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Abstract—In cellular network models, the base stations are
usually assumed to form a lattice or a Poisson point process
(PPP). In reality, however, they are deployed neither fully
regularly nor completely randomly. Accordingly, in this paper, we
consider the very general class of motion-invariant models and
analyze the behavior of the outage probability (the probability
that the signal-to-interference-plus-noise-ratio (SINR) is smaller
than a threshold) as the threshold goes to zero. We show that,
remarkably, the slope of the outage probability (in dB) as a
function of the threshold (also in dB) is the same for essentially
all motion-invariant point processes. The slope merely depends
on the fading statistics.

Using this result, we introduce the notion of the asymptotic
deployment gain (ADG), which characterizes the horizontal gap
between the success probabilities of the PPP and another point
process in the high-reliability regime (where the success proba-
bility is near 1).

To demonstrate the usefulness of the ADG for the charac-
terization of the SINR distribution, we investigate the outage
probabilities and the ADGs for different point processes and
fading statistics by simulations.

Index Terms—Cellular networks, Stochastic Geometry, Cover-
age, Interference.

I. INTRODUCTION
A. Motivation

The topology of the base stations (BSs) in cellular networks
depends on many natural or man-made factors, such as the
landscape, topography, bodies of water, population densities,
and traffic demands. Despite, base stations were usually mod-
eled deterministically as triangular or square lattices until
recently, when it was shown in [5] that a completely irregular
point process, the Poisson point process (PPP) [2], [3], may be
used without loss in accuracy but significant gain in analytical
tractability. Real deployments fall somewhere in between these
two extremes of full regularity (the triangular lattice) and
complete randomness (the PPP), as investigated in [22] using
base station data from the UK. They exhibit some degree of
repulsion between the BSs, since the operators do not place
them closely together. Such repulsion can be modeled using
point processes with a hard minimum distance between BSs
(hard-core processes) or a high likelihood that BSs are a
certain distance apart (soft-core processes). At a larger scale,
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at the level of a state or country, BSs may appear clustered
due to the high density of BSs in cities and low density in
rural regions. The analysis of such non-Poisson processes is,
however, significantly more difficult than the analysis of the
PPP, since dependencies exist between the locations of base
stations.

The signal-to-interference-plus-noise ratio (SINR) distri-
bution is one of the main performance metrics in cellular
networks. In this paper, we mainly consider the success prob-
ability, defined as the complementary cumulative distribution
function of the SINR, ie., P.(§) = P(SINR > 6). The
success probability is the same as the coverage probability in
many other works (e.g., [5]), but we use “success” instead
of “coverage”, because in the cellular industry, “coverage”
does not include small-scale fading, but is based on only path
loss and shadowing. The success probability depends on many
factors, such as the fading, the path loss and the distribution
of the BSs. In [5], the authors derive the expressions for the
success probability and the mean achievable rate for networks
whose BSs form a homogeneous PPP. For general models,
it is much harder to compute the success probability due
to the dependence between BS locations mentioned above,
and we are not aware of any tractable analytical methods
that are applicable in general. In this paper, we propose a
novel approach to evaluate the success probability of cellular
networks, where BSs follow non-Poisson processes.

B. Related Work

The spatial configuration of the BSs (or transmitters) plays a
critical role in the performance evaluation of cellular networks
(or general wireless networks), since the SINR critically relies
on the distances between BSs and users (or transmitters
and receivers). Network performance analysis using stochastic
geometry have drawn considerable attention [3]-[22]. Recent
related works can be roughly divided into two categories. One
is based on the assumption of modeling the BSs or access
points as Poisson-based point processes (e.g., the PPP and
the Poisson cluster process) in cellular networks, e.g. [S]-[9].
The other one is dealing with general point processes in non-
cellular networks, especially in wireless ad hoc networks, e.g.
[15]-[19]. Of course, there are some other types of works, such
as the type of using the Poisson-based point processes in non-
cellular networks, e.g. [10]-[12], and the type of using non-
Poisson point processes in non-cellular networks, e.g. [13],
[14], but they are not closely related this paper. Our focus is



applying general point processes to cellular networks, which
has seldom been studied.

Regarding the first category, in cellular networks, the PPP
is advantageous for modeling the BSs configuration [5]-
[8], due to its analytical tractability. Poisson-based processes,
especially Poisson cluster processes, e.g. in [9], have been
used to model the small cell tier in heterogeneous cellular
networks, where the BS tier is still modeled as the PPP.
Non-Poisson processes, such as hard-core processes, are less
studied in cellular networks, due to the absence of an analytical
form for the probability generating functional and the Palm
characterization of the point process distribution. Exceptions
are the related works in [20]-[22]. In [20], the authors applied
the [-Ginibre point process, where points exhibit repulsion,
in cellular networks. In [21], the Geyer saturation process was
used to model the real cellular service site locations. In [22],
we modeled BSs as the Strauss process and the Poisson hard-
core process, and provided fitting methods using real BS data
sets.

As for the second category, general point processes have
been used to model the transmitting nodes in non-cellular
networks, see, e.g., [16]-[19]. In [16], the authors analyzed
the success probability in an asymptotic regime where the
density of interferers goes to 0 in wireless networks with
general fading and node distribution. The paper [17] provides
an in-depth study of the outage probability of general ad
hoc networks, where the nodes form an arbitrary motion-
invariant point process, under Rayleigh fading as the density of
interferers goes to 0. In [18], the tail properties of interference
for any motion-invariant spatial distribution of transmitting
nodes were derived. In [19], dealing with a wide range of
point processes, the authors provided accurate approximations
of the transmission capacity in the low-outage regime based
on the second-order product density of the node distribution
in wireless ad hoc networks.

In this paper, we consider a general class of point processes
for modeling possible BS configurations. In homogeneous
cellular networks, each user is usually serviced by its nearest
BS, though not necessarily. When general point processes are
applied in such networks, one of the main emerging difficulties
is that the point process distribution conditioned on an empty
ball around the user is unknown. Moreover, the empty space
function has to be considered, resulting in the growth of the
complexity. Tackling those difficulties directly is seldom seen
in the literature.

C. Contributions

In this paper, we provide an indirect approach to the success
probability analysis of an arbitrary motion-invariant (isotropic
and stationary') point process [2, Ch. 2] by comparing its
success probability to the success probability of the PPP. To
validate this approach, we establish that the outage probability
1 — P.(0) of essentially all motion-invariant (m.i.) point pro-
cesses, expressed in dB, as a function of the SINR threshold 0,
also in dB, has the same slope as 8 — 0. The slope depends on

I'Stationarity implies that the success probability does not depend on the
location of the typical user.

the fading statistics. This result shows that asymptotically the
success curves P.(6) of all m.i. models are just (horizontally)
shifted versions of each other in a log-log plot, and the shift
can be quantified in terms of the horizontal difference G along
the 6 (in dB) axis. Since the success probability of the PPP is
known analytically, the PPP is a sensible choice as a reference
model, which then allows to express the success probability
of an arbitrary m.i. model as a gain relative to the PPP. This
gain is called the asymprotic deployment gain (ADG).

We introduced the concept of the deployment gain (DG) in
our previous work [22]. It measures how close a point process
or a point set is to the PPP at a given target success probability.
Here we extend the DG to include noise and then, to obtain a
quantity that does not depend on a target success probability,
formally define its asymptotic counterpart—the ADG.

