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Abstract—The stochastic geometry analysis of vehicular
networks and on-street deployment of base stations is largely
based on Cox processes driven by Poissonian models. In this
paper, we investigate scenarios where a model with a finite
and deterministic number of streets, termed the binomial line
process (BLP), is more accurate. We characterize the statistical
properties of the BLP and the corresponding binomial line
Cox process (BLCP). We derive the line length density and the
intersection density for the BLP and demonstrate how it models
the inhomogeneity of the streets in a city. Finally, leveraging the
derived framework, we analyze the performance of a network
whose access points are deployed along the streets of a city.
Our study captures the variation in the service performance
of the users across different locations of a city and thus it
leads to key network planning and dimensioning rules for the
operators.

Index Terms—Stochastic geometry, Line processes, Cox pro-
cess, Wireless communications

I. INTRODUCTION

Stochastic geometry lends key tools for the mathematical
analysis of wireless cellular and ad hoc networks [3]–[5].
Recently, Poissonian line models in stochastic geometry have
been applied in characterizing the streets of cities in order
to study cellular and vehicular networks [6], [7]. In this
paper, we develop and present a novel stochastic geometry
tool for the modeling and analysis of vehicular networks. In
particular, we introduce the binomial line process (BLP) to
model the streets of a city and a corresponding Cox process
to emulate the locations of wireless access points (APs) and
vehicles.

Recall that line processes are spatial stochastic processes
used for studying urban planning, river network modeling,
wireless communication, and industrial automation [3], [8].
Based on line processes we can study line-driven Cox
processes that help to model the locations of points on
the line processes. In wireless networks, such models are
employed to emulate the locations of APs deployed along the
streets of a city, e.g., see [9] and [10]. The signal coverage of
any point in the network for such on-street deployed small
cells is of significant interest for the network operators and
is the focus of this work.

A. Related Work

In literature, several line processes have been proposed
and characterized, including the Poisson line process (PLP),
the Poisson Voronoi tessellation (PVT), and the Poisson

The codes for generating the numerical results of this paper are
available for download [1]. An extended version of the paper can be found
in [2] and it also has been submitted for a possible journal publication.

lilypond model [11]–[14]. The PLP [7], [13] is the most
popular choice for modeling wireless networks due to its
remarkable tractability. We refer the reader to the works
by Chetlur et al. [15], [16] for a detailed discussion on
the PLP model and its application in analyzing wireless
networks. However, the PLP does not accurately account for
finite street lengths, T-junctions, and varying street densities
across cities. Recently, Jeyaraj et al. [13] proposed a Cox
model framework that improved the accuracy of line process
models by considering T-junctions, stick processes, and Pois-
son lilypond models. However, the authors did not take into
account the variable street densities within a single city. In
this regard, the authors in [17] used multi-density PVT and
PLP to emulate the streets of Lyon, wherein, the parameters
for the PVT are manually adjusted to match the street
structures in various parts of the city. On the contrary, this
paper focuses on studying non-homogeneous line processes
to better model the characteristics of urban scenarios i.e., the
streets near the city center are typically denser than those in
the suburbs. In this paper, we introduce a new stochastic
line process that can replicate the distinct street structures
in both the city center and the suburbs using a fixed set of
parameters. Furthermore, the city administrations construct
streets on a case-by-case basis, so a deterministic number
of streets usually characterizes the street network of a city.
To address this, we recently have introduced the BLP [18],
which consists of a fixed number of lines generated i.e. nB

within a bounded set. The BLP can capture the varying
street and street length densities within a single city, making
it useful for contrasting the performance of downtown and
suburban users. In comparison, PLP models are stationary
and restricted to a single fixed density.

B. Contributions

In this paper, we characterize the newly introduced BLP
and binomial line Cox process (BLCP) models. In particular,
we derive the line length and intersection measures and
the respective densities. Then, the probability generating
functional (PGFL) of the BLCP is derived, and based on
it, we analyze the success probability of wireless networks
where the locations of the APs form a BLCP. Our analysis
captures the difference in the performance experienced by a
city-center user to that of a suburban user and thus highlights
the efficacy of the model.



