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Abstract—We consider a two-hop cellular system in which
the mobile nodes help the base station by relaying information
to the dead spots. While two-hop cellular schemes have been
analyzed previously, the distribution of the node locations has not
been explicitly taken into account. In this paper, we model the
base station locations deterministically and the mobile stations
by a point process on the plane. The node with the best
channel to the destination that received information in the first
hop acts as a relay to the destination (selection cooperation),
and we obtain the success probability of this two-hop scheme,
accounting for the interference from all other cells. We use tools
from stochastic geometry and point process theory to analyze
this two-hop opportunistic relaying scheme. Besides the results
obtained, a main contribution of the paper is to introduce a
mathematical framework that can be used to analyze arbitrary
relaying schemes.

I. INTRODUCTION

Cellular systems are the most widely deployed wireless sys-
tems and provide reliable communication services to billions
around the world. They consist of base stations that serve a
geographical area called cell. In most of the present cellular
systems, the base station (BS) communicates directly with the
mobile users (MS) in its cell. This single-hop architecture
makes it difficult for the BSs to communicate with MSs at
the cell boundary because of the distance and the inter-cell
interference. So a base station will have to increase its power to
maintain the rate of transmission. The dead spots problem can
be countered by using more base stations, thereby increasing
the spatial reuse. But increasing the number of base stations
can be prohibitively expensive or even impossible. The prob-
lem can be addressed more effectively by moving away from
the paradigm of single-hop communication and permitting
the base station to communicate with mobile stations at the
boundary by using the other intermediate MSs in its cell in a
sequence of hops. Although such multi-hopping requires some
significant changes in the present cellular system architecture,
it may help to effectively combat the dead spots problem,
and hence the cellular multi-hopping problem is worthy to
investigate, as argued in [1], [2]. In this paper, we analyze the
benefits of two-hop cellular communication by comparing its
performance with a traditional single-hop cellular system. A
two-hop system

• may provide significant benefits over single-hop commu-
nication.

• does not have the implementation complexity of larger
number of hops (in terms of routing and scheduling).
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When a BS transmits, multiple MSs will be able to receive
the information, and hence these mobile nodes can help the
BS transmit information to the cell edge. Since more than one
MS can act as a relay, it is not clear how to choose a subset
of these relays in a distributed fashion so as to reduce the
interference and increase the probability of packet delivery.
In this paper, we analyze a simple relay selection scheme and
compare its performance with direct transmission. We account
for the inter-cell interference and the spatial structure of the
transmitting nodes in the analysis.

We use methods from stochastic geometry and point process
theory [3], [4] to model and study the two-hop cellular
system. In particular, we provide techniques based on the
probability generating functional of a point process to analyze
the outage probabilities, and we provide asymptotic results for
the outage at high signal-to-noise-ratio and low BS density.
The techniques presented in this paper can be extended to
analyze more complicated relay selection schemes, power
control mechanisms and other multi-hop techniques. The main
emphasis of the paper is in the methodology and the techniques
of the analysis rather than the specifics of the communication
system.

A. Previous work

The problem of two-hop extensions of cellular system has
been studied extensively, and a provision for a multi-hop
technique has been included in the A-GSM standard [1],
[2]. There are various techniques [5]–[9] to combat the dead
spot problem by using multiple-antenna techniques, fractional
frequency reuse, and relaying. In this paper we concentrate
on a selection cooperation relaying scheme, and our primary
focus is on illustrating the application of analytical tools
from stochastic geometry, rather than optimizing the end
performance of the system. In [10], a MS is selected to help
the BS depending on the large-scale path-loss on the BS-relay
link and the relay-destination link. [11] considers a similar
problem, but the MSs that can act as relays are assumed to
be located on a circle around the BS, and the authors provide
various power allocation schemes and verify their performance
by simulations. The present problem is also very similar to
the problem of opportunistic relay selection. In [12], [13] a
detailed analysis of an opportunistic two-hop relaying scheme
obtaining full diversity order using distributed space-time
codes has been provided. But a distributed space-time code
requires very tight coordination and precise signaling between
the relays, which increases the overhead and complexity in the
system. An alternative approach is to choose the best relay, and
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in opportunistic relaying [14] a relay is chosen so as to maxi-
mize the minimum signal-to-noise ratio (SNR) of the source-
relay and the relay-destination links. In selection cooperation
[15], [16] the relay with maximum relay-destination SNR is
chosen and it has been shown that selection cooperation and
opportunistic relaying provide a similar diversity order. In [12],
[14]–[16], distributed relay selection schemes are analyzed and
asymptotes of the outage are provided for high SNR. However
these results do not account for the spatial distribution of
nodes. Our emphasis is on a low-overhead scheme that can
readily be implemented.