The paper makes the following contributions:

« We introduce the asymptotic deployment gain.

o« We formally prove its existence for a large class of
m.i. point processes.

+ We show how the asymptotic slope of the outage proba-
bility depends on the fading statistics.

e We demonstrate through simulations how the ADG can
be used to quantify the success probability of several non-
Poisson models, even if the SINR threshold € is not small.

The rest of this paper is organized as follows. In Section II,
we introduce the system model and the ADG. We investigate
the existence of the ADG and study the asymptotic properties
of the outage probability in Section III. Applications of the
ADG are provided in Section IV. In Section V, we show sim-
ulation results for some specific network models. Conclusions
are drawn in Section VL

II. SYSTEM MODEL AND ASYMPTOTIC DEPLOYMENT
GAIN

A. System Model

We consider a cellular network that consists of BSs and
mobile users. The BSs are modeled as a general m.i. point
process @ of intensity A on the plane. We assume that & is
mixing [2, Def. 2.31], which implies that the second moment
density p(x1,20) — A% as ||z; — x2]| — oo. Intuitively,
p?)(x1,25) is the probability that there are two points of
d at 1 and xo in the infinitesimal volumes dx; and dxs.
Rigorously, it is the density pertaining to the second factorial
moment measure [2, Def. 6.4], which is given by

+
@ (4xB) =E( 3 1a@s)) = [ o2 (-a)dody,
z,yed AXB

where A, B are two compact subsets of R? and the #
symbol indicates that the sum is taken only over distinct
point pairs. Since the point processes considered are m.i.,
p (x1,25) only depends on ||z; — x»||. Without ambiguity,
we let p() (x5 —21) £ p3) (21, 25). Similarly, the nth moment
density p(™ (x1,xs,...,,) is the the density (with respect
to the Lebesgue measure) pertaining to the nth-order factorial
moment measure o™, and we let p(”) (xo—x1, .. S

L) fﬂn—l'l) -
P (g, ... xy).



We assume all BSs are always transmitting and the transmit
power is fixed to 1. Each mobile user receives signals from its
nearest BS, and all other BSs act as interferers (the frequency
reuse factor is 1). Every signal is assumed to experience path
loss and fading. We consider both non-singular and singular
path loss models, which are, respectively, £(z) = (1+||x||*)~*
and £(z) = ||z||~%, where « > 2. (Since ¢(x) only depends on
|||, in this paper, ¢(x) and £(]|z||) are equivalent.) We assume
that the fading is independent and identically distributed (i.i.d.)
for signals from all BSs. The fading can be small-scale fading,
shadowing or a combination of the two. We mainly focus
on Nakagami-m fading, which includes Rayleigh fading as
a special case, and the combination of Nakagami-m fading
and log-normal shadowing. The thermal noise is assumed to
be additive and constant with power W. We define the mean
SNR as the received SNR at a distance of » = 1, where its
value is 1/(2W) for the non-singular path loss model and
1/W for the singular path loss model.

To formulate the SINR and the success probability, we first
define the nearest-point operator NP, for a point pattern ¢ C
R? as

NPy (z) £ argmin{|ly — z|}, = €R% (1)

yEp
If the nearest point is not unique, the operator picks one of
the nearest points uniformly at random. The SINR at location
z € R? has the form

hl(u— z)
W+ 3 e fuy hallz — 2)’

where u = NPg(z) and h, denotes the i.i.d. fading variable
for x € ® with CDF F}, and PDF f;,. For a m.i. point process,
the success probability P(SINR, > ) does not depend on z,
and we define

SINR, = )

P.(f) = P(SINR > ). 3)

Hence, without loss of generality, we focus on the success
probability at the origin o. Since each user communicates with
its nearest BS, the interference at o only comes from the BSs
outside the open disk b(o,7) £ {x € R? : ||z|| < r}, where
r = ||[NPg(0)||. The total interference, denoted by I(®), is

> hel(w). )

z€P\NPg(0)

1(®) =

B. Asymptotic Deployment Gain

In [22], we introduced the deployment gain (DG) for
interference-limited networks. Here we redefine the DG, to
include the thermal noise.

Definition 1 (Deployment gain). The deployment gain, de-
noted by G(py), is the ratio of the 0 values between the success
curves of the given point process (or point set) and the PPP
at a given target success probability py, i.e.,

Pc_l(pt)
(PEPR) " (pe)

where PYYY(0) and P.(0) are, respectively, the success prob-
abilities of the PPP and the given point process ®.

G(p:) = &)

This definition is analogous to the notion of the coding gain
commonly used in coding theory [23, Ch. 1].

Fig. 1 shows the success probability of the PPP, the Matérn
cluster process (MCP) [2, Ch. 3], and the randomly translated
triangular lattice. The intensities of all the three point pro-
cesses are the same. We observe that for p; > 0.3, the DG is
approximately constant, e.g. the DG of the MCP is about —3
dB. In Fig. 1, the success probability curves of the PPP that are
shifted by G(0.6) (in dB) of the MCP and the triangular lattice
are also drawn. We see that the shifted curves overlap quite
exactly with the curves of the MCP and the triangular lattice,
respectively, for all p; > 0.3. It is thus sensible to study the DG
as py — 1 and find out whether the DG approaches a constant.
To do so, analogous to the notion of the asymptotic coding
gain, we define the asymptotic deployment gain (ADG).

Definition 2 (Asymptotic deployment gain). The ADG, de-
noted by G, is the deployment gain G(py) when 0 — 0, or,
equivalently, when py — 1:

G = lim G(pt). (6)
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Fig. 1. The success probability of the PPP with intensity A = 0.1, the MCP

with Ap = 0.01, ¢ = 10 and rc = 5 (see Section III-D for an explanation
of these parameters), and the triangular lattice with density A = 0.1 for
Rayleigh fading, path loss model £(z) = (1 + ||z||*)~! and no noise, which
are simulated on a 100 x 100 square. The lines are the success probability
curves of the three point processes, while the markers indicate the success
probability curves of the PPP shifted by the DGs of the MCP and the triangular
lattice at py = 0.6.

Note that, the ADG may not exist for some point processes
and fading types. In the following section, we will provide
some sufficient conditions for the existence of the ADG. For
Rayleigh fading, the ADG of the MCP exists.

Similar to the DG, the ADG measures the success prob-
ability but characterizes the difference between the success
probability of the PPP and a given point process as the
success probability approaches 1 instead of for a target success
probability, and by observation from Fig. 1, the ADG closely
approximates the DG for all practical values of the success
probability. Hence, given the ADG of a point process, we
can evaluate its success probability by shifting (in dB) the



corresponding PPP results, that is to say, P.(6) ~ PFPP (/)
and P.(0) ~ PFPP(9/@),  — 0. In Fig. 1, we observe that
G ~ 2.4 for the triangular lattice and G ~ 0.5 for the MCP.
Note that the ADG relative to the PPP permits an immediate
calculation of the ADG between two arbitrary point processes.

III. EXISTENCE OF THE ASYMPTOTIC DEPLOYMENT GAIN

In this section, we derive several important asymptotic
properties of the SINR distribution, given some general as-
sumptions about the point process and the CDF of the fading
variables. These asymptotic properties, in turn, prove the
existence of the ADG.

