by its first- and second-order
statistics. In this paper, we first show properties of the GPP
and provide an approach to fit the GPP to a given point set.
A fitting example is presented. We then propose the GPP as
a model for wireless networks that exhibit clustering behavior
and derive the signal-to-interference-ratio (SIR) distributions for
different system models: (1) the basic model where the desired
transmitter is independent of the GPP and all nodes in the GPP
are interferers; (2) the non-cooperative model where the desired
transmitter is one of the nodes in the GPP; (3) the cooperative
model, where the nodes in a GPP cluster transmit cooperatively.
The results indicate that a gain of 5-6 dB can be achieved with
cooperation.

I. INTRODUCTION

A. Motivation

Stochastic geometry tools have been widely used to analyze
the performance of wireless networks [2]. A main application
of stochastic geometry in wireless communication is to model
the node locations using spatial point processes. With the
point process models, metrics like success probability, average
achievable rate, local delay and so on can be derived by
quantitative analysis. When applying the point processes to
model wireless networks, two key problems should be taken
into consideration: first, whether a point process can accurately
model the actual network which may employ medium access
control; second, whether the point process model is tractable
for analyzing the system performance.

Most of the works in the literature model wireless networks
use the Poisson point process (PPP) [3]. This is because the
PPP model has a number of convenient features, such as the
independence between different points and the simple form of
the probability generating functional (PGFL), which make the
analysis tractable. But the PPP model may be inadequate for
those scenarios where the node locations exhibit correlations.
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In some circumstances, the transmitters form clusters, due to
geographical factors (e.g., access points inside a building and
groups of nodes moving in a coordinated fashion), or popula-
tion factors (e.g., base stations in urban regions). Besides, the
clustering phenomenon of transmitters can also be artificially
induced by certain MAC protocols1. Thus, clustered point
processes are suitable to model these transmitters’ locations.
A few prior studies have used models of clustered point
processes, most notably, the Neyman-Scott process [6] [7].
In those works, the system performance indicators, such as
success probability and mean achievable rate, are usually in
complex form involving multiple integrals.

In this paper, we focus on the Gauss-Poisson process (GPP),
which is a relatively simple clustered point process that has
either one or two points in a cluster. As such, it retains a good
level of tractability and constitutes a definitive improvement
over the PPP in cases where “attraction” exists between node
locations, and it achieves a good trade-off between modeling
accuracy and tractability.

The motivation for introducing the GPP mainly comes from
three aspects.

• The GPP belongs to the family of the Poisson cluster
processes, with the number of points in each cluster
restricted to one or two. It well describes the scenario
where each cluster has one or a pair of nodes. In
reality, scenarios where there are 1 or 2 transmitters close
together are commonly seen including: 1) the scenario
where one person uses a phone and a tablet to access
the network concurrently, or two persons work together
through their own devices; 2) some indoor deployments
of access points where there are one or two access points
of the cellular networks or Wi-Fi access points in one
room; 3) full-duplex networks where each transceiver
pair has a fixed/small inter-node distance [8]; 4) multi-
antenna systems where each access point is equipped with
two antennas; 5) military ad hoc networks, where each
node represents a soldier and soldiers move in pairs for
their missions. Not limited to model those scenarios, the
(generalized) GPP is also suitable for many other types
of clusters as will be pointed out in Section II.

• The generalized GPP, where the inter-point distance in
each cluster is a random variable instead of a determinis-
tic quantity, can be used in great generality to model the
spatial distribution of transmitters based on first-order and

1Conversely, some MAC protocols may also lead to repulsion between
transmitters [4], [5].
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second-order statistics if the deployment of the transmit-
ters appears clustered. It has been shown in [9] that this
property makes the GPP the point process analog of the
normal distribution, completely defined by its first- and
second-order characteristics. This implies that a suitable
GPP can be used to generate point distributions with any
given intensity and two-point correlation function that
satisfy certain constraints. In other words, given the first-
and second-order statistics of an actual wireless network,
we can use the GPP to model this network.

• The GPP constitutes a simple network model to analyze
wireless networks that apply cooperative techniques (see
Sections III-V).

B. Related Work

Both clustered point processes (e.g., the Neyman-Scott
process) and repulsive point processes (e.g., the Ginibre point
process and the Matérn hard-core processes) have been used
to model wireless networks, including cellular networks. In
[6], the authors derived the distributional properties of the
interference and provide upper and lower bounds for its
distribution, assuming the node locations form a Poisson
cluster process on the plane. In [7], the Neyman-Scott process
was used to model the distribution of femto-cells, and the
distributions of the SINR and mean achievable rates of both
nonsubscribers and subscribers were derived. In [10], the
Ginibre point process was applied to cellular networks to
model the locations of the base stations, and the interference
and the coverage/success probability were analyzed. In [11],
we used the Strauss process, the Poisson hard-core process
and the perturbed triangular lattice to model actual base station
locations in the UK.

The GPP has been well studied in the mathematical litera-
ture. In [12], the authors determined necessary and sufficient
conditions on the first- and second-order measures for the
resulting GPP point process to be well defined, and studied
stationarity, ergodicity, and infinite divisibility of the GPP. In
[9], the author proposed a simple method for the simulation of
the GPP, given the intensity and the pair correlation function.
Moreover, like the Poisson cluster processes, the GPP has also
been used to model wireless networks. In [13], the GPP was
proposed to fit a cognitive radio network based on the first- and
second-order statistics using the method of minimum contrast,
but no analysis was carried out using this model.

Recently, cooperative transmission techniques in cellular
networks, known as coordinated multi-point transmission
(CoMP), have been widely studied [14], [15]. For the down-
link, CoMP can be divided into two categories: coordinated
scheduling/beamforming [16], [17], which reduces inter-cell
interference, and joint transmission (JT) [18]–[20]. In [18],
the authors studied coherent JT with power-splitting in cellular
networks where base stations cooperate in a pairwise manner.
In [19], the authors proposed a tractable model for analyzing
the base station cooperation of non-coherent JT, where the base
stations follow a stationary PPP and at the receiver a received
power boost is yielded by the non-coherent superposition of
the useful signals. In [20], the authors considered the base

station cooperation of both non-coherent JT and coherent JT in
the downlink of heterogeneous cellular networks and derived
the coverage/success probability.

C. Contributions

This work makes the following contributions:
• We propose an approach to using the GPP to model

spatial distribution of wireless networks, for which the
basic idea is to equalize both the first- and second-order
statistics of the GPP and the point sets. A fitting case
study is provided.