The paper is organized as follows: In Section II, the system
model is introduced, assumptions stated and the metrics used
in the paper defined. In Section III, the outage probability in
the direct connection between the BS and its destination is
derived. In Section IV, the outage probability of the two-hop
scheme, where the relay with the best channel transmits is
analyzed. The asymptotic gain of using the two-hop scheme
over a direct connection is also studied in these sections. We
also provide simulation results to validate the theory.

II. SYSTEM MODEL

A. Locations of base stations and mobile stations

A 2-D network of BSs is usually modeled by a hexagonal
lattice or other regular geometries. Following this tradition,
we assume that the BSs (cell towers) are arranged on a square
lattice, and their spatial density is λb. The locations of the BSs
is denoted by Φb, and

Φb =

{
a√
λb

, a ∈ Z2

}
.

While in this paper we assume a square grid, the analysis
in this paper can be easily generalized to any deterministic
arrangement of BSs.

We assume that the mobile users associated with each
BS form independent Poisson point processes (PPP). The
locations of the MSs associated with BS a are denoted by
Φa, and we assume that Φa is a non-homogeneous PPP
with density λa(y) = η(y − a). For example choosing
η(y) = 1y([−1/2, 1/2]2) and λb = 1 would lead to the
mobile stations distributed as a Poisson point process in a
unit square area centered at each base station. See Figure
1 for an illustration. The cell corresponding to the BS a is
the support of the function λa(y) where the mobile users are
located. So η(y) = 1y([−1/2, 1/2]2) would correspond to unit
square cells centered around the BSs. The number of users in
the cell of a BS a is denoted by na = |Φa|; it is a Poisson
random variable with mean

∫
R2 η(x)dx. It follows that the

probability that a cell contains at least one MS is

µ , 1− exp

(
−
∫
R2

η(x)dx

)
. (1)

B. Path loss and fading

Independent Rayleigh fading is assumed between any pair
of nodes and also across time, and the power fading coefficient
between a node x and node y is denoted by hxy . Hence hxy
is an exponential random variable with unit mean. The path
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Fig. 1. Illustration of the cellular system with λb = 1 and η(y) = 50 ·
1y([−0.25, 0.25]2). So on a average there are 12.5 MSs per cell. The bold
dots represent the BSs and the smaller dots the MSs. The white spaces between
the cells may consist of other cells which transmit at a different frequency.
We may model the case where the neighboring cells use the same frequency
by choosing η(y) = 1y([−0.5, 0.5]2).

loss model is denoted by `(x) : R2 \ {o} → R+, where o
denotes the origin (0, 0). We assume that `(x) is a continuous,
positive, non-increasing function of ‖x‖, and finite everywhere
except possibly at o. The path loss `(x) is usually taken to be
a power law in one of the forms:

1) Singular path loss model: ‖x‖−α, α > 2.
2) Non-singular path loss model: (1 + ‖x‖α)−1 or

min{1, ‖x‖−α}, α > 2.
Assuming simple linear receivers and treating interference as
noise, the communication between x and y is successful if

SINR(x, y,Φ) , hxy`(x− y)
σ2

P +
∑

z∈Φ hzy`(z − y)
≥ θ, (2)

for a threshold θ that depends on the transmission rate and
coding. We also assume θ > 1 which implies at most one
transmitter can connect to a receiver1. Here Φ is the set of
interfering transmitters, σ2 is the the additive white Gaussian
noise power at the receiver, and P is the common transmit
power. For each cell x ∈ Φb we add an additional mobile
station, the destination at r(x) with ‖r(x)−x‖ = R, to which
the BS wants to transmit information. This additional node just
receives and never transmits. We also assume that the BSs
transmit in the even time slots and the MSs transmit in the
odd time slots, synchronized across all cells.