II. PRELIMINARIES

A. Binomial Line Process (BLP)

A BLP L is a finite collection of lines in the two-
dimensional Euclidean plane R2 generated within a distance
R from the origin. Formally,

L ⊂ Q ≜
⋃

r∈R∩[−R,R],θ∈[0,π)

{
(x, y) ∈ R2 : (1)

x cos θ + y sin θ = r
}
.

Thus, a BLP consists of lines that correspond to the points
of a binomial point process (BPP) defined on the finite
cylinder D := [0, π) × [−R,R], called the generating set
of L. The BLP is non-stationary by construction, and its
properties depend on the distance from the origin rather than
orientation. We consider a test point at (0, r0). The void
probability of the BLP from the perspective of this point,
and consequently, the distance distribution to the nearest line
from this point is given in the following result.

Theorem 1. [18] The probability that no line of the BLP
intersects with B((0, r0), t) is

VBLP(nB,B((0, r0), t)) =
(
2πR−AD(r0, t)

2πR

)nB

,

where, nB is the number of lines of L and AD(r0, t), the
area of the so-called domain band is evaluated as

AD(r0, t) =

2πt; for r0 + t ≤ R

2πt− 2r0

√
1−

(
R−t
r0

)2
+ 2 (R− t) cos−1

(
R−t
r0

)
;

for r0 + t > R and r0 − t ≤ R

2πt− 2r0

(√
1−

(
R−t
r0

)2
−
√

1−
(

R+t
r0

)2)
;

+2 (R− t) cos−1
(

R−t
r0

)
− 2 (R+ t) cos−1

(
R+t
r0

)
;

for r0 − t ≥ R.
(2)

Accordingly, the CDF of the distance to the nearest line
of the BLP from a test point at (0, r0) is Fd(t) = 1 −
VBLP(nB,B((0, r0), t)).

For further details on the properties of domain bands,
please refer to [18].

B. Binomial Line Cox Process

If we define an independent 1D Poisson point process
(PPP) Φi with intensity λ on each line Li of L, the collection

of all such points on all lines of the BLP, i.e., Φ =
nB⋃
i=1

Φi

is called the BLCP Φ.

Theorem 2. The probability that the disk B((0, r0), t) con-
tains no points of Φ is given by

VBLCP (nB,B((0, r0), t)) =[
1

2πR

∫ 2π

0

∫ r0 cos θ+t

r0 cos θ−t

exp (−λC(θ, r)) dr dθ

]nB

, (3)

where

C(θ, r) =

{
2
√
t2 − (r0 cos θ − r)2; t ≥ |r0 cos θ − r|,

0; otherwise,
(4)

is the length of the chord created by a line corresponding
to (θ, r) ∈ D in the disk B((0, r0), t).

Corollary 1. [Distance Distribution] Following the void
probability, the distance distribution of the nearest BLCP
point from the test point (0, r0) is

Fd1
(t) = 1− VBLCP (nB,B((0, r0), t)) . (5)

In the context of wireless networks, where APs are
modeled as points in a BLCP, the outcome discussed above
describes the distribution of distances to the nearest AP. We
will leverage this to evaluate communication performance
metrics in Section IV.

C. Line Length Density and Measure

The key motivation for studying BLP is to emulate distinct
street densities in the city center and the suburbs. The
line length density and line length measure are derived to
characterize it.

Definition 1. The line length measure is defined as

R(S) = nB E (|L ∩ S|1) , S ⊂ R2,

where | · |1 is the Lebesgue measure in 1D and L is a line
of the BLP. The corresponding radial density is

ρ(r) = lim
u→0

R
(
B((0, 0), r + u) \ B((0, 0), r)

)
π (2u+ u2)

.

The line length measure follows by integrating ρ(r), i.e.,
R(S) =

∫
S
ρ(|x|) dx, S ⊂ R2. In order to study the line

length density, we first determine the expected total length
of chords in a disk, i.e., its line length measure as defined
above.

Theorem 3. For a BLP generated by nB lines within a disk
of radius R,

ρ(r)=

{
nB

2R , if r ≤ R
nB

πR arcsin
(
R
r

)
if r > R.