• We derive the SIR distributions for the following four
models: (a) Basic model: the desired transmitter is in-
dependent of the GPP. (b) Non-cooperative model: the
desired transmitter is a point of the GPP, and the other
point in the same cluster (if any) acts as an interferer. (c)
Cooperative model 1: the desired transmitter is a point of
the GPP, the other point in the same cluster (if any) acts
as a cooperator, and in the SIR expression at the receiver,
the desired signals are combined by accumulating their
powers. (d) Cooperative model 2: it is similar to the
cooperative model 1, except that in the SIR expression
at the receiver, the desired signal power is that of the
sum of the amplitudes of the desired signals.

• We investigate the benefits of cooperative communica-
tions in a GPP network, which gives some fundamental
insights into the benefits of cooperation techniques in
large networks, where the interference from all transmit-
ting nodes is properly accounted for.

II. THE GAUSS-POISSON PROCESS

A. Definition

Definition 1 (Generalized Gauss-Poisson process [21]). The
generalized GPP is a Poisson cluster process with homo-
geneous independent clustering. The intensity of the parent
process is denoted by λp. Each cluster has one or two points,
with probabilities 1−p and p, respectively. If a cluster has one
point, it is located at the position of the parent. If a cluster
has two points, one of them is at the position of the parent,
and the other is randomly distributed around the parent with
some PDF g.

Note that in Def. 1, the inter-point distance u in the two-
point cluster is random. If u is deterministic, which means that
in two-point clusters, one point is at the position of the parent,
and the other is uniformly distributed on the circle with radius
u centered at the location of the parent, then the GPP is called
a standard GPP as defined in [2, Example 3.8]. The standard
GPP is motion-invariant (isotropic and stationary) [2, Ch. 2].
Fig. 1 shows a realization of a standard GPP with λp = 0.02,
u = 1 and p = 0.5.

Denote the parent point process of the generalized GPP by
Φp = {x1, x2, ...} with intensity λp. Let {Φx, x ∈ Φp} be the
clusters of the GPP, denoted by

Φx =

{
{x} w.p. 1− p
{x, x+ zx} w.p. p, (1)
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Fig. 1. A realization of the standard GPP on [0, 80]×[0, 60] with λp = 0.02,
u = 1 and p = 0.5. There are in total 159 points. The expected number of
points is 4800× 0.02× 1.5 = 144.

The intensity of the GPP, denoted by λ, is thus λp(1+p). For
the cluster Φx, we call x the cluster center. The GPP is the
union of the clusters:

Φ =
⋃
x∈Φp

Φx,

where the translations {zx} ∈ R2, x ∈ Φp, are i.i.d. with PDF
g.

In this paper, we only consider motion-invariant (isotropic
and stationary) point processes, so g(x) only depends on ‖x‖,
and we define the radial PDF fu : R+ → R+ by fu(‖x‖) ,
g(x).

The generalized GPP was first introduced by Newman
in [21]. Newman named the point process “Gauss-Poisson”
due to its property that it is completely characterized by
its first- and second-order statistics (i.e., intensity and two-
point correlation function). In contrast, the stationary PPP is
characterized only by its intensity. As such, the generalized
GPP is a natural generalization of the PPP that retains some
of its simplicity. In the following subsection, we discuss some
of its pertinent properties.

B. Properties

The second factorial moment measure α(2) [2, Def. 6.4]
and the second moment density ρ(2) [2, Def. 6.5] of a point
process are related by

α(2)(A×B) , E
( 6=∑
x,y∈Φ

1A(x)1B(y)
)

=

∫
A×B

ρ(2)(x, y)dxdy,

where A,B are two compact subsets of R2 and the 6= symbol
indicates that the sum is taken only over distinct point pairs.
The second moment density is an important statistic that
describes the pairwise correlation of a point process. For
the PPP, ρ(2)(x, y) = λ2, since points are independent. If
ρ(2)(x, y) > λ2, it is likely that Φ has a point at y, if there is
a point of Φ located at x.

Since the generalized GPP is motion-invariant, ρ(2)(x, y)

only depends on ‖x−y‖. So we define ρ(2)
mi : R+ → R+, such

that ρ(2)
mi (‖x − y‖) ≡ ρ(2)(x, y), for all x, y ∈ R2. Without

ambiguity, we also call ρ(2)
mi the second moment density. For

the GPP, an expression for ρ(2)
mi is given in the following

lemma.

Lemma 1. The second moment density ρ(2)
mi (r) of the gener-

alized GPP is

ρ
(2)
mi (r) = λ2 + 2pλpfu(r). (2)

Proof: For any compact A,B ⊂ R2, the second moment
measure is∫
A

∫
B

ρ(2)(x, y)dxdy =

∫
A

∫
B

(
λ2 + pλpg(y − x)

+ pλpg(x− y)
)
dxdy (3)

=

∫
A

∫
B

(
λ2 + 2pλpg(y − x)

)
dxdy.

(4)

For the right hand side of (3), inside the integral, λ2 is due
to pairs of points in different clusters, pλpg(y − x) is due to
the pair (x, y) of points in the same cluster, where x ∈ A is
the cluster center and y ∈ B is the other point of the cluster,
and pλpg(x− y) is from the pair (x, y) of points in the same
cluster, where y is the cluster center and x is the other point.

Since A,B are arbitrary compact sets, we have that for any
x, y ∈ R2,

ρ(2)(x, y) = λ2 + 2pλpg(y − x), (5)

and it follows that for any r ∈ R+, ρ(2)
mi (r) = λ2 +2pλpfu(r).

According to Lemma 1, ρ(2)
mi (r) “inherits” the properties of

fu(r), since ρ(2)
mi (r) − λ2 ∝ fu(r). Indeed, defining the two-

point correlation function as

ξ(r) ,
ρ

(2)
mi (r)

λ2
− 1, (6)

we have

ξ(r) =
2p

λ(1 + p)
fu(r). (7)

Let D , 2p
λ(1+p) . Since

∫
R2 fu(‖x‖)dx = 1, we have∫

R2 ξ(‖x‖)dx = D. Given the intensity λ and the two-point
correlation function ξ(r), we obtain for the generalized GPP

fu(r) =
ξ(r)

D
, (8)

p =
λD

2− λD
, (9)

λp = λ
(

1− λD

2

)
. (10)

Thus, the generalized GPP is completely defined by its first-
order statistic λ and its second-order statistic ξ(r) (or ρ(2)

mi (r)).
Note that (8), (9) and (10) have also been derived in [9] using
a different method.
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Fig. 2. The illustration of the point set we consider for the GPP fitting. It
is a realization of the PHP with λ1 = 0.8825, λ2 = 2 and r = 0.5.

