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Abstract—Channel coding alone is not sufficient to reliably
transmit a message of finite length K from a source to one
or more destinations as in, e.g., file transfer. To ensure that no
data is lost, it must be combined with rateless erasure correcting
schemes on a higher layer, such as a time-division multiple access
(TDMA) system paired with automatic repeat request (ARQ)
or random linear network coding (RLNC). We consider binary
channel coding on a binary symmetric channel (BSC) and q-ary
RLNC for erasure correction in a star network, where Y sources
send messages to each other with the help of a central relay.
In this scenario RLNC has been shown to have a throughput
advantage over TDMA schemes as K → ∞ and q → ∞. In this
paper we focus on finite block lengths and compare the expected
throughputs of RLNC and TDMA. For a total message length
of K bits, which can be subdivided into blocks of smaller size
prior to channel coding, we obtain the channel code rate and
the number of blocks that maximize the expected throughput
of both RLNC and TDMA, and we find that TDMA is more
throughput-efficient for small message lengths K and small q.

I. INTRODUCTION

Random linear network coding (RLNC) has recently been

shown to improve network performance in several broadcast

and multicast scenarios. For example, considering packet era-

sure channels on the link layer, RLNC is known to improve

throughput and reduce delay for wireless broadcast [1]–[4].

Further, in [4] the joint design of network coding and medium

access control protocols was considered. Network coding for

star networks with a central relay was considered in [5], [6]

and for general networks without cycles in [7].

In contrast to the above work, we consider the joint design

of channel and network coding. We assume that the size of a

block is not predetermined and, for a finite message length K,

the sources in a network may choose the number of data blocks

so that the throughput of the overall system is maximized.
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Fig. 1. Star network in which Y sources communicate over noisy BSCs
with the help of a central relay.

The joint design and optimum rate allocation between

channel and network coding for the block fading channel has

been investigated in [8]–[10], where the tradeoff between the

two schemes is analyzed as the block length on the physical

layer gets large and the probability of block erasure is given

by the outage probability of the block fading channel, under

the assumption that the coherence time of the fading channel

grows with the block length. Block fading channels with a

fixed coherence time could also be considered for finite length

messages, but this would add an additional dimension of

complexity given by the interplay between the message length

and the coherence time and would preclude the ability to derive

analytical results.

Joint error and erasure correcting coding for finite message

lengths was analyzed in [11]–[13]. In [11] the authors bound

the performance of random coding on the physical and link

layer using error exponents to trade off system throughput

and delay. In [12] the combination of RLNC and continuous-

time orthogonal waveform channels was investigated. Both

papers aim to maximize throughput given a maximum delay

constraint. By contrast, in this paper we do not enforce a

maximum delay constraint, but focus instead on the expected

throughput for reliable communication, assuming the senders

continue to transmit until the receivers have correctly received

the entire message as in, e.g., file transfer. Thus we use

the expected throughput of RLNC as the performance metric

and compare it to a TDMA system using ARQ. (In many

communication networks, reliable communication is currently

achieved using ARQ, and thus TDMA paired with ARQ is a

logical comparison for RLNC.)

Similarly to [5], [6] we consider a star network as depicted
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in Fig. 1. With the help of a central relay, Y sources,

S1, . . . , SY , communicate with each other over noisy binary

symmetric channels (BSCs). We assume there is no direct path

between any of the sources, i.e., they are only connected to

the central relay, which receives transmissions from all sources

and can broadcast to all sources. We consider the case where

each source Si has a message of finite length K bits that is

intended for all the other Y − 1 sources Sj , j = 1, . . . , Y ,

j 6= i.
In this setting, channel coding alone is not sufficient to guar-

antee reliable communication. To ensure that no data is lost,

channel coding on the physical layer must be combined with

rateless erasure correcting schemes, such as a time-division

multiple access (TDMA) system paired with automatic repeat

request (ARQ) [14] or q-ary RLNC [15], where RLNC was

shown to be asymptotically optimal, as K → ∞ and q → ∞,

in [16].1

We define the time that it takes to transmit one bit as a

time unit and, when maximizing the expected throughput,

we minimize the expected number of time units it takes to

successfully transmit Y messages from Y sources to the other

Y − 1 sources.

More specifically, we aim to answer the questions:

• Given RLNC over GF(q) and a message of length K
bits at each source, what is the number of blocks m
(equivalently, the block size k) that the sources should

use to transmit so that the expected system throughput is

maximized?

• What is the channel code rate for each individual block

that maximizes system throughput?

• How does the throughput of RLNC compare to the

throughput of TDMA paired with ARQ as a function of

the number of blocks m and the Galois field size q?

Our goal is to jointly find the number of blocks and the channel

code rate that maximizes system throughput. Choosing a star

network as a model allows us to combine several prominent

features of more general networks. For example, for Y = 2
sources, the star network reduces to a two-hop line network

with a relay where the two ends communicate with each

other. Additionally, in the RLNC case, the star network model

includes a multiple-access channel (MAC) phase, where all the

sources simultaneously transmit to a central relay, followed

by a broadcast (BC) phase, where the relay transmits to all

sources, as illustrated in Fig. 1. We first analyze these two

phases separately before combining them to maximize the

throughput of the star network.

In our analysis, we take the coding overhead of RLNC into

account. Similar to other rateless coding schemes such as LT

and Raptor codes [17], [18], RLNC over a finite number of

blocks m and GF(q) exhibits a coding overhead, i.e, a receiver

on average needs to correctly receive more than m blocks to

be able to decode. Note that the coding overhead is a property

of the code itself and is different from the signaling overhead,

1Deterministically chosen linearly independent coefficients, for example the
code symbols of a (low-rate) Reed-Solomon code, could also be used, but
there is always the possibility that the number of available coefficients is
not sufficient to overcome a large error burst on the channel and reliable
communication cannot be guaranteed.