C. Metrics

Let Pd denote the probability that a BS can connect to
its destination directly in the first hop. Since all the BSs are
identical, we focus on the BS at the origin and define

Pd = P (SINR(o, r(o),Φb \ {o}) > θ) , (3)

1This follows from the fact that a1
a2+b

> 1 and a2
a1+b

> 1 cannot be
simultaneously true for any a1, a2, b > 0.
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i.e., the probability that the received SINR from the BS is
greater than the threshold θ.

When a BS transmits, it can potentially connect (transmit
information) to any MS at which the received SINR is greater
than the threshold θ. These MSs are the potential transmitters
in the second hop, and we denote this set by Φ̂a, where a
denotes the BS. Mathematically

Φ̂a = {y ∈ Φa, SINR(a, y,Φb \ {a}) > θ}.

In our relaying strategy, the node from the set Φ̂a that has the
best channel to the destination r(a) transmits in the second
hop. For a BS a ∈ Φb, we denote the location of the best
relay by ξa, i.e.,

ξa = arg maxy∈Φ̂a
{hyr(a)`(y − r(a))}.

Again concentrating on the cell at the origin, denote the
probability that the best relay can connect to the destination
r(o) in the second hop by

Pr = P
(
max
x∈Φ̂o

{hxr(o)`(x− r(o))} > θ

(
I+

σ2

P

))
, (4)

where I is the interference at r(o) caused by concurrent
transmissions in other cells, i.e.,

I =
∑

a∈Z2\{o}

hξar(o)`(ξa − r(o)).

The direct transmission by the BS fails with a probability 1−
Pd, and the selected relay may fail with probability 1−Pr, and
hence, the total probability of success for the two-hop scheme
is

Ps = 1− (1− Pd)(1− Pr).

In defining Ps we have assumed that the information received
in the two time slots is decoded independently. The BS can
potentially transmit in the second hop instead of using a MS
as an intermediate relay. We compare the performance of the
relaying scheme with the retransmission strategy, and for a fair
comparison, we assume that the selected relay also transmits
with power P in the second hop. The gain in using the two-hop
scheme over the retransmission scheme can be characterized
as

G(SNR, λb) =
(1− Pd)

2

(1− Pd)(1− Pr)
=

1− Pd

1− Pr
, (5)

where SNR = P`(R)
σ2 , is the received SNR for the direct

transmission. It is well known that opportunistic relaying
increases the diversity order, and in this paper we analyze the
diversity of the relaying scheme in the presence of intercell
interference. The diversity gain is defined as

d2(λb) = − lim
SNR→∞

log(1− Ps)

log(SNR)
.

From the definition of the diversity and the gain, the following
relation follows:

d2(λb)− dd(λb) = lim
SNR→∞

log(G(SNR, λb))

log(SNR)
,

where dd is the diversity gain for the single-hop retransmission
scheme. In our case we can increase the SNR by increasing the

transmit power P or by reducing the noise variance σ2. While
increasing the SNR would combat noise, the interference
would not be affected since all nodes transmit with the same
power. In cellular systems, to reduce intercell interference and
increase coverage, spatial reuse is decreased by frequency
planning so that adjacent cells transmit in different frequency
bands. Without such frequency planning, it is easy to observe
that the probability Pr of any relay selection scheme does not
tend to one by increasing the SNR because of the intercell
interference. We can easily introduce frequency planning in
our model, by decreasing the density of BS, as this will
increase the distance between transmitting BSs. We decrease
the BS density as

λb = SNR−β , β ≥ 0. (6)

Compared to studying both asymptotics, λb → 0 and SNR →
∞, choosing λb = SNR−β allows us to study only one
asymptotic, i.e., SNR → ∞, while the generality is not
compromised thanks to the parameter β. Define the signal-
to-interference-ratio as