Since fu(r) ≥ 0 for all r ∈ R+ and
∫
R2 fu(‖x‖)dx = 1,

by (7), we have two constraints for ξ(r), namely

ξ(r) ≥ 0, ∀r ∈ R+, (11)

λ

∫
R2

ξ(‖x‖)dx =
2p

1 + p
≤ 1. (12)

Herein, (11) indicates that the GPP is a clustered point
process, and (12) implies that next to a point of the process,
at most one other point in excess of the Poisson distributed
points can be present. Given λ and ξ(r) that statisfy the two
constraints, the generalized GPP is well defined.

C. GPP Model Fitting

Given λ and ξ(r), which satisfy (11) and (12), there is a
generalized GPP. In this subsection, we introduce the GPP
model fitting given a point set. The basic idea is that, given
a point set, we first estimate its intensity λ̂ and the two-point
correlation function ξ̂(r) and then fit the generalized GPP with
λ and ξ(r) to the point set by letting λ = λ̂ and ξ(r) = ξ̂(r).
The goodness-of-fit is evaluated by comparing the nearest-
neighbor distance function G(r) [2, Def. 2.39].

The point set we use for fitting in this subsection is drawn
from a realization of the Poisson hole process (PHP). Recently,
as a class of clustered point process, the PHP has drawn
much attention for its application to model some emerging
types of networks. For example, in [22], the PHP is used to
model active secondary users in a cognitive network, who are
outside the primary user exclusion regions; in [23], the PHP is
used to model the device-to-device (D2D) transmitters in D2D
networks where exclusion zones are introduced by interference
management. A shortcoming of the PHP is that it is not very
tractable; as a result, it would benefit from being approximated
using a simpler point process, such as the GPP.

The PHP is a Cox process that has been defined in [2,
Example 3.7]. Let Φ1,Φ2 ⊂ R2 be independent uniform PPPs

0.0 0.5 1.0 1.5 2.0
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0
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0
.0
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1
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.0

2
.5

r

ξ^
(r

)

ξ
^(r) of the point set

ξPois(r)

Fig. 3. The estimated two-point correlation function ξ̂(r) of the point set
and the two-point correlation function ξPois(r) of the PPP.

of intensities λ1 and λ2. Further let Ξr ,
⋃
{b(x, r) : x ∈ Φ1}

be the unions of all disks of radius r centered at a point of
Φ1. The PHP is Φ = {x ∈ Φ2 : x /∈ Ξr} = Φ2 \Ξr, i.e., each
point in Φ1 carves out a hole of radius r from Φ2.

As is illustrated in Fig. 2, the point set we use for fitting
is generated on a 20 × 20 window from the PHP with λ1 =
0.8825, λ2 = 2 and r = 0.5. The intensity of the PHP is λ =
λ2 exp(−λ1πr

2) = 1. The estimated intensity of the point set
is λ̂ = 1.06. To estimate the two-point correlation function, we
use the function ‘pcf’ of the package “spatstat” in the software
“R”. Fig. 3 shows the estimated two-point correlation function
ξ̂(r). We observe that ξ̂(r) vanishes for r > 1, i.e., ξ̂(r) ≈ 0,
for r > 1/

√
λ̂, which means that if the distance between two

points is larger than twice the mean nearest-neighbor distance
of the PPP with the same intensity2, the two points are likely
to be uncorrelated. To apply the generalized GPP for modeling
fitting, we let λ = λ̂ and make the approximation of ξ(r) that

ξ(r) =

{
max{0, ξ̂(r)}, for r ∈

(
0, 1/

√
λ̂
]
,

0, otherwise.
(13)

Denote the PDF of the inter-point distance in the two-point
cluster as f̂u. We have f̂u(r) = 2πrfu(r). By (8), f̂u of the
fitted GPP is obtained and shown in Fig. 4. By (9) and (10),
we have p = 0.460 and λp = 0.726.

The two-point correlation functions of the point set and the
fitted generalized GPP are shown in Fig. 5. The estimated
two-point correlation functions of 99 realizations of the fitted
generalized GPP are also illustrated. We observe that there
is only a small gap between their average and ξ̂(r) of the
point set for r < 0.3, and their envelope fully contains ξ̂(r)

2The nearest-neighbor distance distribution G(r) of the PPP of intensity
λ is G(r) = 1 − e−λπr2 . Thus the mean nearest-neighbor distance NN =∫∞
0 2λπr2e−λπr

2
dr = 1

2
√
λ

.
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Fig. 5. The two-point correlation functions ξ(r) of the data (solid curve) and
99 realizations of the fitted generalized GPP (grey curves). The dotted curve
are the pointwise maximum and minimum of ξ(r) of the 99 realizations. The
dash-dotted curve is the average value of ξ(r) of the 99 realizations. The
dashed curve is the theoretical curve of the PPP.

of the point set, which implies that the approximation by (13)
provides a very good match within the r range

[
0, 1/

√
λ̂
]
.

We next compare the G function between the point set and
the fitted generalized GPP. The functions of the point set and
99 realizations of the fitted generalized GPP are given in Fig.
6. We conclude that the PPP is not suitable to describe the
point set, while the fitted generalized GPP is a good model
for the point set, since the functions of the point set fall into
the range of the functions of the fitted generalized GPP’s 99
realizations.
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Fig. 6. The nearest-neighbor distance distribution functions G(r) of the data
(solid curve) and 99 realizations of the fitted generalized GPP (grey curves).
The dotted curve are the pointwise maximum and minimum of G(r) of the
99 realizations. The dash-dotted curve is the average value of G(r) of the 99
realizations. The dashed curve is the theoretical curve of the PPP.

III. SYSTEM MODELS

We model the locations of the transmitters as a generalized
GPP on R2. As a special case, the modeling using the standard
GPP has been considered in our prior work [1]. Our analysis
is focused on the typical receiver located at the origin o with
desired transmitter at x0 = (b, 0) with b 6= 0.

We adopt a path loss model `(x) = ‖x‖−α, where x ∈
R2 and α > 2, and assume the power fading coefficients to
be spatially independent with exponential distribution of unit
mean (i.e., Rayleigh fading). Denote by hx the power fading
coefficient between the transmitter x and the receiver at o. We
set all transmit powers to unity and focus on the interference-
limited regime, thus omitting the thermal noise.

A. Basic Model

The desired transmitter x0 is separate from the GPP and
all points in the GPP are interferers. The SIR at the receiver
located at the origin o is

SIR =
h0b
−α∑

x∈Φ hx‖x‖−α
, (14)

where h0 is the power fading coefficient between the desired
transmitter and the receiver.