Fig. 2. A source Si divides its message of length K bits into m blocks.

RLNC over GF(q) is then used to create q-ary network coded blocks B̃ib.
After q-ary to binary conversion, a header of size h bits is appended to each
block and the resulting block of size k = K/m + h bits is protected by a
linear channel code of rate R to create binary channel coded blocks vib.

which is usually appended to the data in a block header. An

advantage of choosing RLNC instead of LT and Raptor codes

is that the expected coding overhead of RLNC is independent

of the block size, as we show in Section II-D, whereas the

performance of LT and Raptor codes changes with block size

and these codes typically employ different degree distributions

for different block sizes.

II. SYSTEM MODEL

A. Star Network Setup

We consider a star network where Y sources S1, . . . , SY

communicate with each other with the help of a central

relay as shown in Fig. 1. Using RLNC, data transmission is

divided into two phases, the MAC phase, where all the sources

simultaneously transmit to the relay, and the broadcast phase,

where the central relay transmits to all sources.

As shown in Fig. 2, a source Si, i = 1, . . . , Y , splits its

message of length K bits into m binary data blocks Dij , j =
1, . . . ,m, of length K/m bits, or equivalently m q-ary data

blocks D̃ij , j = 1, . . . ,m, of length K/(ml) q-ary symbols.

We assume that q is a power of two, i.e., q = 2l and that K
is divisible by ml.

A source Si then performs RLNC on its m data blocks

to create a network coded block B̃ib by choosing a vector

ãib of length m of coefficients from GF(q). The index b,
which refers to the number of network coded blocks created

by each source, does not have a fixed range, since as many

network coded blocks are created as are necessary to achieve

reliable communication. The coded block B̃ib is then the

linear combination of the m data blocks multiplied by the

corresponding components of the coefficient vector ãib, i.e.,

B̃ib =

m
∑

j=1

ãib(j)D̃ij , (1)

which can also be represented as a binary block of length

K/m bits using the notation Bib.

A header of constant size h bits is then appended to each

coded block Bib to form a channel input block B̂ib of length
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k = K/m + h bits. The header can, for example, contain a

cyclic redundancy check (CRC) to detect decoding failures.

Finally, each channel input block B̂ib is protected by a binary

channel code of rate R, forming the channel coded block vib.

a) MAC phase: During the MAC phase, all sources

transmit to the relay simultaneously. We model the channel

from the sources to the relay as a binary adder channel [19]–

[21], so that the relay receives a value equal to the (real)

sum of the bits sent by the sources plus a noise term.2 The

relay then quantizes each received value to the nearest integer

and makes a hard decision. If the quantized value is even, it

decides a received zero, and if the quantized value is odd, it

decides a received one, so that the resulting received bit can

be modeled as the modulo-2 superposition of the bits sent

by all the sources plus a noise bit. Equivalently, the received

superimposed vector at the relay is given by

rb = vb ⊕ e = v1b ⊕ v2b ⊕ . . .⊕ vY b ⊕ e, (2)

where ⊕ symbolizes modulo-2 addition and e is a binary

vector whose elements are Bernoulli i.i.d. random variables

with mean probability pMAC. This is an extension of the well

known two-user binary adder channel model and is equivalent

to sending v1b ⊕ v2b ⊕ . . . ⊕ vY b over an i.i.d. memoryless

binary symmetric channel (BSC) with crossover probability

pMAC. Alternatively, we can view the binary adder channel

model as an instance of physical layer network coding [22],

[23], and additional network coding at the relay would not

yield any extra benefit.3

Since we are using linear codes, the modulo-2 superposition

of valid codewords results again in a valid codeword vb,

which the relay attempts to decode. If the relay is able to

decode, it broadcasts vb to the sources. Note that the relay

does not perform any network coding; it only decodes the

superposition of the channel coded blocks from the sources.

Should the relay not be able to decode, it does not transmit.

We assume the sources can sense the channel, so if the relay

fails to decode and does not transmit, the sources immediately

transmit another channel coded block and we have another

MAC phase.

b) Broadcast phase: During the broadcast phase we

assume that the relay is connected to each of the destinations

via independent BSCs with crossover probability pBC. Note

that, since we are considering finite block lengths, independent

BSCs can lead to some sources being able to decode the

message from the relay, while others fail to do so. We assume

that the sources are at about the same distance from the relay,

and thus experience the same path loss, so that they share

a common channel crossover probability. (The analysis would

still be possible, but more tedious, if the channels had different

crossover probabilities.)

2For simplicity, the binary adder channel model assumes that the sources
transmit on-off pulses, the relay accumulates the total energy received from
all sources in each time slot, and a common clock synchronizes all sources.

3Our results also hold for a system where the Y sources are connected
to the central relay by Y orthogonal channels and the relay combines
the Y individually received messages before attempting to decode their
superposition. In this scenario, the relay can be thought of as having a fixed
network encoding function of the all-one vector.

Each channel coded block vb sent by the relay during the

broadcast phase is a linear combination of Y m data blocks,

multiplied by a corresponding set of Y m network coding

coefficients generated by the Y sources (see Fig. 1). To be able

to decode, a source must know the network coding coefficients

ãb that were used to create each superimposed block sent

by the relay. One method of letting the receivers know ãb

is to add the coefficients to the header information. Another

way is to assume that the sources and the receivers use Y
synchronized pseudo-random number generators, each source

with a different seed, that generate the sequences for ãb.

We adopt the second method in this paper, since otherwise

the header size would be a function of both m and q, thus

considerably complicating the analysis.