A. Definition of a General Class of Base Station Models

First we give several notations, based on which we introduce
the precise class of point processes we focus on. We define the
contact distance & = ||[NPg(0)]|, and define the supremum of
€ as Emax = SUP, e Mingeo {||z — y||}. Due to the ergodicity
of the point process (which follows from the mixing property)
[2, Ch. 2], &nax does not depend on the realization of ®.
&max = 0O In many mixing point processes.

We define @5 2 (® | NPg(0) = ¢), where ¢ € R?\ {o},
as the conditional point process that satisfies NPg(0) = (,
which implies ¢ € ®S and ®$(b(o, ||C||)) = 0.2 So given that
¢ is the closest point of ® to o, the total interference is I(®).
However, it is tricky to directly handle the conditional point
process conditioned on that there is an empty disk, if the point
process is not the PPP. Thus, we compare the interference
in ®$ with the interference from a point process where the
desired BS ( is not necessarily the closest one. To this end,
we define ®¢ £ (& | ¢ € ®) and consider its interference
outside a disk of radius ||¢||/2 around the origin:

D

z€®¢ N Bey2\{¢}

1(®°) = hat(x), @)

where B¢/ £ R? \ b(0,]/¢]|/2). Note that it is not necessary
to set the radius of the disk to ||(]|/2; in fact, the radius could
be any quantity that is smaller than ||C||. Since we can use
standard Palm theory [2] for ®¢, it is easier to deal with ®¢
than ®S.

To motivate the above notations, we give an illustration of
them in Fig. 2. Both ®$ and ®¢ have a point at ¢, and we let
I¢|| = y. All points of ®¢ are located in the striped region
(outside b(0,)), and I(®S) is the interference from all these
points except (. In contrast, ®¢ may have points throughout
the whole plane, but [ (®¢) is the interference only from the
points of ®¢ in the shaded region (outside b(o,1/2)) except
C.

Using the above notations, we define a general class of point
process distributions that we use to rigorously state our main
result on the SINR distribution.

Definition 3 (Set A). The set A = {Pg} is the set of all
m.i. point process distributions Pg that are mixing and that

2For a point process ®, ®(B) is a random variable that denotes the number
of points in set B C R2.
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Fig. 2. An illustration of ®$, ®S, I(®$) and [(®¢), where ||¢|| = y.

satisfy the following four conditions. If a point process ® is
distributed as Py € A,

1) for all n > 2, the nth moment density of ® is bounded,
ie, g, < oo, such that p™ (z1,...,x,) < qn, for
Zi,...,Ty € R?;

2) for all y > 0, 3¢ € R? with ||¢|| =
B(S (b0, ) = 0) # 0;

3) Jyo > 0, such that for all y > yo and { € R? with
<l = I(®C) stochastically dominates 1(®S), ie.,
P(I(®S) > z) < P(I(®C) > z), for all z > 0;

4) Vn € N, the n-th moment of the contact distance & is
bounded, i.e., 3b,, < oo, s.t. E(E™) < by,

y, such that

To clarify the need for these conditions, we offer the

following remarks:

1) By the mixing property, we have that p(®) (2, z5) — A2,
as ||z1 — x3]| — oo, which indicates that when ||zq —
x| is large enough, p(®(z1,z5) is bounded. The first
condition is stronger than that. It guarantees that the
nth moment measure of ® is absolutely continuous with
respect to the Lebesgue measure, which, in turn, implies
that ® is locally finite [2, Ch. 2.2]. A point process is
locally finite if and only if ®(B) < oo a.s., for any
B C R? with v(B) < oo, where v/(-) is the Lebesgue
measure. Local finiteness is a standard assumption in
point process theory, but it is too weak for our purposes.
For example, Condition 1 excludes some extreme? cases,
such as the Gauss-Poisson point process as described in
[2, Sec. 3.4], which is locally finite.

2) Since ® is a m.i. point process, the second condition
is equivalent to requiring that for all y > 0, V¢ € R?
with ||¢|| = y, such that P(®¢(b(0,y)) = 0) # 0. That
is to say, if ( € ®, the probability of no points of ®
being located in b(o, ||C]) is positive. The condition also
implies that &,,,x = co. Because if &, < o0, for all
Yy > &max, there surely is at least one point of ® in
b(o,y), which leads to a contradiction since it would
imply that P(®¢(b(0,y)) > 0) = 1. So, the condition

3We call this point process extreme since, conditioned on a point at o,
there is a positive probability of having another point on a subset of Lebesgue
measure Zero.



excludes the m.i. and mixing point processes where there
exists 7o > 0, such that for all € R?, there is at least
one point in the region b(z, ). Those point processes*
may be constructed, but are rarely considered in the
context of wireless networks.

3) The third condition is based on the two random variables
I(®S) and I(®¢), whose expressions contain the fading
variables. But, in fact, the condition is independent of the
fading type, since the fading variables are i.i.d. and their
expectation is bounded. The condition means that there
exists 3o > 0, such that for all ¥ > yo and ¢ € R? with
[¢|| = v, the CCDF of the interference from ®¢ (0 B¢ 2\
{C} is always no smaller than the CCDF of the in-
terference from ®S \ {¢}. Most point processes meet
the condition, since an extra region b(o,y) \ b(o,y/2)
is included in I(®¢), but not in I(®S). Some point
processes, which are seldom considered, may violate
the condition. For example, albeit somewhat artificial,
for small € > 0, the expectation of ®S(b(o, ||¢|| + €)) is
much greater than that of ®<(b(o, ||C|| + €)), which, at
last, leads to the violence of the third condition. Such
kind of point processes are beyond our consideration.

4) The fourth condition is satisfied by most point processes
that are considered. A sufficient condition of the fourth
condition is that Ff(z) < exp(—cox), as z — oo,
where F¢ is the CCDF of ¢ and ¢y € R*. One simple
example is the PPP with intensity A, whose CCDF of ¢
is Ff(z) = exp(—Arz?).

In summary, the four conditions in Def. 3 are quite mild;
they are satisfied by most point processes that are usually
considered in wireless networks and in stochastic geometry,
such as the PPP, the MCP, the Matérn hard-core process
(MHP) [2, Ch. 3] and the Ginibre process [20]. The triangular
lattice is not included, since it is not mixing and &y < 00.
We will prove that the laws of the PPP, the MCP and the MHP
belong to A in Section III-D.

B. Main Results

Before presenting the main theorem, we state a property of
the distribution of I(®5).

Lemma 1. Assume the fading variable h satisfies that ¥n € N,
E(h"™) < +4oo. For a point process ® with Py € A, the
following statements hold:

1) for (x) = (1+||z||*) ™1, all moments of the interference
I(®S) are bounded, i.e., ¥n € N, Jc,, € RY, such that
E(I(®5)") < c,, where c,, does not depend on (;

2) for L(x) = ||z||7% all moments of the interference
I(®S) are bounded, and ¥n € N, 3¢, € RY, such that
E(I(®$)") < ¢ max{1, |¢[>-"}.

Proof: See Appendix A. ]
Since I(®$) can be interpreted as the total interference at

o if the nearest base station to o is at {(, Lemma 1 shows
that all moments of the total interference are bounded. If the

4Note that the perturbed triangular lattice [22] is not in the exclusion
category, since it is not mixing.

path loss model is non-singular, the bound can be chosen to
be independent of ||C]|. However, if the path loss model is
singular, the bound depends on ||¢||, and if ||| goes to O,
it can be proved that E(I(®$)) becomes arbitrarily large for
some BS processes, e.g., the PPP?