B. Non-cooperative Model

In this case, the desired transmitter x0 is taken from the
GPP and b = ‖x0‖. All other points in the GPP are interferers.
Therefore, there is an interferer at distance u of the desired
transmitter with probability 2p

1+p , since the probability that x0
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belongs to a one-point cluster is (1−p)λp

λp+pλp
= 1−p

1+p , and the SIR
at the receiver is

SIR =
hx0

b−α∑
x∈Φ\{x0} hx‖x‖

−α . (15)

C. Cooperative Model 1

In this case, the desired transmitter x0 is taken from a cluster
Φ0 in the GPP, and if there is another point in Φ0, it acts as
a cooperator. Unlike the cooperation model in [19], where the
cooperative base stations are selected based on the received
signal strength measurements, in our model, we assume that
the cooperative pair consists of the transmitters in the same
cluster and that they share the information including the data
that needs to be transmitted. We assume that if there is a
cooperator, the transmitters adopt non-coherent JT and at the
receiver, the useful signals are combined by accumulating
their powers, a scheme known as cyclic delay diversity for
single-frequency networks using orthogonal frequency division
multiplexing (OFDM) as is shown in [19]. In this way, the
receiver is served by both transmitters in a cluster, and all
points from other clusters of the GPP act as interferers. The
SIR at the receiver is

SIR =

∑
x∈Φ0

hx‖x‖−α∑
x∈Φ\Φ0

hx‖x‖−α
. (16)

D. Cooperative Model 2

In this case, same as the cooperative model 1, the desired
transmitter x0 is taken from a cluster Φ0 in the GPP, and
if Φ0 has two points, the other point acts as a cooperator.
But different from the cooperative model 1, if there exists a
cooperator, the signals from the two cooperative transmitters
are not combined at the receiver by accumulating their powers
but they add up in amplitude. The received signal at the typical
receiver is expressed as

Yro =
∑
x∈Φ0

h̃x‖x‖−α/2Xto +
∑

z∈Φ\Φ0

h̃z‖z‖−α/2Xz, (17)

where h̃x are the fading coefficients and are i.i.d. complex
Gaussian distributed random variables with mean 0 and vari-
ance 1, Xto is the signal transmitted by the desired (coop-
erative) transmitters of the typical receiver, and Xz is the
signal transmitted by the transmitter at z. Xto and Xz are
independent random variables with mean 0 and variance 1.
The first term is the desired signal, while the second term is
the interfering signal. The desired received signal power at o
is

Pr =
∣∣∣ ∑
x∈Φ0

h̃x‖x‖−α/2
∣∣∣2. (18)

So Pr is exponentially distributed with mean
∑
x∈Φ0

‖x‖−α
(i.e., Rayleigh fading). Note that in the interference signal, if
two transmitters belong to one cluster, they transmit the same
signal. So the interference power at o is given by

Io =
∑

y∈Φp\Φ0

∣∣∣ ∑
x∈Φy

h̃x‖x‖−α/2
∣∣∣2. (19)

where {Φy} are the clusters of the GPP and y is the cluster
center of Φy .

Therefore, the SIR at the receiver o is

SIR =

∣∣∣∑x∈Φ0
h̃x‖x‖−α/2

∣∣∣2∑
y∈Φp\Φ0

∣∣∣∑x∈Φy
h̃x‖x‖−α/2

∣∣∣2 . (20)

IV. SIR DISTRIBUTION

We assume that the receiver can decode successfully if its
SIR exceeds a threshold θ. The interference is denoted by I ,
which is the denominator in (14), (15), (16) and (20). In this
section, we derive the complementary cumulative distribution
function (CCDF) of the SIR distributions (or the transmission
success probabilities) for the four models.

A. Basic Model

Lemma 2. Let v : R2 7→ [0, 1] be a measurable function such
that 1 − v has bounded support. The probability generating
functional (PGFL) of the GPP is

G[v] = exp

(
λp

∫
R2

[
(1− p)v(x)

+ pv(x)

∫
R2

v(x+ z)fu(‖z‖)dz − 1
]
dx

)
. (21)

Proof: The PGFL of a Poisson cluster process is

GPCP[v] = exp
(
λp

∫
R2

(G
[x]
0 [v]− 1)dx

)
, (22)

where G[x]
0 [v] is the PGFL of the cluster Φ[x] that is centered

at x, given by G[x]
0 [v] = E

(∏
y∈Φ[x] v(y)

)
[2, Cor. 4.12].

According to the definition of the generalized GPP, we have

G
[x]
0 [v] = (1− p)v(x) + p

∫
R2

v(x)v(x+ z)fu(‖z‖)dz. (23)

Substituting (23) into (22), we obtain (21).

Theorem 1. In the basic model, the SIR distribution is the
Laplace transform of the interference I at θbα, i.e.,

Ps(θ, b, λp, α, p) = LI(θbα), (24)

where

LI(s) = exp

(
2πλp

∫ ∞
0

(
1− p

1 + sr−α
+

p

1 + sr−α

·
∫ ∞

0

∫ 2π

0

1

1+s(r2+τ2+2rτ cosψ)−α/2
dψfu(τ)τdτ

−1

)
rdr

)
. (25)

Proof: The SIR distribution Ps is

Ps(θ, b, λp, α, p) = P
(
h0b
−α

I
> θ

)
(a)
= LI(θbα), (26)
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where (a) follows because h0 ∼ exp(1). The Laplace trans-
form of I is derived from the PGFL as follows:

LI(s) = EΦ,{h}

(
exp

(
−
∑
x∈Φ

shx‖x‖−α
))

= EΦ

( ∏
x∈Φ

Eh
(

exp(−sh‖x‖−α)
))

= exp

(
λp

∫
R2

[
(1− p)v(x) + pv(x)

·
∫
R2

v(x+ z)fu(‖z‖)dz − 1
]
dx

)
, (27)

where

v(x) = Eh
(

exp(−sh‖x‖−α)
)

=
1

1 + s‖x‖−α
. (28)

Substituting (28) into (27), we obtain (25).
The SIR distribution can be bounded in closed form for the

standard GPP with u = 1 and α = 4.