The column vector of Y m network coding coefficients

ãb = [a1b, . . . ,aY b]
′ corresponding to a block b is the bth

column in the generator matrix G employed by the RLNC in

the star network, and B̃b =
∑Y

i=1 B̃ib, the superposition of

the network coded blocks, can be viewed as a code symbol of

the RLNC.

When a source Si receives a superimposed channel coded

block vb from the relay, it first decodes the binary channel

code to obtain the modulo-2 superposition of the channel

input blocks B̂b =
∑Y

i=1 B̂ib. If decoding is successful, as

indicated by the CRC in the header, the header of size h bits

is removed and, after binary to q-ary conversion, the q-ary

superposition of the network coded blocks B̃b is obtained.

Source Si then subtracts its own contribution from B̃b, which

is B̃ib, and stores the superposition of the other Y −1 network

coded blocks B̃jb, j = 1, . . . , Y , j 6= i, as an element in a

vector of received RLNC symbols. It also stores the subset

of (Y − 1)m network coding coefficients in ãb involved in

creating the superposition B̃jb as a column in its coefficient

matrix Gi, the perceived generator matrix of the RLNC from

the point of view of source Si. Note that the rows and columns

of Gi, a subset of the matrix G, do not contain information

about blocks that were not correctly received by the relay or

by source Si.

Once a source Si has received enough blocks from the relay

to form a matrix Gi with (Y − 1)m linearly independent

columns, it can recover the (Y − 1)m data blocks from the

other sources by inverting the matrix Gi and multiplying it by

its vector of received RLNC symbols. (On average, a source

Si needs to collect more than (Y − 1)m correctly received

blocks to form a Gi of rank (Y − 1)m, and in Subsec-

tion II-D we bound the expected overhead of RLNC for finite

size Galois fields.) Then it sends a single acknowledgment

(ACK) to the relay. Once the relay has collected Y ACKs

from the Y sources, it broadcasts an ACK to the sources,

terminating transmission. All sources continue to transmit until

they receive an ACK from the relay. We assume that the

transmission of an ACK is instantaneous and reliable, i.e., that

it does not consume any resources and that it is never received

erroneously, that the length of the ACK is negligible compared

to the length of the message, and that it is protected by a more

powerful error-correcting code than the message itself.

As a reference scheme we consider TDMA transmission of

the sources, paired with ARQ. We also assume a source splits
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its message into m data blocks, but no network coding is used.

The MAC phase in Fig. 1 is replaced by a TDMA phase,

where only one source transmits to the relay at a given time

and the individual data blocks are again protected by a binary

channel code of rate R. The transmitting source Si repeats

the transmission of a channel coded block as many times as is

necessary for the relay to receive the data block correctly, at

which point the relay transmits an ACK. After the relay has

received the data block correctly it broadcasts it to all sources.

When a source receives the data block correctly, it sends an

ACK to the relay. The relay repeats the broadcast transmission

as many times as is necessary until all Y − 1 sources Sj ,

i = 1, . . . , Y and j 6= i, receive the data block correctly. After

the steps described above have been successfully completed

for source Si, it is the turn of the next source to transmit

a data block to the relay, and the sources are scheduled in

a round robin fashion with m rounds. After each source has

successfully transmitted m data blocks, the transmission ends.

B. A Motivating Example

Consider the case where the error probability on all BSC

links is zero, i.e., pMAC = pBC = 0, and RLNC is performed

over an infinitely large Galois field. Furthermore, let m = 1
and the header size h = 0. Each of the Y sources has a

message, e.g. a file, of size K bits to transmit to the others.

Using the TDMA scheme, for every one of the Y sources,

there is a phase where the source transmits K bits to the relay

followed by a phase where the relay broadcasts K bits. The

average throughput of the TDMA scheme is thus given by

TTDMA =
1

2
.

For the RLNC scheme, an individual source must collect Y −
1 blocks of K bits in order to be able to decode, and the

throughput is given by

TRLNC =
Y K

2(Y − 1)K
.

The RLNC scheme thus achieves a throughput gain of

TRLNC

TTDMA
=

Y

Y − 1
(3)

over the TDMA scheme. The gain of RLNC is largest when

only 2 nodes exchange information and decreases to one as

the number of nodes in the star network gets large. We now

describe the channel and network coding in more detail.

C. Channel Coding

We consider random coding on the physical layer and use

two different approaches to bound the performance of channel

coding.

1) The block error probability ǫ of random coding on the

BSC with a code rate R can be bounded using the

random coding error exponent E(R):

ǫ ≤ 2−nE(R), (4)

where n = k/R is the block length of the code and

k = K/m+ h bits. Using the union bound, the random

coding error exponent for the BSC is given by [24]

E(R) = R0 −R, (5)

where R0, the cutoff rate of the channel, depends on the

crossover probability p of the BSC and is given by

R0 = − log2

(

1

2
+
√

p(1− p)

)

.

Above the so-called critical rate Rcrit, a tighter upper

bound on the block error probability is obtained by using

the sphere packing exponent. However, the union bound

is often used to approximate the performance of codes of

practical length, and hence we adopt the simple form of

(5), which also allows us to obtain analytical expressions

for the optimum channel code rate and optimum number

of data blocks.4 We use the above method to bound the

performance of channel coding in Sections III–V.

2) Tighter bounds on the achievable channel code rate

given a block error probability ǫ have been derived in

[25], in the following referred to as the PPV bound.