Now we are equipped to state our main result: if the CDF
of the fading variable h decays polynomially around 0 and all
moments of h are bounded, then as a result of the boundedness
of the moments of the interference, the outage probability 1 —
P.(0) expressed in dB, as a function of the SINR threshold
6, also in dB, has the same slope as 6 — 0, for all & with
Py € A.

Theorem 1. For a point process ® with Py € A, if the fading
variable satisfies
1) 3m € (0,+0), s.t. Fp(t) ~ at™, as t — 0, where
a > 0 is constant,
2) Vn e N, E(h") < 400,

then we have

120,

where 0 < k < 0o does not depend on 0 and is given by

as 0 — 0, (8)

k= /OOO E1(<1>g) {af(y)im (I(CI)g) + W)m} fg(y)dy )

(<l = y) and f¢ is the PDF of &.

Proof: See Appendix B. [ ]

Theorem 1 shows that the ADG exists and how it depends

on the other network parameters. The following theorem
quantifies the ADG.

Corollary 1. Under the same condition as in Theorem 1, the
ADG of ® exists and is given by

o ( (< PPP ) %,
K

where KFTT is the value for the PPP and k is the value for
®. For the PPP with intensity A,

o0
PPP m
K :2>\7r/ Er | ——
o Ir [ '(m)

-1 exp(—Arr?)dr,

where I =3 cq (o) Ral(@)-

Proof: Given a target success probability p;, define §; £

P Y(p;) and 65 = (PFPP)~1(p;). As p, — 1, we have
61 — 0 and 63 — 0. By Theorem 1, 1 — P.(6;) ~ k07" and
1 — PPPP(0,) ~ hPPPOR. Since p, = Pu(61) = PYPT(0,),
as py — 1, k07 = kPPPOI. Thus, G = limp, 1 61/02 =
(KPPP/K)I/m_ =
Note that Rayleigh fading meets the requirements in The-
orem 1 with m = 1. For the special case of the PPP with

(10)

m—1

]
1D

SNote that for the PPP with intensity A, if we de-conditioned
on ||¢|l, by Campbell’s theorem, the mean intzerference E(I(®)) =
= E() [~ %x?’_o‘e_’\"mzdm. So,

P

2w d\NPg (o) Pall]| =
\ is finite for 2 < a < 4, and infinite for o > 4.

E(I(®)



intensity A, no noise and Rayleigh fading, it has been shown

in [5] that
00 1 -1
PC(H): (1+96/95 ]Wdu) 5
1-P.(6) __

where 5§ & 2/ Tt follows that kPPP = limy_, — =
2 For o = 4, P.(0) = 1/(1+ V@ arctan V0), and k*FF =
1.

(12)

A point process has different ADGs depending on the value
of m. So it is sensible to compare the ADGs of different point
process models only under the same fading assumption.

We have proved that the ADG exists with certain constrains
on the fading and point processes. In the rest of this section,
we consider some special cases.

C. Special Cases - Fading Types

Regarding the fading, we mainly consider Nakagami-m
fading and composite fading, which is a combination of
Nakagami-m fading and log-normal shadowing.

1) Nakagami-m Fading: The fading variable h ~

gamma(m, %) On the one hand, we have
. Fp(t) (mt)™ 'exp(—mt) m™*
i tm =0 I(m)tm—1 - T(m) < Foo
(13)

On the other hand, since F,‘l’(x) has an exponential tail, all
moments of h are finite. Thus, Nakagami-m fading meets the
requirements in Theorem 1.

In addition, we find an interesting phenomenon that for a
point process ® with Py € A, the behavior of the CCDF of
the fading at the tail determines the tail behavior of the CCDF
of the interference I(®$). The following corollary formalizes
this property. As usual, f(z) = Q(g(z)) as © — oo means
lim sup,_, o, |g(i) | > 0.

Corollary 2. For a point process ® with Py € A, if the fading
has at most an exponential tail, i.e., —log Ff(zx) = Q(z),
x — oo, where Ff(x) is the CCDF of the fading variable h,
then the interference tail is bounded by an exponential, i.e.,

flogFIC(cpg)(x) = Q(z), x — oo, where FI((PC)(JJ) is the
CCDF of 1(%5).
Proof: See Appendix C. ]

A similar property has been derived in [18], namely, that in
ad hoc networks modeled by m.i. point processes, an exponen-
tial tail in the fading distribution implies an exponential tail
in the interference distribution. The result cannot be directly
applied to cellular networks, because in the cellular network
that we consider, each user communicates with its nearest BS «
and thus no interferers can be closer than w, while the authors
in [18] assume the receiver communicates with a transmitter
at a fixed location and there can be some interferers closer to
the receiver than the transmitter.

2) Composite Fading: The signals from all BSs experience
both Nakagami-m fading and log-normal shadowing. A similar
kind of fading has been investigated in [24], [25], where the

fading was composed of Rayleigh fading and log-normal shad-
owing. Denoting the fading variable with respect to Nakagami-
m fading by h and the fading variable with respect to log-
normal shadowing by h, the composite fading variable can be
represented as h = hh, where h and h are independent.

For log-normal shadowing, we use the definition from [29].
Without loss of generality, we assume h = 10°/10, where
X ~ N(0,02). The CDF of h, denoted by F; 5 (1), is

1 ( 10logt >
erf

a\[log 10

f / 10 log ¢

o+v/21og 10

Fj (1)

(—v?)dv, (14)

where erfc is the complementary error funct10n It is stralght-
forward to obtain that® E[h] = exp((1%5°)2%- 2*) and E[h?] =
exp((log 10)2952), and to show that as t — oo, F7(t) decays
faster than ¢t~" for any n € N, but slower than exp(—at) for
any a > 0.

For composite fading, we have the following lemma about
the distribution of h.

1

Lemma 2. If h ~ gamma(m, —), 10log h/log 10 o~
N(0,0?), and h is independent of h, the distribution of h = hh
has the following properties:

1) F}, decays polynomially around 0 and

_ Fu(t) /°° 10mm—1
lim =
t—0 tm o ologl0v2xT (m)um+!

- exp (— (1010gu)2>du < o0
a\/ilog 10 '

2) FP(t) = o(t™™), as t — oo, for any n € N, and
—log F(t) = o(t), t — 0.

Proof: See Appendix D. [ ]
The two properties in Lemma 2 indicate that the composite
fading retains the asymptotic property of Nakagami-m fading
for ¢ — 0 and that of log-normal shadowing for ¢ — oo,
respectively. They also imply that the composite fading meets
the requirements in Theorem 1.
Regarding the distribution of the interference at the tail, we
have the following corollary.

Corollary 3. For a point process ® with Py € A and compos-
ite fading, the interference tail is upper bounded by a power
law with arbitrary parameter 3, ie., F1C(<pg)(y) = o(y™P),
VB eN, as y — 4oo.