Corollary 1. For the standard GPP with u = 1 and α = 4,
the SIR distribution has upper and lower bounds in closed
form, as follows:

Ps(θ, b, λp, 4, p) ≤ exp

(
− π2

2
λp(1− p)

√
s+ λppWu(s)

)
,

and

Ps(θ, b, λp, 4, p) ≥ exp

(
− π2

2
λp(1− p)

√
s+ λppWl(s)

)
,

where s = θb4,

Wu(s) =
π
√
s

4(9s2 + 40s+ 16)

(
8s

3
2 ln

s

s+ 4
+ (−3s2 + 24s

+ 16) arctan
2√
s
−π(

21

2
s2 + 48s+ 24)

)
+

π
√
s

2(4s+ 1)

·
(
s

3
2 ln

s

s+ 1
+ (3s+ 1)(arctan

1√
s
− π)

)
, (29)

and

Wl(s) = −π
2
√
s

4
− πs

1
4

8

(
2
√

2π −
√

2 ln
1 +
√
s−
√

2s
1
4

1 +
√
s+
√

2s
1
4

− 2(
√

2 + 2s
1
4 ) arctan

−
√

2− s 1
4

s
1
4

− 2(
√

2− 2s
1
4 )

· arctan
−
√

2 + s
1
4

s
1
4

)
+

2πs
3
2 + π

√
s

2(4s+ 1)
arctan

1√
s

+
πs2

4s+ 1
ln

s

s+ 1
− 2π2s

3
2 + π2

√
s

2(4s+ 1)
. (30)

Proof: See Appendix A.
As b→ 0, we have Wu → 0 and Wl → 0, and thus the gap

between Wu and Wl vanishes.
The following corollary gives the SIR distribution in the

asymptotic regime u→ 0 for the standard GPP.

Corollary 2. In the basic model, for the standard GPP, the
SIR distribution in the asymptotic regime u → 0 is equal to
the Laplace transform of the interference I0 at θbα, i.e.,

Ps(θ, b, λp, α, p) = LI0(s), (31)

where s = θbα,

LI0(s) = exp

(
− πλps

δ

sinc δ
(1 + pδ)

)
, (32)

and δ , 2
α .

Proof: For the asymptotic regime u→ 0, the two points
in any two-point cluster tend to be located at the same position.
Let Φ1 ⊂ Φp be the set of parent points of the clusters with
only one point in the GPP and Φ2 = Φp\Φ1 be the set of
parent points of the clusters with co-located two points in the
GPP. Let I1 =

∑
x∈Φ1

hx‖x‖−α and I2 =
∑
x∈Φ2

(hx,1 +
hx,2)‖x‖−α be the interference from Φ1 and Φ2 respectively,
where hx,1 and hx,2 are the power fading coefficients between
the two transmitters co-located at x and the typical receiver.
The Laplace transform of the interference is then given by

LI0(s)= E
(

exp
(
− sI1 − sI2

))
=EΦ1

( ∏
x∈Φ1

Eh
(

exp(−sh‖x‖−α)
))

·EΦ2

( ∏
x∈Φ2

Ehx,1,hx,2
(

exp(−s(hx,1+hx,2)‖x‖−α)
))

=EΦ1

( ∏
x∈Φ1

1

1+s‖x‖−α

)
EΦ2

( ∏
x∈Φ2

1

(1+s‖x‖−α)2

)
=exp

(
− λp

∫
R2

(1 + p+ s‖x‖−α)s‖x‖−α

(1 + s‖x‖−α)2
dx

)
= exp

(
− δπ2λps

δ

sin (πδ)
(1 + pδ)

)
. (33)

From (26), we get the SIR distribution for the GPP in the
limit of u→ 0.

B. Non-cooperative Model

Lemma 3. Conditioned on a point of the generalized GPP
being located at y, the conditional PGFL of the GPP excluding
y is

G!
y[v] = G[v]

(
1− p
1 + p

+
2p

1 + p

∫
R2

v(y + z)fu(‖z‖)dz
)
.

Proof: Denote the points in the cluster which contains the
desired transmitter y as Φ0 and all points in other clusters as
Φc =Φ\Φ0. From Slivnyak’s theorem [2], conditioning on Φ0

does not change the distribution of the other clusters, and the
distribution of the points excluding Φ0 remains the same as
the original GPP Φ. So, the conditional PGFL excluding y is

G!
y[v] = E

( ∏
x∈(Φc

⋃
Φ0)\{y}

v(x)

)

= E
( ∏
x∈Φ

v(x)

)
E
( ∏
x∈Φ0\{y}

v(x)

)
(a)
= G[v]

(
1− p
1 + p

+
2p

1 + p

∫
R2

v(y + z)fu(‖z‖)dz
)
,

where (a) follows since the probability that y belongs to a
one-point cluster is (1−p)λp

λp+pλp
= 1−p

1+p .
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Theorem 2. In the non-cooperative model, the SIR distribu-
tion is the Laplace transform of the interference I at θbα

Ps(θ, b, λp, α, p) = L̄I(s), (34)

where s = θbα and

L̄I(s) = LI(s) ·
(

1− p
1 + p

+
2p

1 + p

·
∫ ∞

0

∫ 2π

0

1

1 + s(b2 + τ2 + 2bτ cosψ)−α/2
dψfu(τ)τdτ

)
.

Proof: The proof is similar to that of Theorem 1, with
the conditional PGFL G!

y[v] instead of G[v].
Similar to the basic model, Ps(θ, b, λp, α, p) is not in closed

form. For the standard GPP with u = 1 and α = 4, however,
closed-form lower and upper bounds are available.

Corollary 3. For the standard GPP with u = 1 and α = 4,
the SIR distribution has upper and lower bounds in closed
form, as follows:

Ps(θ, b, λp, 4, p) ≤ exp

(
− π2

2
λp(1− p)

√
s+ λppWu(s)

)
·
(

1−p
1+p

+
p

1+p

( 1

1 + s(b2 + 1 + 2b)−2
+

1

1 + s(b2 + 1)−2

))
,

and

Ps(θ, b, λp, 4, p) ≥ exp

(
− π2

2
λp(1− p)

√
s+ λppWl(s)

)
·
(

1−p
1+p

+
p

1+p

( 1

1 + s(b2 + 1− 2b)−2
+

1

1 + s(b2 + 1)−2

))
,

where s = θb4.

Proof: See Appendix B.
The SIR distribution in the asymptotic regime u → 0 for

the standard GPP is given by the following corollary.

Corollary 4. In the non-cooperative model, for the standard
GPP, the SIR distribution as u → 0 is equal to the Laplace
transform of the interference I0 at θbα, i.e.,

Ps(θ, b, λp, α, p) = L̄I0(s), (35)

where s = θbα and

L̄I0(s) =
(1 + p)bα + (1− p)s

(1 + p)(bα + s)
exp

(
− πλps

δ

sinc δ
(1 + pδ)

)
.

Proof: The proof follows the same reasoning as that of
Corollary 2 except for the conditional PGFL of the GPP as
u→ 0.

Compared with the corresponding result for the basic model,
the result for the non-cooperative model has an extra factor
(1+p)bα+(1−p)s

(1+p)(bα+s) . This factor is a result of the extra factor of
the conditional PGFL of the GPP, compared with the PGFL
of the GPP.