The relationship between the achievable code rate R,

the error probability ǫ, the length of the channel code

n = k/R, and the BSC crossover probability p can be

written as

R = C −
√

p(1− p)

n
log2

(

1− p

p

)

Q−1(ǫ) +
log2(n)

2n
,

(6)

where

C = 1−H(p)

is the channel capacity of the BSC, H(x) =
−x log2(x)− (1− x) log2(1− x) is the binary entropy

function,

Q(x) =
1√
2π

∫ ∞

x

e−u2/2du

is the tail probability of the Gaussian distribution, and

Q−1(x) is its inverse. In contrast to using the union

bound as described above, using the PPV bound allows

us to consider code rates up to the channel capacity.

We use the PPV method to bound the performance of

channel coding in Section VI and compare the results

to those obtained in Sections III–V.

D. The Expected Overhead of Random Linear Network Cod-

ing

In this subsection we bound the expected coding overhead

of RLNC in the star network. As depicted in Fig. 2, each

source constructs a random linear network code over m data

blocks before sending a network coded block to the relay.

Considering a single source on its own and RLNC over GF(q),

the probability that m + x independently created column

4The analysis framework presented here can also be applied to star networks
that communicate over binary erasure channels or additive white Gaussian
noise channels by replacing (5) with the random coding error exponent for
those channels.
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Fig. 3. Expected overhead X(m, q) (markers) in blocks with the upper (solid
lines) and lower (dashed lines) bounds on the expected overhead in blocks.

vectors of network coding coefficients ã form an m× (m+x)
matrix of rank m, i.e., the probability that m + x network

coded blocks are sufficient to decode the RLNC of that source

is given by [26]

Psuccess(m,x, q) =
m
∏

i=1

(

1− q−x−i
)

. (7)

In the star network, a block broadcast by the relay is a

linear combination of Y m data blocks and every source can

reduce the problem of decoding the network code to that of

decoding the (Y − 1)m unknown data blocks by subtracting

out its own data. Then, since the network coding coefficients

are chosen independently at all sources, the probability that all

Y sources can construct an invertible matrix of rank (Y −1)m
from (Y − 1)m+ x correctly received blocks is given by

P ∗
success(m,x, q, Y ) = (Psuccess((Y − 1)m,x, q))

Y

=





(Y−1)m
∏

i=1

(

1− q−x−i
)





Y

.
(8)

Using a result from [26], we now bound (7) as

1− 1

q − 1
q−x < Psuccess(m,x, q) ≤ 1− q−x−1, (9)

which can then be used to derive upper and lower bounds on

the expected overhead of RLNC in the star network that are

independent of the number of data blocks m. Using (8) and (9),

the probability P ∗(m,x = i, q, Y ) that overhead x = i blocks

is required to decode in the star network is upper bounded by

P ∗(m, i, q, Y ) = P ∗
success(m, i, q, Y )

− P ∗
success(m, i− 1, q, Y )

<
(

1− q−i−1
)Y −

(

1− q−i+1

q − 1

)Y

=
Y
∑

j=1

(

Y

j

)

(−1)j+1

(

qj

(q − 1)j
− 1

qj

)

q−ji. (10)
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Fig. 4. Upper (solid lines) and lower (dashed lines) bound on the expected
overhead of RLNC in blocks for different numbers of sources Y .

The expected coding overhead X∗(m, q, Y ) of RLNC in

blocks in the star network is thus upper bounded by

X∗(m, q, Y ) =
∞
∑

i=1

iP ∗(m, i, q, Y )

<

Y
∑

j=1

(

Y

j

)

(−1)j+1

(

qj

(q − 1)j
− 1

qj

) ∞
∑

i=1

i q−ji

=
Y
∑

j=1

(

Y

j

)

(−1)j+1 q2j − (q − 1)j

(q − 1)j(qj − 1)2
, X∗(q, Y ).

(11)

In the same way, we can lower bound the expected overhead

of RLNC in blocks as

X∗(m, q, Y ) >

Y
∑

j=1

(

Y

j

)

(−1)j+1 (q2 − q)j − qj

(q − 1)j(qj − 1)2
. (12)

Both bounds (11) and (12) are independent of the number of

data blocks m and tend to zero as the size of the Galois field

gets large.

Fig. 3 shows the actual expected overhead for RLNC of a

single source for several Galois field sizes q compared to the

upper bound (11) for Y = 1, displayed as solid lines, and

the lower bound (12), displayed as dashed lines, where the

expected overhead X(m, q) of RLNC in blocks is given by

[27]

X(m, q) =

m
∑

i=1

1

qi − 1
. (13)

Although (13) is not independent of the number of data blocks

m, Fig. 3 shows that the expected overhead in blocks is well

approximated by a constant fractional number of blocks. The

larger the Galois field size q, the better the performance of

RLNC, and the quicker the expected overhead converges to a

constant. As q increases, the upper and lower bounds on the

expected overhead become tighter, and for q = 64 they are

almost indistinguishable.

Fig. 4 shows the upper (11) and lower (12) bounds on the

expected overhead of RLNC in blocks for different numbers of

sources Y . As the number of sources Y increases, the expected

overhead of RLNC increases as well.
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Modeling the expected coding overhead of RLNC as a

constant fractional number of blocks leads to opposing op-

timization criteria for channel coding and RLNC when a

message of finite size K bits is divided into m data blocks:

• More data blocks, and thus shorter channel coded blocks,

lead to a smaller coding overhead of RLNC in bits.

• Longer channel coded blocks, and thus fewer data blocks,

lead to more powerful channel codes.5

In the following, when investigating the optimum number of

data blocks m and the optimum channel code rate R, we first

consider the MAC phase and the broadcast phase separately

before finding the values that jointly maximize throughput for

the star network.