Proof: We can simply apply the Markov inequality and
have that V3 € N,

E(I(®S)?
P(I(85) > ) < Do), (1s)
Hence, using Lemma 1, we have Fc(q)c)( y) =o(y=?),V3 €
N, as y — +4o0. [ ]

6Note that the mean of A is not 1. Actually, we could normalize it to 1
and replace it with the normalized variable in our results, but since it does
not affect our results, for convenience, we just leave it as it is.



D. Special Cases - Point Processes

As for the point processes, we specifically concentrate on
the PPP, the MCP and the MHP. We first briefly describe the
MCP and the MHP.

Matérn Cluster Process: As a class of clustered point
processes on the plane built on a PPP, the MCPs are doubly
Poisson cluster processes, where the parent points form a
uniform PPP @, of intensity A, and the daughter points
are uniformly scattered on the ball of radius rc centered at
each parent point z, with intensity Ao(z) = 7rr2 1Bz, .r0)(2),
where B(zp,7:) = {2 € R? : |lz — 2| < rc} is the closed
disk of radius . centered at z;,. The mean number of daughter
points in one cluster is ¢. So the intensity of the process is
A=At

Matérn Hard-core Process: The MHPs are a class of
repulsive point processes, where points are forbidden to be
closer than a certain minimum distance. There are several
types of MHPs. Here we only consider the MHP of type
IT [2, Ch. 3], which is generated by starting with a basic
uniform PPP @y, of intensity Ay, adding to each point x an
independent random variable m(x), called a mark, uniformly
distributed on [0, 1], then flagging for removal all points that
have a neighbor within distance 7}, that has a smaller mark and
finally removing all ﬂagged points. The intensity of the MHP
is A = M The highest density Amax = 1/(7r3)

7T'I
is achieved as /\b — 00.

Lemma 3. The distributions of the PPP, the MCP and the
MHP belong to the set A.

Proof: See Appendix E. ]
By Lemma 3, regarding Nakagami-m fading and composite

fading, we have the following corollary directly from Theorem
1.

Corollary 4. If the fading is Nakagami-m or the composite
fading, then for the PPP, the MCP and the MHP,
1- Pc(e)
om
where K is glveni by ©9). In (9), for Nakagami-m fad-
ing, a = 2~ for the composite fading, a =
)2)du.

=k, asf—0, (16)

T(m)’
foc 10m™ ! ex (_( 10logu
0 olog10v2n(m)umt! p av/21og 10

IV. APPLICATIONS OF THE ASYMPTOTIC DEPLOYMENT
GAIN

Since the ADG characterizes the gap of the success proba-
bility between a point process and the PPP, any statistic that
depends on the distribution of the SINR (e.g., the average
ergodic rate and the mean SINR) can be approximated using
the ADG. In this section, we focus on the average ergodic rate
and the mean SINR.

A. Average Ergodic Rate

We assume base station adopts adaptive modulation/coding
to achieve the Shannon bound of the rate for the instantaneous
SINR. That is to say, each BS adjusts its rate of transmission

to v = In(1 + SINR). The average ergodic rate (expressed in
nats) is ¥ = E[In(1 + SINR)].

Denoting the ADG of ® as G and the success probability
of the corresponding PPP as PFFF(#), the success probability

for ® is approximated as PFFP (/). The average ergodic
rate can be expressed as

5 & —/ In(1 + 6)dPFFP (?)
0 G

= —/OO n(1 + GO)dPTFT (6)

(a)/ PPPP( )dm

where (a) follows since the CCDF of the random variable X =
In(1+ G - SINR) is P(X > z) = P(SINR > (¢” — 1)/G) =
PPPP((e* —1)/ é) and the expectation of a positive random
variable can be expressed as the integral over the CCDF.

B. Mean SINR

Just as the success probability and the average ergodic rate,
the mean SINR is also an important criterion that has been
discussed in wireless networks, e.g. in [26]. Denote Mg as
the mean SINR for ®, and Mppp the mean SINR for the PPP
with the same intensity as that of ®. It can be proved that the
mean SINR for the PPP is infinite if the path loss model is
singular. Briefly, for ( = NP4 (0), letting y = ||(||, we have

- (¢) (@ (¢)
E(SINR) = ]E<W + I(<I>§)) = By (W + E[I(@g)])

YE y "
= Y\ W 4+ ¢g max{1,y2-o}

1 x—()( o0
/O Wt aalla@de+ |
1 -1

omAe 3 g + /
1

T
W o Jei(@)dz

~ fiei(@)dx

W+ W+

where fj¢)(x) = 27 Aze~ ™" is the contact distance distri-
bution for the PPP, (a) follows from Jensen’s inequality, and
(b) follows from Lemma 1.

So, we only consider the non-singular path loss model.

We have E(SINR) = E(h)E(j-2=) < SRE((Q) <ox.

Given the ADG G of ®, we have a simple approximation for
Mq)Z

M@ ~ GMPPP« (17)

Therefore, the ADG can also be interpreted as the approximate
gain in the mean SINR.

V. SIMULATIONS

In this section, we present simulation results on a 100 x 100
square, where we consider the non-singular path loss model
and fix the path loss exponent to a = 4 and the intensity of the
point processes to A = 0.1. For the MCP, we let A\, = 0.01,
¢ = 10 and r. = 5; for the MHP, we let \;, = 0.263 and 1, =
1.7. We present our results in two subsections corresponding
to the SINR distribution and the applications of the ADG.



A. SINR Distribution

1) Nakagami-m Fading: In this part, we present simulation
results of the outage probability for the PPP, the MCP, and the
MHP under Nakagami-m fading.

10 T T ;
—PPP, SNR = dB
---PPP,SNR =20dB Wiy
- - PPP, SNR =10 dB B
107"t i
e
o’
I o107 i
10 ]
-50 0 10 20
6 (dB)
Fig. 3. Nakagami-m fading: the outage probability 1 — P.(6) vs. 6 for the

PPP when m € {1, 2} under different SNR settings.

Fig. 3 shows the outage curves 1 — P.(6) of the PPP for
m € {1,2} and different mean SNR values. Note that the
SNR value here is 1/(2W). As 6 approaches 0, the slopes of
the curves for m = 1 are all 10 dB/decade, and the slopes for
m = 2 are all 20 dB/decade, in agreement with Corollary 4.
We also observe that there is only a rather small gap between
the cases of SNR = 20 dB and SNR = oo, thus the thermal
noise does not significantly affect the asymptotic performance
of the success probability. We will neglect noise in the rest of
this section.

10 : ;
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Fig. 4. Nakagami-m fading: the outage probability 1 — P.(6) vs. 6 for the
PPP, the MCP and the MHP when m € {1,2,4} (no noise).

In Fig. 4, we find that for the same point process, a different
m implies a different asymptotic slope. In fact, the slope is
10m dB/decade, just as Corollary 4 indicates. For the same

—PPP
- - MHP
- --MCP
107 1
1072 —
c
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107 5
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Fig. 5. Compound fading: the outage probability 1 — P(6) vs. 6 for the

PPP, the MCP and the MHP when m = 1,0 = 2 and m = 2,0 = 4 (no
noise, o = 4).

m, different point processes have the same asymptotic slope,
thus in the high-reliability regime, the success probability of
a non-Poisson process can be obtained accurately simply by
shifting the success probability curve of the PPP with the same
intensity by the ADG. Besides, we observe that for any m,
the success probability of the MHP is the largest of the three
processes, followed by the PPP and then the MCP. Intuitively,
it is because the MHP is more regular than the PPP and the
MCP is more clustered than the PPP. In addition, since the
value of x for the MCP and the MHP can be approximated
through the simulation, by Corollary 1, we can approximate
their ADGs. Denote by CAT%CP the ADG for the MCP with
respect to m, and by G’MHP that of the MHP. We obtain that for
the MCP, GMCP ~ (.49, GYCP ~ 0.37 and G}CP ~ 0.29;
for the MHP, GY"* ~ 1.58, GY'MP ~ 1.48 and GY"" ~
1.41. Note that GMCF is consistent with the approximated
value 0.49 obtained from Fig. 1.