C. Cooperative Model 1

In this cooperative model, the cooperator transmits the same
information as the desired transmitter simultaneously. In this
case, the received power, denoted by Psum, is the sum of the
received signal powers from the desired transmitter and the
cooperator, i.e.,

Psum =

{
hb−α w.p. 1−p

1+p ,
h1b
−α + h2c

−α w.p. 2p
1+p ,

(36)

where h, h1, h2 ∼ exp(1) are mutually independent, c = ‖x0+
zc‖, and zc ∈ R2 is a random point with PDF fu.

The exponential distribution has the property that if h ∼
exp(1), then lh ∼ exp(1/l), for l > 0. Thus, conditioned on
c, for the case where Psum = h1b

−α, Psum ∼ exp(bα); for the
case where Psum = h1b

−α + h2c
−α, if b 6= c, Psum follows

the hypoexponential distribution Hypo(bα, cα) and the PDF
of Psum is fP (x) = bαcα

bα−cα
(

exp(−cαx) − exp(−bαx)
)
, oth-

erwise, Psum ∼ Erlang(2, bα) and fP (x) = b2αx exp(−bαx).
Conditioned on y ∈ Φ0, the conditional PGFL G!Φ0

y of the
GPP, excluding Φ0, is

G!Φ0
y [v] = G[v]. (37)

This follows from Slivnyak’s theorem.

Theorem 3. In the cooperative model 1, the SIR distribution
is

Ps(θ, b, λp, α, p) =
1−p
1+p

LI(θbα)+
2p

1+p
Ezc
(
H(‖x0 + zc‖)

)
(38)

where

H(c) ,
bα

bα − cα
LI(θcα)− cα

bα − cα
LI(θbα) (39)

and the PDF of zc is fu.

Proof: The SIR at the receiver is Psum/I . We have

Ps(θ, b, λp, α, p) = EPsum
P
(Psum

I
> θ
)

=
1− p
1 + p

P
(hb−α

I
> θ
)

+
2p

1 + p
P
(h1b

−α + h2c
−α

I
> θ
)

=
1− p
1 + p

LI(θbα) +
2p

1 + p
Q, (40)

where Q , P(h1b
−α+h2c

−α

I > θ). Since the case of c = b
has a vanishing probability thus contributing zero to Q, we
have Q = EI,c

(
bα

bα−cα exp(−θcαI) − cα

bα−cα exp(−θbαI)
)

=

Ec
(
H(c)

)
.

As c = ‖x0 + zc‖, where zc ∈ R2 is a random point with
PDF fu, we have Q = Ezc

(
H(‖x0 + zc‖)

)
.

For the standard GPP with u = 1 and α = 4, upper and
lower bounds of the SIR distribution can be derived.

Corollary 5. For the standard GPP with u = 1 and α = 4
and b 6= 1/2, the SIR distribution has upper and lower bounds,
as follows:

Ps(θ, b, λp,4, p) ≤ C1LI(θb4) + C2LI(θ|b− 1|4), (41)
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and

Ps(θ, b, λp,4, p) ≥ C3LI(θb4) + C4LI(θ(b+ 1)4), (42)

where C1 = 1−p
1+p −

2p|b−1|4
(1+p)(b4−|b−1|4) , C2 = 2pb4

(1+p)(b4−|b−1|4) ,

C3 = 1−p
1+p−

2p(b+1)4

(1+p)(b4−(b+1)4) and C4 = 2pb4

(1+p)(b4−(b+1)4) .

Proof: See Appendix C.
To get the bounds in closed form, we may apply (24) and

Corollary 1 to (41) and (42). In (41), for each of the two terms
C1LI(θb4) and C2LI(θ|b − 1|4), we apply the upper bound
of LI(·), if the corresponding factor (C1 or C2) is larger than
0, and apply the lower bound of LI(·) otherwise. While in
(42), for each of the two terms, we apply the lower bound of
LI(·) if the corresponding factor is larger than 0, and apply
the upper bound of LI(·) otherwise. Note that the upper bound
becomes loose as b→ 0.5, as will be observed in Section V.

The SIR distribution in the asymptotic regime u → 0 for
the standard GPP is given by the following corollary.

Corollary 6. In the cooperative model 1, as u → 0 for the
standard GPP, the SIR distribution is

Ps(θ, b, λp, α, p) =

∫ ∞
−∞

(1 + 3p)θbα − (1 + p)2jπω

(1 + p)(θbα − 2jπω)2

· exp

(
− πλp(2jπω)δ

sinc δ
(1 + pδ)

)
dω.

(43)

Proof: See Appendix D.

D. Cooperative Model 2

In this cooperative model, the interference signals from
the same cluster can be treated as one signal, since in any
cluster Φy with y ∈ Φp \ Φ0, the interference power is∣∣∣∑x∈Φy

h̃x‖x‖−α/2
∣∣∣2, which follows the exponential distri-

bution with mean
∑
x∈Φy

‖x‖−α. In this way, each cluster
can be treated as one interferer, which follows the PPP with
intensity λp. Thus, the Laplace transform of the interference
power Io is given by

L̃Io(s)= EΦ,{h̃}

(
exp

(
− s

∑
y∈Φp\Φ0

∣∣∣ ∑
x∈Φy

h̃x‖x‖−α/2
∣∣∣2))

=EΦ

( ∏
y∈Φp\Φ0

EΦy,{h̃}
(
exp(−s

∣∣∣ ∑
x∈Φy

h̃x‖x‖−α/2
∣∣∣2)
))

=EΦp

( ∏
x∈Φp

(
(1− p) 1

1 + s‖x‖−α

+ p

∫
R2

1

1 + s(‖x‖−α + ‖x+ z‖−α)
fu(‖z‖)dz

))
= exp

(
λp

∫
R2

[
(1− p) 1

1 + s‖x‖−α

+p

∫
R2

1

1+s(‖x‖−α+‖x+z‖−α)
fu(‖z‖)dz−1

]
dx

)
.

(44)

Based on the expression of the Laplace transform of the in-
terference power, we give the SIR distribution in the following
theorem.

Theorem 4. In the cooperative model 2, the SIR distribution
is

Ps(θ, b, λp, α, p) =
1− p
1 + p

L̃Io(θbα)

+
2p

1 + p

∫
R2

L̃Io
( θ

b−α + ‖x0 + z‖−α
)
fu(‖z‖)dz, (45)

where L̃Io(s) is given in (44).