SIR , `(R)∑
a∈Φb\{o} `(a− r(o))

. (7)

In the next section we show that
∑

a∈Φb\{o} `(a − r(o)) =

Θ(λ
α/2
b ), λb → 0, and hence from (6) we obtain SIR =

Θ(SNR
αβ
2 ). We can observe that SIR = o(SNR) when

αβ < 2, i.e., the system is interference-limited, and noise-
limited (SNR = o(SIR)) otherwise2. Hence the scaling in (6)
helps us evaluate the performance of the system by varying
β. We now begin with the analysis of the direct transmission
scheme.

III. FIRST HOP: BASE STATION TRANSMITS

A. Direct Connection

When the BSs transmit, the inter-cell interference, fading
and the noise may cause the transmission to fail. In the next
lemma we compute this probability.

Lemma 1: The probability of direct connection between a
BS at the origin and its destination r(o) is given by

Pd = exp

(
− θ

SNR

)
∆(r(o)), (8)

where

∆(x) =
∏

a∈Φb\{o}

1

1 + θ
`(x)`(a− x)

.

Proof: From (3), the probability of direct connection is

Pd = P

(
hor(o)`(R)

σ2

P +
∑

a∈Φb\{o} har(o)`(a− r(o))
> θ

)
.

2Θ(.) and o(.) follow the standard Landau notation. We denote F (x) =
Θ(G(x)), x → ∞, if there exists two constants C1 > 0 and C2 > 0 such
that C1G(x) < F (x) < C2G(x), when x → ∞. The notation F (x) =
o(G(x)) implies limx→∞ F (x)/G(x) = 0. Analogous notation is used
when x → 0
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Since hor(o) is exponentially distributed with unit mean, its
CCDF is exp(−x) and

Pd = E exp

− θ

`(R)

σ2

P
+

∑
a∈Φb\{o}

har(o)`(a− r(o))

 .

The fading coefficients har(o) are independent, so Pd equals

exp

(
− θ

`(R)

σ2

P

) ∏
a∈Φb\{o}

E exp

(
−har(o)

θ`(a− r(o))

`(R)

)
.

Since hyr(o) is exponentially distributed the result follows from
the Laplace transform of the exponential distribution.
From (8), it is not clear how the success probability scales with
the BS density. In the next lemma, we analyze the asymptotics
of the success probability when the BS density is small.

Lemma 2: When `(x) = ‖x‖−α or `(x) = 1/(1 + ‖x‖α),

lim
λb→0

1−∆(x)

λ
α/2
b

=
θC(α)

`(x)
,

where

C(α) =
ξ(α/2, 0) [ξ(α/2, 1/4)− ξ(α/2, 3/4)]

2α−2
. (9)

ξ(s, b) =
∑∞

k=0,k 6=−b(k + b)−s is the generalized Riemann
zeta function.

Proof: We consider the case `(x) = ‖x‖−α; the other
case follows similarly. From the definition of ∆(x) it follows
that

exp
(
− θ`(x)−1

∑
a∈Φb\{o}

`(a− x)
)
≤ ∆(x)

≤
(
1 + θ`(x)−1

∑
a∈Φb\{o}

`(a− x)
)−1

. (10)

The lower bound follows from exp(−x) ≤ (1+ x)−1 and the
upper bound from

∏n
i=1(1 + xi) ≥ 1 +

∑n
i=1 xi, xi > 0,

1 ≤ i ≤ n. We have∑
a∈Φb\{o}

`(a− x) =
∑

a∈Z2\{o}

`

(
a√
λb

− x

)
= λ

α/2
b

∑
a∈Z2\{o}

`(a− x
√
λb).

Substituting in (10) we obtain

exp
(
− θ`(x)−1λ

α/2
b

∑
a∈Z2\{o}

`(a− x
√
λb))

)
≤ ∆(x)

≤
(
1 + θ`(x)−1λ

α/2
b

∑
a∈Z2\{o}

`(a− x
√
λb)
)−1

.