2) Composite Fading: We consider the combination of
Nakagami-m fading and log-normal shadowing in this part.
In Fig. 5, the outage probabilities for the PPP, the MCP and
the MHP are exhibited. The MHP still has the best outage
probability, followed by the PPP and the MCP. We also
observe that the value of o does not affect the slope of the
outage curve as 6 — 0, which is 10m dB/decade. The ADGs
of the MCP and MHP can also be estimated: for m = 1 and
o =2, C?ll\/lcp ~ 0.51 and Gll\AHP ~ 1.55; for m = 2 and
o =4, GYCP ~ 0.40 and GYMP ~ 1.37.

B. Applications of the ADG

In this subsection, we evaluate the average ergodic rate
and the mean SINR for the PPP, the MCP and the MHP
through simulations, and also estimate them using the ADGs.
The ADG values are approximated by the DG values at
pe = 1 — 10~* for the three point processes, which are
presented in Table 1.

1) Average Ergodic Rate: In Fig. 6, the average ergodic
rates 7 for the three point processes as a function of « are



TABLE 1
THE ADGS FOR DIFFERENT « (RAYLEIGH FADING, NO NOISE).

ADG | a=25 | a=30 | a=35 | a=4 | a=4.5
MCP 0.46 0.40 0.41 0.49 0.42
MHP 1.27 1.37 1.37 1.58 1.40

shown as the lines. We also use the simulation results of
the PPP and the ADGs in Table I to estimate the average
ergodic rates for the MCP and the MHP. The estimated values
are shown as the markers in Fig. 6. From the figure, we
observe that the average ergodic rates estimated using the
ADGs provide fairly good approximations to the empirical
values. We also observe that 7 increases as a grows, which
is obvious since the interference decays much faster than the
desired signal power.

2) Mean SINR: In Fig. 7, the lines are the mean SINRs
for the three point processes as a function of «. The markers
indicate the mean SINRs for the MCP and the MHP estimated
using the simulation results of the PPP and the ADGs. The
approximations using the ADGs are acceptable, although not
perfect. The gaps between the values estimated using the ADG
and the empirical value are mainly due to the fact that the mean
is heavily affected by the tail of the CCDF of the SINR, while
the ADG approximation is accurate for small and moderate
values of 6.

—PPP
---MCP
[ v MCP, estimated using the ADG
--'MHP
o MHP, estimated using the ADG|

N

Fig. 6. The average ergodic rate 4 vs. a for the PPP, the MCP and the MHP.
The lines are the average ergodic rates obtained directly from simulations,
while the markers are the average ergodic rates estimated using the ADGs.

VI. CONCLUSIONS

In this paper, we examined the asymptotic properties of
the SINR distribution for a variety of motion-invariant point
processes, given some general assumptions on the point pro-
cess and general fading assumptions. The assumptions on the
point process are satisfied by many commonly used point
processes, e.g. the PPP, the MHP and the MCP. Similarly,
the fading assumptions are satisfied by Nakagami-m fading
and composite fading. We proved that 1 — P.(0) ~ x0™, as
6 — 0, which shows that the ADG exists.

18
—PPP
16l - --mcP
v MCP, estimated using the ADG
|-~ MHP
147 o MHP, estimated using the ADG
12}

Fig. 7.
The lines are the mean SINRs obtained directly from simulations, while the
markers are the mean SINRs estimated using the ADGs (i.e., by (17)).

The mean SINR Mg vs. o for the PPP, the MCP and the MHP.

Under the same system configurations on the fading and
path loss, different point processes with the same intensity
have different ADGs. Thus, the ADG can be used as a simple
metric to characterize the success probability. Given the ADG
of a point process, we can obtain the precise CCDF of the
SINR near 1 by shifting the success probability curve of
the PPP with the same intensity by the ADG (in dB), and
numerical studies show that the shifted success probability
curve is highly accurate for all practical success probabilities.

APPENDIX A
PROOF OF LEMMA 1

Proof: We first prove that Vn € N, there exists a positive
Ko < o0, s.t. E(I(®5)") < KoE(I(®¢)™). Let ¢ € R? and
[¢]| = y. According to Def. 3, for y > yo, P(I(®5) > z) <
P(I(®%) > z), Vz > 0, hence E(I(®5)") < E(/(®)™). For
y < 9o, we have

E(I(®9)") > EG (@) | 5 (b(o,)) = 0))B(@ (b(0,y)) = 0)
© BI(@$)"P@ (bo, ) = 0),

(18)

where ¢’ € R2, ||¢'|| = yo, and (a) holds since @ is
motion-invariant, yo > y and thus P(®¢ (b(0,10)) = 0) <
P(®¢(b(0,y)) = 0). The second condition in Def. 3 implies
that for all y > 0, V¢ € R? with |[C]| = y. P(®¢(b(0,y)) =
0) # 0. So, we have P(®¢ (b(0,10)) = 0) # 0, letting
Ko = max{1,1/P(®¢ (b(o,y0)) = 0)}, we have

E(I(®5)") < KoE(I(®%)"). (19)

Second, we prove that all moments of I(®$) are bounded.



For n = 1, by the third condition in Def. 3, we have

E(I(®5)) < KoE(I(2°))

> hzé(w))

x€® () B¢z
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= KOE'<<
xe@ﬂBC/Q

@ - E(h) @)y
2 Ko /B = oy

= KOEhE!C(

(20)

where E'S(-) is the expectation with respect to the reduced
Palm distribution P'¢, which is the conditional expectation
conditioned on ¢ € ® but excluding (. (a) follows from the
Campbell-Mecke theorem.

For n > 2, we have
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where (a) follows by the multinomial theorem and (b) follows
by the Campbell-Mecke theorem.

We discuss the cases of the non-singular and singular path
loss models, separately. For ¢(z) = (1 + ||«]|*)~!, when
n = 1, since by Def. 3, there exists ¢ < o0, such that
p? (x ) < q2 for € R?, it yields that [ U(z)p® (2)da <
Jge Uz (z)dxr < oo and thus by (20) there exists ¢; €
RY, such that E(I(®$)) < c;. Similarly, when n > 1, by (21),
there exists ¢, € R, such that E(I(®$)") < ¢,, where ¢,
does not depend on (.

For /(x ) = J|z||7® when n = 1, we have
that fB ()P (2)de < @ ch/z |z||~%dz =
27 «@ 27qs —o
Tacoyor—= aHCH2 < gy max{L[|[I*~*},

and hence by (20), there exists ¢; € R¥, such
that E(I1(®9)) < c1 max{1, H(HQ’O‘} When
n > 1, for k; € {1,2,..,n}, fB Wide =
—ak; _ 2m 2 ak
qu/z (]|~ da = §ak 227 HC” and
therJefore fB</2 . fBC/2 [T (U)o dy.da =
(HFI(W))HCHN—M. Further, we  have
<2/ =o < max{1,]||¢||*~*"}. Hence, by (21), there
exists ¢, € R*, such that E(1(®$)") < ¢, max{1, ||C[|>~*"}.