Proof: According to the SIR expression given in (20), we
have

Ps(θ, b, λp, α, p) =P
(∣∣∣∑x∈Φ0

h̃x‖x‖−α/2
∣∣∣2

Io
> θ
)

=
1−p
1+p

P
( |h̃x0

b−α/2|2

Io
>θ
)

+
2p

1+p
P
( |h̃1b

−α/2+h̃2c
−α/2|2

Io
>θ
)

=
1− p
1 + p

L̃Io(θbα) +
2p

1 + p
Ec
[
L̃Io(θ(b−α + c−α)−1)

]
=

1−p
1+p
L̃Io(θbα)+

2p

1+p

∫
R2

L̃Io
( θ

b−α+‖x0+z‖−α
)
fu(‖z‖)dz,

(46)

where c = ‖x0 + zc‖, zc ∈ R2 is a random point with PDF
fu, and h̃x0

, h̃1, h̃2 ∼ CN (0, 1) are independent.
The SIR distribution in the asymptotic regime u → 0 for

the standard GPP is given by the following corollary.

Corollary 7. In the cooperative model 2, as u → 0, the SIR
distribution is

Ps(θ, b, λp, α, p)=
1−p
1+p

exp

(
−πλpθ

δb2(1−p+2δp)

sinc δ

)
+

2p

1+p
exp

(
−πλpθ

δb2(2−δ−2−δp+p)

sinc δ

)
. (47)

Proof: See Appendix E.
It is worth noting that if p = 0, the GPP reduces to the

PPP with intensity λ = λp. Substituting p = 0 into either one
of Theorems 1-4, we obtain the well-known result Ps(θ) =
exp

(
− πλpθ

δb2Γ(1 + δ)Γ(1− δ)
)
, see, e.g., [2, Ch. 5.2].

V. NUMERICAL RESULTS

We consider all system models we analyzed and show the
numerical results. The numerical results are obtained from the
analytical results we have derived.

A. Deterministic u (Standard GPP)

Fig. 7 shows the SIR distribution and the closed-form
bounds of the basic model as a function of the distance
between the receiver and the desired transmitter. We observe
that the upper bounds are satisfactorily tight for the basic
model.
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Fig. 7. The SIR distribution and the closed-form bounds with different
distances between the receiver and the desired transmitter for the basic model
(λp = 0.1, p = 0.5, α = 4, u = 1).
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Fig. 8. The SIR distribution and the closed-form bounds with different
distances between the receiver and the desired transmitter for the non-
cooperative model (λp = 0.1, p = 0.5, α = 4, u = 1).

Fig. 8 shows the SIR distribution and the closed-form
bounds of the non-cooperative model as a function of the
distance between the receiver and the desired transmitter. We
observe that the upper bounds are tight for both large and
small values of b. However, when b approaches u, the bounds
become loose, since if the cluster containing the desired
transmitter has another transmitter z0, we use the bounds for
the distance dzr from z0 to the receiver that

√
b2 + u2 < dzr <

b+u with probability 0.5 and |b−u| < dzr <
√
b2 + u2 with

probability 0.5.
Fig. 9 shows the SIR distribution and the closed-form

bounds of the cooperative model 1 as a function of the distance
between the receiver and the desired transmitter. We also
observe that the bounds are tight for both large and small
values of b, while they become loose when b is close to u.
The SIR distributions for the cooperative model 2 are also
shown in Fig. 9. Interestingly, they are approximately the same
as those for the cooperative model 1. So under our system
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Fig. 9. The SIR distribution and the closed-form bounds with different
distances between the receiver and the desired transmitter for the cooperative
model 1 (CM1) and the SIR distribution for the cooperative model 2 (CM2).
(λp = 0.1, p = 0.5, α = 4, u = 1.)
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Fig. 10. The SIR distributions of the basic model, the non-cooperative model,
the cooperative model 1 and the cooperative model 2 (λp = 0.1, p = 0.5, b =
1.5, α = 4, u = 1).

assumptions, the two cooperative techniques have the same
performance gain over the non-cooperative model w.r.t. the
success probability.

Fig. 10 compares the SIR distribution curves of the four
models. As expected, we observe that the performance of
the non-cooperative model is the worst while those of the
cooperative models are the best, with a horizontal gap of 5−6
dB. The performance of the two cooperative models is nearly
identical. The benefit of cooperation is significant, since by
cooperation, some nearby interferers turn into cooperators.
Comparing the non-cooperative model and the basic model,
we conclude that a horizontal gap of 2−3 dB can be obtained
by silencing some nearby interferers. And by the comparison
of the cooperative models and basic model, a horizontal gap of
about 3 dB can be gained by adding some nearby cooperators.



11

SIR Threshold (dB)
-20 -15 -10 -5 0 5 10 15 20 25

S
u
c
c
e
s
s
 P

ro
b
a
b
ili

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
u ∼ gamma(0.5,2)
u ∼ gamma(2,0.5)
u = 1

Non-cooperative model

Basic model

Cooperative model 1

Fig. 11. The SIR distributions of the basic model, the non-cooperative
model, and the cooperative model 1, when u ∼ gamma(0.5, 2), u ∼
gamma(2, 0.5) and u = 1. (λp = 0.1, p = 0.5, b = 1, α = 4). The
results of the cooperative model 2 are omitted, since they are very similar to
those of the cooperative model 1.

B. Random u (Generalized GPP)

We investigate the generalized GPP with u gamma dis-
tributed. In Fig. 11, we consider the cases of u ∼
gamma(0.5, 2) and u ∼ gamma(2, 0.5), where E[u] = 1,
and show the SIR distributions of the basic model, the non-
cooperative model, and the cooperative model 1. For com-
parison, the case of u = 1 is also drawn. The results of
the cooperative model 2 are close to those of the cooperative
model 1, so they are omitted.

For the basic model, the SIR distribution is invariant under
different settings of u, since all points of the GPP are inter-
ferers and the interference changes little when the intensity of
the GPP remains unchanged with different distribution of u.

For the non-cooperative model, the success probability is
improved for random u compared with the deterministic u in
the high-reliability regime. The case of u ∼ gamma(0.5, 2)
performs better than the case of u ∼ gamma(2, 0.5), which
means that as the variance of u becomes larger, the success
probability becomes better.

For the cooperative model 1, the success probability for
random u is worse than that for the deterministic u in the
low-reliability regime, and when the variance of u becomes
larger, the benefit from the cooperation is weakened.

VI. CONCLUSION

In this paper, we first investigated the GPP and used it as a
model for point set fitting. The fitted GPP has approximately
the same intensity and two-point correlation function as the
given point set. Although the GPP cannot model all clustered
point processes/sets, it can well model a wide class of them.