Since exp(−y) ∼ 1 − y and (1 + y)−1 ∼ 1 − y for small y,
as λb → 0, we obtain

lim
λb→0

1−∆(x)

λ
α/2
b

= lim
λb→0

θ

`(x)

∑
a∈Z2\{o}

`(a− x
√
λb)

=
θ

`(x)

∑
a∈Z2\{o}

`(a).
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Fig. 2. Outage probability 1 − Pd versus SNR for λb = SNR−β with
different β. The system parameters are α = 4, θ = 1.5, r(o) = (0.5, 0.5)
and `(x) = (1 + ‖x‖4)−1. The dashed lines are the asymptotes derived in
(11). Observe the difference in the slopes of the error curve for β < 0.5 and
β ≥ 0.5.

The summation in the RHS in the above equation∑
a∈Z2\{o} ‖a‖−α is the Epstein zeta function of order 2,

which is equal to C(α) [17].
We have C(3) ≈ 9.03362 and C(4) ≈ 6.02681.
From the derivation of the above lemma we observe that∑

a∈Φb\{o} `(a − x) ∼ λ
α/2
b C(α), λb → 0. Hence defining

SIR as in (7), and setting λb = SNR−β , we obtain SIR ∼
SNRαβ/2`(R)C(α)−1. The following result characterizes the
asymptotic success probability of a direct connection between
the BS and its destination.

Corollary 1: When λb = SNR−β , the success probability
of a direct connection at high SNR is

Pd ∼


1− θSNR−1 αβ > 2

1− θ
(
1 + C(α)`(R)−1

)
SNR−1 αβ = 2

1− θC(α)`(R)−1SNR−αβ/2 0 < αβ < 2,
(11)

and the diversity gain of the direct transmission is
dd(SNR

−β) = min
{
1, αβ

2

}
.

Proof: The success probability from Lemma 1 is
exp

(
− θ

SNR

)
∆(r(o)). The result follows from exp

(
− θ

SNR

)
∼

1 − θ
SNR , and using the asymptotic result for ∆(r(0)) from

Lemma 2.
So for the direct transmission, β < 2/α corresponds to the
interference-limited regime, and β > 2/α corresponds to the
noise-limited regime. Also the maximum diversity possible is
1 as expected. From Figure 2, we observe that the asymptotes
in (11) are close to the true Pd even at moderate SNR.

B. Properties of the potential relay sets Φ̂o.

In this subsection, the properties of the node set that
the BS at the origin is able to connect to are analyzed.
When the BSs transmit, the interference seen by two MSs
is independent, since the fading is independent. So the set
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of MSs to which the BS at the origin can connect to is an
independent thinning of Φo. Hence Φ̂o is also a PPP with
intensity δ(x) = η(x)P(SINR(o, x,Φb \{o}) > θ) [18]. Using
Lemma 1, with the receiver located at x instead of at a distance
R, we have

δ(x) = η(x) exp

(
− θ

SNR

`(R)

`(x)

)
∆(x). (12)

Also from the proof technique of Corollary 2, when λb =
SNR−β it follows that

δ(x) ∼η(x)

(
1− SNR−1 `(R)θ

`(x)

)(
1− SNR−αβ/2 θC(α)

`(x)

)
,

(13)

as SNR → ∞ The average number of MSs which the BS is
able to connect to is

E
∑
x∈Φo

1(SINR(o, x, | Φb \ {o}) ≥ θ) =

∫
R2

δ(x)dx (14)

which follows from the Campbell-Mecke theorem [19].

IV. SECOND HOP: RELAY WITH BEST CHANNEL TO
DESTINATION TRANSMITS

In this selection procedure, the relay with the best channel
to the destination is selected. Hence the fading between a
potential relay and the destination is also incorporated in the
criterion for the relay selection. This method of relay selection,
called selection cooperation, is known to increase the diversity
order that depends on the cardinality of the set of plausible
relays.