APPENDIX B
PROOF OF THEOREM 1

Proof: We first consider the case when the noise power

W = 0. Since ® is m.i., we can assume ( = (y,0). Let
{(x) = 1/¢(x). The success probability is
P(0) = E¢[P(SINR > 0 | )]
= | B > 00019 fe(w)ay
- [ B lE oo, @
Thus,
. 1-P(6 ) o Fy (67
lim em( ) ~ lim 0 E}(@g)[ h( (QC) (®3 ))]fg( dy
(23)

Assume G(t) = Fu(t)/t™, for t > 0, and G(0) =
lims,q Fp(t)/t™ = a. Ve > 0, there exists 7 > 0, such
that for all t € (0,7), |G(t) —a|] < €. So, G(t) < a+ €
fort € (0,7). For t > 7, G(t) = Fp(t)/t™ < 7~ ™. Letting
A =max{a+e¢,77™}, we have G(t) < A, for all £ > 0.

In the following, we discuss the cases of ¢(z) = (1 +
||z]|*)~! and ¢(x) = ||z|| =, separately.

For £(z) = (1+||z[|*)~!, by Lemma 1, we have that Vn €
N, e, € R*, such that E(I(®5)") < c,. It follows that

N A
H) 2 Byq5) | D | <, Ladion@s)

< Aenpl(y)™ < 400, (24
and thus, by the fourth condition in Def. 3,
/ H(y) fe(y)dy < AcnEe (£(6)™) < +oo. (25)
0

For ¢(x) = ||z||~®, by Lemma 1, we have that Vn € N,
3d, € R*, such that E(I(®5)") < d, max{l,||¢]|>~*"}.
Therefore, H( ) < Ay*md, max{l,y>~*m} < +oo,
and fo (Y) fe(y)dy < Ad7nE5(£o‘mmaX{1,§2_°‘m}) <
Adp, (Es(im) +E¢(€%)) < +oo.

Assume {0, } is any sequence that converges to 0. Consider
(z) = (1+ ||lz]|*)~". Define f(z) = a(C(¢)2)™ f;gs)(2).
and fn(z) 2 %fl@g (2), where f;g)(2) is
the PDF of I(®S). {f,} is a sequence of functions and
fn — f,asn — oo. Let g(2) = A(LC)2)™ fra5)(2)-
We have that fn < g, for all n, and (24) indi-
cates g(z) is integrable. By the Dominated Convergence



Theorem, we have [ f(z)dz = lim,_e I fn(2)dz.
Similarly, define f(y) = El(q)g)[a(ﬁ(()[(@ﬁ))m]fg(y),
R 5 ¢ R

Fay) 2 By [P (y) and g(z) 2

Acml(y)™ fe(y). By the Dominated Convergence Theorem,
we have [ fy)dy = lim, o0 1° fn(y)dy. By the same
reasoning, the Dominated Convergence Theorem can also be
applied twice for the case ¢(x) = ||z||~. Thus, for both cases
of ¢(x), we obtain that

B - ) ¢
1= Fe(0) =/0 Ez(@é){éiﬁ% W]fg(y)dy

li
111 gm gm

0—0
—éw%@g%@OH%»ﬂkwwy
(26)

Note that by (25), (26) is finite.

Next, we consider the case when W > 0. In (23), we only
need to replace I(®S) with (I(®$) + W) in the expectation
E;(s) (") and the expectation becomes

Fiy(82(0)(1(®) + W))}

H(y) = ]EI(@g) [ gm

<Ers) [Af(C)m<I (@5) + W)’"} .@n
By expanding (1(®$) + W)™, we observe that the right-hand
side of (27) is finite. Analogous to the case when W = 0, we
can prove that Theorem 1 also holds for W > 0. ]

APPENDIX C
PROOF OF COROLLARY 2

Proof: Consider the worst case, Fy(z) ~ exp(—ax),
x — oo. First, we will show that the Laplace transform of
I(®5), denoted by El({)g)(s), converges for s > 7, where
70 < 0. Since £1(q>§)(s) always converges for s > 0, we
only consider the case s < 0. To prove the property, we need
to derive an upper bound of £ (@8 )(s) that only depends on
the ®¢. Similar to the proof of Lemma 1, we can prove the
proposition that Vs < 0, there exists a positive K < 0o, s.t.
IEI((I)E)(eXp(—sI((I)g))) < K]Ef@g)(exp(—sl((l)c))). Thus,
we have

ﬁz@g)(s) = ]El(q)g)(exp(—sl(@g)))

< KE@<,{hw}< I1

z€®S N Beya\{¢}

KE!C( 1T Eh(exp(shﬁ(az)))>

ze® () Be2

e ] ealste).

z€® () Beja

exp(shat(2))

(28)

where £, (s) denotes the Laplace transform of h.
Let k(s,z) = Lp(sf(x)). We have that Lipe)(s) =
E(Il.con b, *(s,)) is finite if and only if

>

z€® (N B¢ya

ole) =B og k(5,2)]) < .

Now we show that 7 is strictly less than 0. We have

w) =2 X Josk(s.o))

€PN B¢ya

a) 1
w2 / log k(s,2)[p (@ — ()dz, (29
A B
where (a) follows from the Campbell-Mecke theorem.

Since Ff(x) ~ exp(—ax) for large x, without loss of
generality, we assume for some large Hy, the PDF of h is
fe(z) = aexp(—azx) (x > Hp). So,

k@wzjmwmﬂwwwﬂ@

0

Hyp
= /0 exp(—syl(z))dFy(y)

+ /Oo aexp ( —yla+ sé(ac)))d/y (30)

Ho

Since * € ®()B/2, by the Dominated Convergence
Theorem, k(s, x) is bounded for all z and s > —al(||¢||/2)7 .
Also, for s € (—al(||¢]|/2)71,0), we have k(s,x) > 1
and log(k(s,x)) < k(s,x) — 1. To show n(s) < oo for
s € (—al(||¢]|/2)7",0), we need to prove [5, .(k(s,2) -
Dp@?) (x)der < oo, for large w. Since for large ||z, we
have p®(z — ¢) — A%, where \ is the intensity of @,
we choose w large enough such that p(2)(z) is approxi-
mately \? for all ||z]| > w. So we only need to show that
fB(O,w)c(k(s,x) — 1)dz < co. We have

[ o) - e
B(o,w)©
Ho
:/ / (exp(—syl(z)) — 1)dFy(y)dx
B(o,w)c J0
—i—/B((W)C /Ho (exp(—syl(z)) — 1)dFp(y)dz.