III. THE MAC PHASE

In this section we optimize the throughput for the MAC

phase and do not consider the broadcast phase in the opti-

mization. To this end, assume that the channels from the relay

to the sources are error-free, i.e., pBC = 0, so that the relay

does not need a channel code, and that the relay removes the h
header bits prior to broadcasting. (When pBC = 0, appending

a CRC to detect decoding failures is not necessary.)

Using random coding error exponents, we obtain the chan-

nel code rate R and the number of data blocks m that minimize

the expected number of transmissions at the sources and thus

maximize the throughput. We then compare the results for

RLNC to the optimum rate and number of data blocks for

TDMA.

Modeling the expected coding overhead of RLNC as a

constant fractional number of blocks (11), on average each

source must collect (Y − 1)m + X∗(q, Y ) network coded

blocks to be able to decode, and the expected number of

channel coded blocks that the sources need must transmit is

thus given by

MMAC
RLNC ≈ (Y − 1)m+X∗(q, Y )

1− ǫMAC
, (14)

where ǫMAC is the block error rate of channel coding for

a BSC with crossover probability pMAC. Using the union

bound random coding error exponent to approximate the block

erasure rate (4) and letting n = k/R = (K/m+ h)/R be the

size of a channel coded block in bits, we obtain from (14)

NMAC
RLNC ≈ k ((Y − 1)m+X∗(q, Y ))

R
(

1− 2−k(R0/R−1)
) (15)

for the expected number of bits that must be sent by the

sources. To minimize the expected number of bits sent, i.e.,

to maximize throughput, we use the partial derivatives of (15)

with respect to R and m to find the optimum channel code

rate and the optimum number of data blocks, respectively.

For TDMA, a total of Y m blocks must be transmitted to

the relay by the Y sources and we have

MMAC
TDMA ≤ Y m

1− ǫMAC
. (16)

5Similar observations have been made in [28] for a different scenario, where
channel coding was not considered but the physical layer was modeled as an
erasure channel.

Using equations (16) and (4) for transmission over a BSC with

crossover probability pMAC, we obtain

NMAC
TDMA ≤ Y (K +mh)

R
(

1− 2−(
K
m

+h)(R0
R

−1)
) (17)

for the expected total number of transmitted bits.

A. The Optimum Channel Code Rate

Taking the partial derivative of (15) with respect to R and

setting it to zero, we obtain

1− 2−k(R0
R

−1) − ln(2)k
R0

R
2−k(R0

R
−1) = 0,

where k = nR = K/m+h is the block length before channel

coding. Using the substitution t = ln(2)kR0

R , we then obtain

−(t+ 1)e−(t+1) = −e−ln(2)k+1,

which can be solved using the Lambert-W function W(x)
given by

x ≡ W(x)eW(x).

The optimum channel code rate as a fraction of the cutoff rate

of the channel is then given by

R

R0
=

− ln(2)k

W−1

(

−e−(ln(2)k+1)
)

+ 1
, (18)

where W−1(x) represents the lower branch of the Lambert-W

function [29].6 From (18) we see that the optimum channel

code rate ratio R/R0 is only a function of the block length

k and is independent of the expected overhead X∗(q, Y ) of

RLNC and the number of sources Y . It is thus also the

optimum channel code rate for a scheme employing TDMA.

To evaluate the Lambert-W function we use the closed form

approximation [29]

W−1(x) ≈ ln(−x)− 1

A1






1− 1

1 +
A1

√
σ/2

1−A2σ exp{−A3
√
σ}






,

where

σ = − ln(−x)− 1,

A1 = 0.3361, A2 = 0.0042, and A3 = 0.0201. The

approximation has a maximum relative error of only 0.025%.

Using the approximation, we see that, as the block length k
increases, the optimum channel code rate ratio R/R0 tends to

1.

6For negative arguments, the Lambert-W function has two solutions. Since
the ratio R/R0 must be between zero and one, we require W(x) ≤ −1, so
the solution must be on the lower branch of the Lambert-W function.
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Fig. 5. Optimum number of blocks m given the message length K, the
number of sources Y , and header size h = 0 for RLNC over different Galois
field sizes q.

B. The Optimum Number of Blocks

Now taking the partial derivative of (15) with respect to m
and setting it to zero, we obtain

2z(
K
m

+h) =
(

1 +
ln(2)zK

(

K
m + h

)

(X∗(q, Y ) +m(Y − 1))

KX∗(q, Y )− hm2(Y − 1)

)

,
(19)

where z = (R0/R) − 1. In general, a closed form solution

of (19) cannot be found. However, for h = 0 and Y = 2 we

can again use the Lambert-W function to solve for m, and the

optimum number of blocks m, given a constant R/R0 and the

message length K, is

m =
− ln(2)zK

1 + ln(2) zK
X(q,2) +W−1

(

−e−(1+ln(2) zK
X(q,2)

)
) . (20)

To obtain the optimum number of blocks m that minimizes

the expected number of transmissions and maximizes the

throughput, we solve (19) and (18) jointly using numerical

methods. For h = 0, Fig. 5 shows the optimum number of

blocks m given a message length K, the number of sources Y ,

and RLNC over GF(q). As the total message length increases,

we observe that the maximum throughput is achieved for

a larger number of blocks m. Since the expected coding

overhead X∗(q, Y ) (11) in blocks increases with the number

of sources in the star network, the optimum number of blocks

m increases with Y for a fixed message length K. On the other

hand, since the expected coding overhead X∗(q, Y ) decreases

with increasing Galois field size, the optimum number of

blocks decreases with q. For h = 16, the optimum number

of blocks is shown in Fig. 6, and we see that by increasing h
and (using a longer header per block) the optimum number of

data blocks decreases.