In the second hop, each relay of the set Φ̂o can send a
channel estimation packet to the destination in an orthogonal
fashion, and the destination can choose the relay with the best
channel. Alternatively, if channel reciprocity is assumed, the
relays can estimate the channel between themselves and the
destination when receiving the NACK and use this information
to elect the best relay in a distributed fashion. We begin
with the computation of Laplace transform of the intercell
interference, which we then utilize to obtain asymptotics of
the success probability.

Lemma 3: When λb ∼ SNR−β , the Laplace transform of
the interference I seen by the receiver r(o) in the second hop
is asymptotically

LI(s) ∼ 1− µsC(α)SNR−αβ/2, SNR → ∞,

where C(α) is given in (9), and µ is the probability that a cell
is non-empty as defined in (1).

Proof: The Laplace transform of the interference in the
second hop at the receiver r(o) is LI(s) = E [exp(−sI)],
where

I =
∑

a∈Φb\{o}

hξar(o)`(ξa − r(o))1(|Φ̂a| > 0).

Recall that ξa denotes the location of the selected relay in cell
a. We require 1(|Φ̂(a)| > 0) multiplying the path loss, since
the cell corresponding to BS a might have been empty to start

with, and hence there is no relay to transmit at the second
hop. Hence we obtain

LI(s) = E
∏

a∈Φb\{o}

e−shξar(o)`(ξa−r(o))1(|Φ̂a|>0),

= E
∏

a∈Φb\{o}

1− (1− e−shξar(o)`(ξa−r(o)))1(|Φ̂a| > 0).

Averaging with respect to the fading random variables hξar(o),
we obtain

LI(s) = E
∏

a∈Φb\{o}

1− 1(|Φ̂a| > 0)

1 + s−1`(ξa − r(o))−1
.

Since for any bi > 0, 1 −
∑

i bi ≤
∏

i 1 − bi≤ exp(−
∑

i bi),
we have

1− E
∑

a∈Φb\{o}

1(|Φ̂a| > 0)

1 + s−1`(ξa − r(o))−1
≤ LI(s)

≤ E exp

−
∑

a∈Φb\{o}

1(|Φ̂a| > 0)

1 + s−1`(ξa − r(o))−1

 .

The location of the interferer in cell a, i.e., ξa can be
represented as ξa = a + f(a), where f(a) is the relative
location of the selected relay in cell a from the BS a. It is
easy to observe that |f(a)| < ∞, as f(a) is bounded by the
diameter of the cell, which is finite. Hence it follows that
‖ξa‖ ∼ ‖a‖λ−1/2

b almost surely. Since exp(−x) ∼ 1 − x,
x → 0, for small λb we obtain

LI(s) ∼ 1− E
∑

a∈Φb\{o}

1(|Φ̂a| > 0)

s−1‖a‖αλ−1/2
b

.

Denoting by µ̂ the probability that Φ̂o is non empty, i.e., µ̂ =
P(|Φ̂o| > 0),

LI(s) ∼ 1− µ̂sλ
α/2
b

∑
a∈Z2\{o}

‖a‖−α. (15)

As in Lemma 2, using the fact that
∑

a∈Z2\{o} ‖a‖−α is the
Epstein zeta function, and substituting λb = SNR−β , we
obtain

LI(s) ∼ 1− µ̂sC(α)SNR−αβ/2. (16)

We have µ̂ = 1− exp
(
−
∫
R2 δ(x)dx

)
. Using (13),

µ̂ ∼1− exp

(
−
∫
R2

η(x)

(
1− SNR−1 `(R)θ

`(x)

)
·

(
1− SNR−αβ/2 θC(α)

`(x)

)
dx

)
,

Using exp(−x) ∼ 1−x as x → 0 and simplifying , we obtain

µ̂ ∼ µ−

(1− µ)θ
(
SNR−1`(R) + SNR−αβ/2C(α)

)∫
R2

η(x)

`(x)
dx,

(17)

where (a) follows from (13). Using (17) in (16), we obtain
the result.
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Pr | (no > 0) ∼


1− SNR−1

(
1−µ
µ

)
θ`(R)

∫
R2

[
1

`(x−r(o)) +
1

`(x)

]
η(x)dx αβ > 2,

1− SNR−1
(

1−µ
µ

)
θ
∫
R2

[
`(R)+µC(α)
`(x−r(o)) + `(R)+C(α)

`(x)

]
η(x)dx αβ = 2,

1− SNR−αβ/2
(

1−µ
µ

)
θC(α)

∫
R2

[
µ

`(x−r(o)) +
1

`(x)

]
η(x)dx αβ < 2.