For large w,

Hy
/ / (exp(—syt(z)) — 1)dFy(y)dz
B(o,w)c JO

_ / / " (—syl(2))dFn (y)dz < oo,
B(o,w)¢ JO

and

/ /oo(exp(—syﬁ(;c)) — 1)dFy(y)dz
B(o,w)c J Hy

= exp(—aHo) \/B(O’w)c <a€(x) +s
al(z)(exp(—sHpl(x)) — 1)
al(z)+ s )dm < 00

Thus, n(s) < oo and L 4¢)(s) < oo. Since I(®S) is
nonnegative, according the region of convergence (ROC) for
Laplace transforms, there exists 7 < —a/(||¢||/2) ™!, such that
L, q,g)(s) converges for s < 7 and diverges for s > 7. 7 is
calsed the abscissa of convergence. By Theorem 3 in [27], it
follows that the interference has an exponential tail. Therefore,
if the fading has at most an exponential tail, the interference
tail is bounded by an exponential. [ ]



APPENDIX D
PROOF OF LEMMA 2

Proof: Since h and h are independent, we have

Fu(t) = P(hh < 1) = /Ooo P(h <
F;L<£>fﬁ(u)du
= \FF (/ w™ ! exp(— )dw)

- —Z exp(=V2(log u)?)du,
u

<o

€29

10
where V, = 70 310810

To prove the first property, we have
Bl _ B

f—>0 mitm—1
o Vomml

VAT (m)un+t
t
- TZ) exp(—V2(logu)?)du
< Vomm!
<
~Jo VAT (myumntt
Since as u — 0, exp(=V2(logu)?) = o(u™) for any
n € N, (32) is bounded. Thus we can apply the Dominated

Convergence Theorem and obtain the first property.
For the second property, on the one hand, for any n € N,

exp(—VZ(logu)?)du. (32)

1— Fyp(t F(t
lim n(t) n(t)
t—00 t—n t—oo nt—n—1
) o] Vammt7z+7n
= lim —_——
t—oo Jy  /m0(m)u™t1n
t
- exp ( - %) exp(—V2(log u)?)du.
Assume H(t) = t""™exp( — ™). Since H'(t) =
T (n + m — %t)exp( — ™) when ¢t = (7: m)
H(t) achieves its maximum value and max;so H(t) =
(W)"‘km exp(—(n +m)). Thus,
. 1—Fy(¢) * Vour ! (n+m)ntm
im —— M
tooo  tTm T Jo /7l(m)n mn
~exp(—(n +m)) exp(—V;?(log u)*)du
< 00.

Applying the Dominated Convergence Theorem, we obtain

limy o0 115*;(” = 0 and thus F3(t) = o(t™"), as t — oo,
for any n € N.
On the other hand, for any a > 0,
1—-F /
R ORI /10)
t—00 exp ) t— o0 aexp( )

o (o)
-exp( V2(10gu) )du (33)

For any a > 0, there exists K > 0, such that for u > K s

exp(mt/u) < exp(at/3). Hence, lim;_, % = oo, for
any a > 0. Thus, —log Fy(t) = o(t), t — oo. [ |

APPENDIX E
PROOF OF LEMMA 3

Proof: Conditions 1 and 2 in Def. 3 hold for all the three
point processes obviously. For Conditions 3 and 4, we treat
the three point processes separately.

For the PPP, Condition 3 holds, because the points in &
are independent; Condition 4 holds, because P(§ > z) =
P(®(b(0,x)) = 0) = exp(—Amz?).

For the MCP, we first prove that Condition 3 holds. For
y > 7., the interference I(®$) consists of two parts. One is
the interference from the clusters with center points inside the
region B(o,y+1r.)\b(o,y—r.), denoted by I, and the other
part is the interference from the clusters with center points
in B(o,y + rc)¢, denoted by I». I and I are independent.
Similarly, [ (CIJC) consists of I; and I, where I; is from the
clusters with center points inside B(o,y + r.) \ b(o,y/2) and
I, is from the clusters with center points in B (0,y+rc)s.

Since the parent points are independent, I> and I, have the
same distribution. For y > 7., we can easily prove that I
stochastically dominates I;. As P(I(®S) > z) = P(I; + I >
2) = EL[P(I; > 2z — I | I1)], we have P(I(®S) > 2) <
P(1(®¢) > z) for all z > 0.

Then we prove Condition 4 holds for the MCP. For large v,
let S be the set of the parent points that are in B(o,y — r¢),
ie,S={rc®,:z¢c B(o,y—r.)} and ®, be the daughter
process for the cluster centered at z € ®,. We have

P(¢>y) =P(2(B(o,y)) =0)
(%) P(®,(B(z,r.)) =0, for all z € S)
— 1)) exp(=Apm(y — 70)?
5 Oty ro oy re)
P !

0
exp ( — (1 —exp(—¢))Apm(y — 7’0)2)7

= (34
where (a) follows since ®(B(o,y)) = 0 implies
®(B(z,1c)) = 0, forall z € S. As E(¢") = — [ 2"dP(§ >

z), performing integration by parts, it follows that E(£™) is
bounded.

For the MHP, to prove Condition 3, we consider <I>§ and ®¢
in term of the base PPP ®y,. Conditioned on @, (\(B(o,y +
2r,) \ B(0,y+mn)), the interference from the region B(o,y+
2ry,)¢ in ®¢ and that in ®§ are i.i.d.. So we only need to
consider the region B(o,y + 2ry,) for large y. As y grows,
E[5¢(B(0,1)\B(0,3//2))] = ©(y?). and B[ (B(o, +2r,)\
B(o,y))] = ©(y).” It can be proved that the portion of 1(®<)
that comes from the retained points in B(o, y+2r,)\B(o,y/2)
stochastically dominates the portion of 7(®$) that comes from
the retained points in B(o, y+2ry,)\ B(0, y). Hence, Condition
3 holds.

To prove that Condition 4 holds for the MHP, we use the

Tf(x) =

X — 00.

O(g(z)), if both f(z)/g(z) and g(z)/f(x) remain bounded as



CCDF of ¢ expressed in the form (15.1.5) in [28]:

— (—1)* / / k
FC(:E): P( )(ylv"'vyk)
¢ ICE::O k! B(o,x) B(o,x)
~dyy - - - dyg, (35)
) 1 k
=> %a“) [B(0,2)®+], (36)
k=0 ’

where B(o, z)®+ is the Cartesian product of & balls and a(*)

is the kth-order factorial moment measure. For the MHP, the
nth moment density satisfies

P(n)(217~-~,2n) =", azn) € Sn(l‘),

where Sy, (z) 2 {(21,...,2n) € B(0,2)®n : ||z; — 2| >
21y, Vi # j}. The complementary set of S, (z) with respect to
B(0,2)®n is S¢(x) = B(0,2)® \ Sp(z) = {(21,...,2,) €
B(0,2)®n : 3i # j, sit. ||z — 2] < 2rn}. The Lebesgue
measure of S¢(z) satisfies v(SS(z)) = O(x?"~1). So, as z —
00, fs;(x) p™ (y1, ... yn)dyy - - - dy, — 0. Since (35) can be
rewritten as

for (21, .. (37)

o~ (=DF
Fé(z) =) Il (/ PPy, yp)dys - dyy
k=0 : Sk ()
+ / Py, yk)dyy - dyk>, (38)
Si (@)
it follows that as x — oo,
Fe(z) ~ (k')(/ Py, yk)dys - - dyi
k=0 ° Sk(x)
+ Nedyy - - dyk)
Si (@)
oS ] k
= Z ( k:') (Amrz?)? = exp(—Arz?).
=0 :
Therefore, E(£™) is bounded for all n and Condition 4 holds.
|
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