C. Large Galois Field Considerations

A common assumption in the analysis of network coding is

that RLNC is done over a sufficiently large Galois field size
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Fig. 6. Optimum number of blocks m given the message length K, the
number of sources Y , and header size h = 16 for RLNC over different
Galois field sizes.

that the coding overhead is negligible, i.e., X∗(q, Y ) ≈ 0 for

large q.

If we set X∗(q, Y ) = 0 in (15), the numerator is increasing

in m, while the denominator is strictly decreasing in m. So

the smallest possible m, i.e., m = 1, minimizes the expected

number of transmissions and maximizes throughput. Thus,

in the absence of a coding overhead, i.e., for q → ∞, the

optimum strategy for the source is to use a channel code on

the whole message and not divide it up into smaller blocks.

The same argument holds for (17) and TDMA. If

X∗(q, Y ) = 0, throughput is maximized if the sources choose

m = 1, i.e., the longest (and therefore strongest) possible

channel code.

IV. THE BROADCAST PHASE

In this section we optimize the throughput of the broadcast

phase without taking the MAC phase into account. To this

end assume that the channels to the relay are error free, i.e.,

pMAC = 0. Further, since pMAC = 0, we assume that during

the MAC phase the sources transmit to the relay uncoded, i.e.,

R = 1, and that no header is used. A header of length h is

then appended to each block at the relay, and the relay uses a

channel code of rate R < 1 to protect the blocks.

A. TDMA Broadcast Paired With ARQ

We first consider the TDMA scheme, i.e., broadcast using

ARQ, where every block is repeated by the relay until all the

Y − 1 sources that do not know a given transmitted message

have received it correctly.

Then the expected number of blocks that the relay must

broadcast is given by [3]

MBC
TDMA = Y m

∞
∑

i=0

1− (1− ǫiBC)
Y−1, (21)

where ǫBC is the block error rate of a BSC with crossover

probability pBC. Using (4) and (5) we obtain for the expected
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number of bit transmissions by the relay

NBC
TDMA =kMBC

TDMA/R

=
Y (K +mh)

R

∞
∑

i=0

1−
(

1− 2−i(K
m

+h)(R0
R

−1)
)Y−1

.

(22)

For any fixed code rate R, the factor Y (K+mh)/R in (22) as

well as the block error probability ǫBC are strictly increasing

with increasing m. So the throughput for the TDMA system

paired with ARQ is maximized for m = 1 and a channel input

block of size k = K + h.

To obtain the channel code rate that maximizes the through-

put, we transform (21) into the finite sum

MBC
TDMA =

Y−1
∑

i=1

(−1)i+1

(

Y − 1

i

)

Y m

1− ǫiBC

, (23)

and using (4) and (5) we obtain

NBC
TDMA =

Y
∑

i=1

(−1)i+1

(

Y

i

)

Y (K +mh)

R
(

1− 2−i(K
m

+h)(R0
R

−1)
)

(24)

for the expected number of bit transmissions. We use the

partial derivative of (24) w.r.t. R to obtain

Y
∑

i=1

(−1)i
(

Y

i

)

1− 2−izk − ik ln(2)R0

R 2−izk

(1− 2−izk)
2 = 0, (25)

where z = (R0/R)− 1.

For TDMA and Y = 2, the channel code rate that max-

imizes throughput (25) in the broadcast phase is the same

as the rate that maximizes throughput for transmission to the

relay (18), obtained in Section III. In both cases, messages

are transmitted from one sender to one intended receiver. For

larger Y , we can numerically find the solution of (25), and

the optimum rate ratios R/R0 for broadcast from the relay

for different numbers are destinations are shown as the solid

lines in Fig. 7. We see that, while (18) does not depend on

the number of sources transmitting to the relay, during the
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Fig. 8. Optimum number of blocks for broadcast from the relay for h = 16.

broadcast phase the optimum channel code rate R for TDMA

as a fraction of the cutoff rate R0 decreases as the number of

broadcast destinations increases and, for Y > 2, is smaller

than (18). The optimum number of blocks for the TDMA

scheme, however, is m = 1 for both transmission to the relay,

considered in Section III, and the broadcast phase.

B. Broadcast Using RLNC

Using RLNC, the expected number of network coded blocks

that the relay must broadcast is given by [3]

MBC
RLNC =m′ +

∞
∑

i=m′

1−
[ i
∑

j=m′

(1− ǫ)
j
ǫi−j

(

i

m′

)

P (m′, j −m′, q)

]Y

,

(26)

where m′ = m(Y − 1) is the number of unknown blocks

each node Si must collect, and the probability of successful

decoding given a received overhead in blocks is given by (7).

The expected number of bits that the relay must transmit is

then given by

NBC
RLNC =

k

R
MBC

RLNC. (27)

We solve the above multidimensional optimization problem

using numerical methods. For the broadcast scenario using

RLNC, Fig. 8 shows the optimum number of data blocks m for

h = 16. Comparing the optimum number of blocks in Fig. 8 to

the MAC phase displayed in Fig. 6, the number of blocks that

maximizes throughput is generally smaller for the broadcast

phase. The most prominent difference between Fig. 8 and

Fig. 6 is that, while for the MAC phase the optimum number

of data blocks increases with the number of sources, for the

broadcast phase the optimum number of blocks decreases with

an increase in the number of broadcast destinations Y , thus

putting more emphasis on the channel coding being able to

provide more reliable individual blocks.

Fig. 9 shows the expected number of broadcast transmis-

sions, obtained from (24) and (27), multiplied by the cutoff

rate R0 and divided by the total number of message bits

exchanged between the Y sources, Y K. For RLNC, the
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expected number of broadcast transmissions decreases with the

Galois field size q and increases with increasing block header

size h. As the total message length K at each source gets large,

the expected number of broadcast transmissions for RLNC is

smaller than for TDMA, making it more throughput-efficient,

but TDMA is more throughput-efficient for small message

lengths. Asymptotically, the expected number of broadcast

transmissions for RLNC converges to (Y − 1)/Y , and the

convergence is faster for larger Galois fields.