(19)

Pr | (no > 0) ≤ µ−1

(
1− exp

[
−
∫
R2

E exp

(
−θ(σ2P−1 + I)

`(x− r(o))

)
δ(x)dx

])
,

= µ−1

(
1− exp

[
−
∫
R2

exp

(
− θσ2

P`(x− r(o))

)
E exp

(
− θI

`(x− r(o))

)
δ(x)dx

])
. (21)

G(SNR, SNR−β) ∼


µ

1−µ`(R)−1
[∫

R2

[
1

`(x−r(o)) +
1

`(x)

]
η(x)dx

]−1

αβ > 2,

µ
1−µ (1 + C(α)`(R)−1)

[∫
R2

[
`(R)+µC(α)
`(x−r(o)) + `(R)+C(α)

`(x)

]
η(x)dx

]−1

αβ = 2,

µ
1−µ`(R)−1

[∫
R2

[
µ

`(x−r(o)) +
1

`(x)

]
η(x)dx

]−1

αβ < 2.

(22)

To begin with, if the cell at the origin is empty then this two-
hop scheme is not possible and hence for a fair comparison
we condition on the cell at the origin being non-empty. The
probability of success in two hops conditioned on the event
that the cell is not empty is obtained as follows:

Pr = (Pr | (no > 0))P(no > 0) + (Pr | (no = 0))P(no = 0)

(a)
= (Pr | (no > 0))

(
1− exp

(
−
∫
R2

η(x)dx

))
. (18)

(a) follows since the probability of decoding correctly by
relaying when there are no relays is zero, i.e., (Pr | (no =
0)) = 0. Hence the success probability when the cell is not
empty, i.e., |Φx| > 0, is equal to Pr | (no > 0) = Prµ

−1. The
next theorem characterizes the conditional success probability
for the opportunistic relay selection scheme.

Theorem 1: The success probability in the opportunistic
relay selection scheme in the second hop as SNR → ∞ is
given in (19), where C(α) is given in (9).

Proof: We first begin with the analysis of the uncondi-
tional outage probability in the second hop of the relaying
scheme. From (4), the outage probability is

1− Pr = P
(
max
x∈Φ̂o

{hxr(o)`(x− r(o))} < θ

(
I+

σ2

P

))
,

(a)
= E

 ∏
x∈Φ̂o

1− exp

(
−θ(I+ σ2P−1)

`(x− r(o))

) ,

where (a) follows since hxr(o), x ∈ Φ̂o, are independent
exponential random variables. Since Φ̂o is a PPP with intensity
function δ(x), using the probability generating functional [19]
of a PPP,

1− Pr = E exp

[
−
∫
R2

exp

(
−θ(σ2P−1 + I)

`(x− r(o))

)
δ(x)dx

]
.

(20)
We now obtain bounds on the conditional probability Pr |
(no > 0) using the relation (18). We first begin with an
upper bound on Pr | (no > 0). The upper bound follows
from Jensen’s inequality for the first exponential and is given

in (21). From Lemma 3, we have an asymptotic expression
of E exp

(
− θI

`(x−r(o))

)
, and for δ(x) in (13). We obtain

(19) with straightforward algebraic manipulations and the fact
exp(−x) ∼ 1 − x, x → 0. A lower bound to Pr | (no > 0)
can be obtained by using the inequality exp(−x) ≥ 1−x, for
the inner exponential in (20):

Pr | (no > 0) ≥µ−1

(
1− exp

(
−
∫
R2

δ(x)dx

)
·

E exp

(∫
R2

θ(σ2P−1 + I)

`(x− r(o))
δ(x)dx

))
.