We then proposed the application of the GPP in several dif-
ferent wireless network models with and without cooperation
and derived the SIR distributions and their bounds for the con-
sidered models. The results indicate that the bounds, especially
the upper bounds, provide useful approximations that well
fit the actual SIR distribution for different operating regimes.

We also showed that by cooperation, the SIR distribution is
improved significantly—it has a horizontal gain of more than
5 dB compared with the non-cooperative schemes. Since the
two cooperative schemes have similar performance in terms of
the SIR distribution, the cooperative scheme without the cyclic
delay diversity (scheme 2) is preferred, due to the lower system
complexity.

APPENDIX A
PROOF OF COROLLARY 1

Proof: For convenience, let

B1 , exp

(
λp(1− p)

∫
R2

(
v(x) − 1

)
dx

)
(48)

and

B2 , exp

(
λpp

∫
R2

(
v(x)

∫ 2π

0

v(x+w(ψ))
1

2π
dψ− 1

)
dx

)
.

(49)
It follows from Theorem 1 that

Ps(θ, b, λp, α, p) = B1B2. (50)

We have

B1 = exp

(
λp(1− p)2π

∫ ∞
0

(
1

1 + sr−4
− 1)rdr

)
= exp

(
− π2

2
λp(1− p)

√
s

)
(51)

and

B2 = exp

(
λppW

)
, (52)

where W = 2π
∫∞

0

(
1

1+sr−4

∫ 2π

0
1

1+s(r2+1+2r cosψ)−2
1

2πdψ −
1
)
dr.
On the one hand,

W <

∫ ∞
0

2π

(
1

1 + sr−4

(1

2

1

1 + s(r2 + 1 + 2r)−2

+
1

2

1

1 + s(r2 + 1)−2

)
− 1

)
rdr

<

∫ ∞
0

2π

(
1

1 + sr−4

(1

2

1

1 + s(2(r2 + 1))−2

+
1

2

1

1 + s(r2 + 1)−2

)
− 1

)
rdr

= Wu(s). (53)

On the other hand,

W >

∫ ∞
0

2π

(
1

1 + sr−4

(1

2

1

1 + s(r2 + 1− 2r)−2

+
1

2

1

1 + s(r2 + 1)−2

)
− 1

)
rdr

>

∫ ∞
0

2π
( 1

1 + sr−4

1

1 + s(r2 + 1− 2r)−2
− 1
)
rdr

= π

(
− s

∫ ∞
0

1

r4 + s
rdr − s

∫ ∞
0

1

(r − 1)4 + s
rdr
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+ s2

∫ ∞
0

1

(r4 + s)((r − 1)4 + s)
rdr

)

+

∫ ∞
0

π
( 1

1 + sr−4

1

1 + s(r2 + 1)−2
− 1
)
rdr

> π

(
− s

∫ ∞
0

1

r4 + s
rdr − s

∫ ∞
0

1

(r − 1)4 + s
rdr

+ s2

∫ ∞
0

1

(r4 + s)((r2 + 1)2 + s)
rdr

)

+

∫ ∞
0

π
( 1

1 + sr−4

1

1 + s(r2 + 1)−2
− 1
)
rdr

= Wl(s). (54)

Combining (50), (51), (52), (53), and (54), we obtain (29)
and (29).

APPENDIX B
PROOF OF COROLLARY 3

Proof: Let

B3 =
1− p
1 + p

+
p

π(1 + p)

∫ 2π

0

1

1 + s(b2 + 1 + 2b cosψ)−2
dψ.

On the one hand,

B3 <
1−p
1+p

+
p

1+p

( 1

1+s(b2+1+2b)−2
+

1

1+s(b2+1)−2

)
.

(55)
On the other hand,

B3 >
1−p
1+p

+
p

1+p

( 1

1+s(b2+1−2b)−2
+

1

1+s(b2+1)−2

)
.

(56)
Applying Corollary 1, we obtain the results.

APPENDIX C
PROOF OF COROLLARY 5

Proof: As h1b
−α + h2c

−α ≤ h1b
−α + h2|b− 1|−α,

Q < P
(
h1b
−α + h2|b− 1|−α

I
> θ

)
=

bα

bα − |b− 1|α
LI(θ|b− 1|α)− |b− 1|α

bα − |b− 1|α
LI(θbα)

= H(|b− 1|), (57)

where H(·) is defined in (39). Similarly, as h1b
−α+h2c

−α ≥
h1b
−α + h2(b+ 1)−α, Q > H(b+ 1).

Substituting the bounds of Q into (40), we obtain (41) and
(42).

APPENDIX D
PROOF OF COROLLARY 6

Proof: The proof for the cooperative model 1 as u → 0
is different from that in Theorem 3 since when the typical
receiver is served by two co-located transmitters cooperatively,
the desired signal power is not a hypoexponential distribution
but an Erlang distribution. We turn to use the following
equation to derive the SIR distribution [24].

Ps(θ) =

∫ ∞
−∞
LI0(2jπω)

LPsum
(−2jπω/θ)− 1

2jπω
dω, (58)

where LI0(s) and LPsum
(s) are the Laplace transform of the

interference and the desired signal power respectively. The
Laplace transform of the interference LI0(s) is given by (32).
The Laplace transform of the desired power is given by

LPsum
(s) = EPsum

(exp(−sPsum))

=
1− p
1 + p

Eh(exp(−shb−α))

+
2p

1 + p
Eh1,h2(exp(−sh1b

−α − sh2b
−α))

=
1− p

(1 + p)(1 + sb−α)
+

2p

(1 + p)(1 + sb−α)2

=
(1 + p) + (1− p)sb−α

(1 + p)(1 + sb−α)2
. (59)

Plugging LI0(s) and LPsum(s) into (58), we get the SIR
distribution in Corollary 6.

APPENDIX E
PROOF OF COROLLARY 7

Proof: For the cooperative model 2, as u → 0, by (45),
we have

Ps(θ, b, λp, α, p)→
1− p
1 + p

L̃Io (θbα) +
2p

1 + p
L̃Io

(
θbα

2

)
.

(60)

Since according to (44), as u→ 0,

L̃Io(s)→ exp

(
λp

∫
R2

[ 1−p
1+s‖x‖−α

+
p

1+2s‖x‖−α
−1
]
dx

)
= exp

(
λp(1− p)

∫
R2

(
1

1 + s‖x‖−α
− 1

)
dx

+ λpp

∫
R2

(
1

1 + 2s‖x‖−α
− 1

)
dx

)
= exp

(
− πλp

sinc δ

(
(1− p)sδ + p(2s)δ

))
, (61)

substituting (61) into (60), we obtain (47).
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