V. JOINT OPTIMIZATION FOR THE STAR NETWORK

From the results from Sections III and IV, we see that the

number of data blocks and the channel code rate that maximize

throughput differ for transmission from the sources to the

relay and for broadcast from the relay. In a practical system,

however, it would be desirable to have the same channel code

rate and the same block size for transmission to and from the

relay.7

In this section we jointly optimize the throughput of the

MAC phase investigated in Section III and the broadcast phase

investigated in Section IV. We assume that during the MAC

phase and the broadcast phase we want to use the same number

of data blocks and the same channel code rate, so that the

individual blocks are of the same size. We refer to the time

it takes to transmit one block as a time slot. For the RLNC

scheme, using (26), the expected number of time slots that are

occupied by transmissions in the star network is given by

M∗
RLNC =MBC

RLNC

(

1 +
1

1− ǫMAC

)

=

(

m′ +
∞
∑

i=m′

1−
[ i
∑

j=m′

(1− ǫBC)
j
ǫi−j
BC

(

i

m′

)

P (m′, j −m′, q, Y )

]n
)

(

1 +
1

1− ǫMAC

)

,

(28)

where m′ = m(Y − 1) is the number of unknown blocks a

source Si must collect and ǫMAC and ǫBC denote the block

7Note that, for a fixed message length of K bits, keeping the number of
data blocks m the same is equivalent to keeping the block size constant at
K/lm q-ary symbols.
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Fig. 10. Average throughput ratio TRLNC/TTDMA for GF(4).

erasure rate during the MAC phase and the broadcast phase,

respectively. (28) relies on the fact that, for every block that

the relay broadcasts, on average 1/(1 − ǫmac) transmissions

from the sources to the relay are necessary.

Similarly, using (16) and (23), for the TDMA scheme the

expected number of time slots that are occupied by transmis-

sions is given by

M∗
TDMA =MMAC

TDMA +MBC
TDMA

=
Y m

1− ǫMAC
+

Y−1
∑

i=1

(−1)i+1

(

Y − 1

i

)

Y m

1− ǫiBC

.

(29)

In this case, since the throughput for both the transmission

phase to the relay and the broadcast phase from the relay is

maximized for m = 1, one block of length k = K+h bits for

each source Si is also optimum when considering both phases

jointly.8

In the following, we consider the symmetric case, where

ǫMAC = ǫBC, or equivalently pMAC = pBC.9 In this case,

the channel code rate that maximizes the throughput for

TDMA can be obtained by taking the derivative of N∗
TDMA =

kM∗
TDMA w.r.t. the channel code rate R, and the optimum rate

is the solution to the equation

Y
∑

i=1

(−1)i
(

Y

i

)

1− 2−izk − ik ln(2)R0

R 2−izk

(1− 2−izk)
2

−
1− 2−zk − ik ln(2)R0

R 2−zk

(1− 2−zk)
2 = 0,

(30)

with z = (R0/R) − 1. The resulting channel code rate that

8The astute reader will notice that other scenarios are possible. For example,
the sources could employ TDMA in the MAC phase, and then the relay could
apply RLNC in the broadcast phase. In this case, the expected number of
time slots occupied would be M∗ = MMAC

TDMA
+MBC

RLNC
, where MMAC

TDMA

is given by (16) and MBC

RLNC
is given by (26), and the overall throughput

would be slightly worse than for the RLNC scheme.
9We assume that the sources and the relay transmit at the same power level

and that therefore the channels to and from the relay have the same crossover
probability. If the transmit powers of the sources and the relay are variable,
one could extend the present analysis to choose a power ratio such that, for
a given channel code rate, the same number of data blocks optimizes the
throughput in both the broadcast and MAC phases.



10

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1

1.2

1.4

1.6

1.8

2

Message length K

T
h
ro

u
g
h
p
u
t 
ra

ti
o
 T

R
L

N
C
 /
 T

T
D

M
A

RLNC over GF(64)

 

 

h = 0

h = 16

h = 32

Y = 2

Y = 3

Y = 6

Fig. 11. Average throughput ratio TRLNC/TTDMA for GF(64).
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Fig. 12. Optimum number of blocks m in the star network for GF(64).

jointly maximizes throughput for the TDMA scheme star

network is also depicted in Fig. 7.

As noted in Section IV, the optimum channel code rate for

TDMA transmission to and from the relay, obtained separately,

is the same for Y = 2 sources. Thus, considering transmission

to and from the relay jointly, the optimum rate is also given

by (18) when Y = 2. For Y > 2, the optimum channel

code rate for the star network decreases with the number

of sources, similar to the TDMA broadcast case. However,

comparing the optimum rate obtained in Section IV for the

broadcast phase alone to the jointly optimum rate obtained

from (30) for the same number of sources Y , we find that

the channel code rate that jointly maximizes throughput for

the star network is slightly higher than the one that gives the

maximum throughput for the broadcast phase alone.

Figs. 10 and 11 show the average throughput ratio

TRLNC

TTDMA
=

M∗
TDMA

M∗
RLNC

of RLNC over GF(4) and GF(64) to TDMA, respectively,

where (28) and (29) have been used to compute the ratio

and the asymptotic throughput ratios are plotted as horizontal

black lines. For GF(4) and small message lengths K, we see in

Fig. 10 that the average throughput ratio rises steeply before
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Fig. 13. Optimum number of blocks m in the star network vs the crossover
probability p of the BSC for K = 10000 and h = 16.

the curves flatten out and slowly approach their asymptotic

value given by (3). As the block header size h increases,

the average throughput ratio decreases, and a larger message

length K is needed to obtain a given average throughput ratio.