Using the same substitutions as in the upper bound, it can
be shown that the lower bound also equals to (19), which
completes the proof.
The gain of using the two-hop scheme over direct transmission
and the diversity follow directly from the above Theorem, and
is stated in the following corollary.

Corollary 2: The gain of using a two-hop relay scheme
with opportunistic scheduling over direct transmission is given
in (22) as SNR → ∞, and the diversity of this scheme is
d2(SNR

−β) = min
{
1, αβ

2

}
.

Proof: The proof follows from Corollary 2, Theorem 1,
and the definitions of the gain and diversity.
In the above analysis we assumed that the cell is non-empty
and hence obtained a maximum diversity of 1. Conditioned
on k nodes in each cell, a maximum diversity of k can be
obtained as expected.

Let η(y) = λm1y([−L/2, L/2]2) be the intensity of the
mobile nodes in a cell. In this case the gain is proportional to
(1− exp(−λmL2)) exp(λmL2), and we observe that the gain
increases exponentially with λm. The gain depends on the
link distance R as `(R)−1 = Rα and hence increases with the
distance. This highlights the importance of two-hop relaying
schemes over simple direct transmissions specially for the cell
edge users. We now check the validity of the theoretical results
obtained by Monte-Carlo simulations. For the purpose of sim-
ulation we truncate the BS lattice to λ

−1/2
b {−2,−1, 0, 1, 2}2,

and θ = 1.5 is used as the decoding threshold. The cells are
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Fig. 3. Outage probability 1−Pr | (no > 0) versus SNR for λb = SNR−β

and various β. The system parameters are α = 4, θ = 1.5, r(o) = (0.5, 0.5)
and `(x) = (1 + ‖x‖4)−1. The dashed lines are the asymptotes derived in
(19) and are approximately equal to 0.812SNR−0.5(interference limited) and
0.108SNR−1 (noise limited).
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Fig. 4. G(SNR,SNR−β) versus SNR for various β. The system parameters
are α = 4, θ = 1.5, r(o) = (0.5, 0.5) and `(x) = (1 + ‖x‖4)−1.

modeled as squares, and the destination of each BS is located
at a random vertex of the square. The spatial density of mobiles
in each cell is taken as η(y) = 51y([−0.5, 0.5]2). In Figure
3, the error probability of the two-hop scheme is plotted.
We observe that the asymptotes obtained from theory match
perfectly with the simulation results, and the performance
becomes better with increasing β. Also, as predicted by theory,
the diversity obtained is 1 when αβ > 2, and is equal to αβ/2
otherwise. From Figure 4, we plot the gain G(SNR, SNR−β)
with respect to SNR for different β. When SNR → ∞ we
observe that the gain increases to a constant further validating
Corollary 2. In Figure 5, we observe that the asymptotic
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Fig. 5. Asymptotic gain versus λm where λm is the intensity in η(y) =
λm1y([−L/2, L/2]2), `(x) = ‖x‖−α, θ = 1.5 and r(o) = (−L/2, L/2).

gain increases exponentially with λm because of the factor
(1− µ)/µ factor in the expression for the asymptotic gain.

V. CONCLUSIONS

In this paper we have analyzed the outage in a two-hop
cellular system inclusive of all the node location statistics.
Asymptotic outage results were provided for opportunistic
relay selection scheme. From these results we observed that
the diversity obtained is min{1, αβ/2} where α is the path
loss exponent, when the density of the base stations scales as
λb = SNR−β . We show that the interference scales as λ

α/2
b

which implies SIR = Θ(SNRαβ/2). From this result we can in-
fer that the system is noise-limited (even for high SNR) when
αβ > 2 and interference-limited otherwise. The asymptotic
outage gain of the two-hop system over direct transmission
takes only two values as a function of β. This implies that at
very high SNR and low SIR, it only matters if the system is
interference-limited or noise-limited. The gain in selecting a
relay with the best channel over a direct transmission increases
exponentially with the density of the available relays. The gain
also increases with increasing source-destination distance. The
techniques introduced in this paper can be easily extended for
the spatial analysis of other relay selection schemes.
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