For small message lengths K and large header sizes h, TDMA

is more throughput-efficient. For example, for RLNC over

GF(4), h = 32, and Y = 6 sources, we require K > 900
bits for RLNC to be more throughput-efficient than TDMA.

Employing RLNC over GF(64) which, compared to RLNC

over GF(4), decreases the expected coding overhead in blocks,

we see in Fig. 11 that RLNC is more throughput-efficient than

TDMA for all values of K and that the average throughput

ratio converges much faster to its asymptotic value. For

small values of K, there exists a region where the average

throughput ratio is independent of the header size h. Above

a certain message length K, however, the average throughput

ratios for different header sizes h separate slightly, with the

region of independence extending to larger message lengths K
for larger values of Y . Comparing Fig. 11 to Fig. 12, which

shows the number of data blocks that maximizes throughput

for the star network with RLNC over GF(64), we see that the

region where the average throughput ratio is independent of h
coincides with the region of K values for which the optimum

number of blocks is m = 1.

VI. BOUNDING CHANNEL CODING PERFORMANCE USING

THE PPV BOUND

In this section we use the PPV bound given by (6) to

relate the channel code rate R and block length n to the

probability of block error ǫ. Compared to the random coding

error exponent bound obtained by using (4) and (5), where

the largest possible channel code rate is the cutoff rate, using

(6) allows channel codes that are asymptotically able to reach

channel capacity.

The numerical results obtained using (6) to model channel

coding in general show the same behavior as reported in

Sections III–V. We observe that the maximum throughput for

RLNC is achieved for a larger number of data blocks m as the

message length K increases and, for a fixed message length

K, the optimum number of blocks decreases as the Galois field
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Fig. 14. Throughput ratio TRLNC/TTDMA for RLNC and different values
of p.

size of RLNC increases. In addition, the optimum number of

blocks decreases as the block header size h increases in length.

In contrast to the results in Sections III–V, however, where

the optimum number of data blocks m did not directly depend

on the crossover probability p of the underlying BSC and the

optimum channel code rate could be expressed as a fraction of

the cutoff rate R0, using (6) we find that the number of data

blocks m that maximizes throughput for RLNC varies with

the crossover probability p.

Fig. 13 shows the optimum number of data blocks m of

RLNC for star networks with Y = 2 and Y = 6 sources

versus the BSC crossover probability pMAC = pBC = p. The

message length is K = 10000 bits, the header size is h = 16
bits, and RLNC over GF(4), GF(16), and GF(64) is considered.

Compared to the random coding error exponent approach

(see Figs. 8 and 12), using (6) to bound the channel coding

performance generally results in a smaller optimum number

of data blocks. This implies that, when maximizing through-

put, the tighter bounding approach places more emphasis on

channel coding and low block error probabilities and less

on reducing the coding overhead of RLNC. Furthermore, the

optimum number of data blocks m decreases as the channel

quality degrades, thus requiring longer channel coded blocks,

which implies more powerful codes.

The average throughput ratio TRLNC/TTDMA for star net-

works with Y = 2, Y = 3, and Y = 6 sources, RLNC

over GF(4) or GF(64), and header size h = 32 is shown in

Fig. 14. The throughput ratios for pMAC = pBC = p = 0.04,

which corresponds to a BSC capacity of roughly C = 0.75
bits/transmission, are plotted in solid lines, the throughput

ratios for p = 0.11 (C = 0.5) are plotted in dashed lines,

the throughput ratios for p = 0.21 (C = 0.25) are plotted in

dash-dot lines, and the asymptotic throughput ratios are plotted

as horizontal black lines. We see that the average throughput

ratio decreases slightly with the BSC crossover probability

p. Compared to the random coding error exponent approach

(see Figs. 10 and 11), using (6) decreases the throughput ratio

TRLNC/TTDMA, implying that employing stronger channel

codes reduces the advantage that RLNC has over TDMA.

Specifically, for RLNC over GF(4), h = 32, Y = 6 sources

in the star network, and transmission over BSCs with p =
0.21, we now require K > 1800 bits for RLNC to become

more throughput-efficient than TDMA. In general the ratios in

Fig. 14 approach their asymptotic values much more slowly

than in Figs. 10 and 11, and we also see a larger gap between

the throughput ratios employing RLNC over GF(4) and RLNC

over GF(64).

VII. CONCLUSIONS

We analyzed the joint design of channel coding on the

physical layer and random linear network coding on the link

layer for a star network where Y sources send fixed length

messages to each other with the help of a central relay. For

RLNC over a finite Galois field of size q and messages of total

length K at each source, we obtain the number of data blocks

and the channel code rate that should be used to maximize

the throughput of the star network using RLNC, assuming

binary symmetric channels between the sources and relay and

a binary adder channel model at the relay. We also obtain

the optimum number of blocks and the optimum rate for a

reference TDMA system and compare the throughputs of the

two transmission schemes. We find that, for small message

lengths K and RLNC over small Galois fields q, TDMA is

more throughput-efficient than RLNC, while RLNC is more

throughput-efficient when the message length K gets large.

We employ two different approaches to model the probability

of channel decoding failure, a simplified random coding error

exponent based on the union bound and the PPV bound for

finite block lengths, where the PPV bound allows the use of

more powerful, capacity achieving channel codes. We find that

the average throughput ratio of RLNC to TDMA decreases

using the PPV bound, implying that for finite block lengths,

stronger channel coding reduces the advantage that RLNC has

over TDMA.
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