Proof. Let S = B ((0, r0), t). We have

R(S) = E
[
KL̄1

]
= L̄1E [K]

(a)
= L̄1nB

(
AD(r0, t)

2πR

)
,

(6)
where K is the number of lines intersecting disk
B ((0, r0), t) and L̄1 is the expected length of the chord
formed by a single line in the disk S. Step (a) fol-
lows from the expectation of the binomial distribution. For
B ((0, r0), t), L̄1 is evaluated as

L̄1 =
1

AD(r0, t)

∫∫
AD

2
√
(t2 − (r0 cos θ − r)2) drdθ,

where AD(r0, t) is obtained from (2).
Consider concentric circles centered at the origin having

radii l = {w, 2w, . . .}, where R is an integer multiple of



Fig. 1. Intersection density for R = 50 and nB = 10.

w. The annuli formed by these concentric circles have equal
width w. Using (6), the ratio of the average length of line
segments to the area in the i−th annulus, denoted by ρi(w)
is

ρi(w) =

nB

2R ; for (i+ 1)w ≤ R,

nB

πw2(2i+1)

(√
(i+ 1)2w2 −R2+(

arcsin
(

R
(i+1)w

)
× (i+1)2w2

R

)
−
√
i2w2 −R2−(

arcsin
(

R
iw

)
× i2w2

R

))
; for (i+ 1)w > R.

(7)

Leveraging this, we can characterize the line length density
of the BLP as a limiting function of the density in annuli.
Precisely, the statement of the theorem is obtained by
substituting iw = r and taking the limit w → 0 in (7).

The density ρ(r) remains constant at nB

2R for r ≤ R and
then decreases as O(1/r) as r → ∞.

D. Intersection Density

Next, we characterize the point process formed by the
intersections of the lines of the BLP.

Theorem 4. The radial intersection density at a distance r
from the origin for a BLP generated by nB lines within a
disk of radius R is

ρ×(r)=

{
nB(nB−1)

4πR2 , if r ≤ R,
nB(nB−1)

4π2R2r

(
2r arcsin

(
R
r

)
− 2R

r

√
r2 −R2

)
if r > R.

Proof. Please see Appendix A.

In Fig 1 we see that intersection density first remains
constant and then scales as O

(
1
r

)
as r → ∞. By integrating

the intersection density, we get the intersection measure

R(S) =

∫
S

ρ×(|x|) dx, S ⊂ R2.

Remark 1. The intersection measure of R2, as expected, is

R× =

∫ 2π

0

∫ ∞

0

ρ×(r) r dr dθ =

(
nB

2

)
=

nB(nB − 1)

2
.

III. PROBABILITY GENERATING FUNCTIONAL

A. A Palm Measure

Next, we study the BLCP from the perspective of a
point of the process itself, using Palm calculus2. Let us
recall that for a PLCP ΦPLCP with λ as the density of
the points on the lines, we have P(ΦPLCP ∈ Y | o) =
P(ΦPLCP ∪ Φ0 ∪ {o} ∈ Y ), where Φ0 is a 1D PPP on a
line that passes through the origin. In other words, the Palm
distribution, i.e., conditioning on a point of the PLCP ΦPLCP

to be at the origin, is equivalent to adding (i) an independent
Poisson process of intensity λ on a line through the origin
with uniform independent angle and (ii) an atom at the origin
to the PLCP. Similarly, for a BLCP, conditioning on a point
to be located at x is equivalent to considering an atom at x, a
1D PPP on a line passing through x and a BLCP Φ! defined
on a BLP consisting of nB − 1 lines in the same domain.
Thus, the Palm measure of the BLCP can be expressed as
follows.

Lemma 1. For a BLCP Φ defined on a BLP P with nB

lines, we have

P (Φ ∈ Y | x ∈ Φ) = P
(
Φ! ∪ Φx ∪ {x} ∈ Y

)
, (8)

where Φx is a 1D PPP on a randomly oriented line that
passes through x.

The applications of the Palm measure will be evident in
the next section where we analyze a wireless communication
network. Prior to that, let us derive the PGFL of the shifted
and reduced point process by conditioning on the location
of the nearest point from the origin.

B. Probability generating functional of BLCP

Here, we characterize the PGFL of the BLCP Φ. In this
paper, we are interested in isotropic functions that depend
only on the distance of the points from the origin, i.e., we
consider functions of the form f(||x||).

Definition 2. Let x1 be the nearest point of a BLCP from
(0, r0). Then, the shifted and reduced point process is defined
as Φ′ = Φ− (0, r0)\{x1}.

The motivation for studying the properties of Φ′ in
the context of wireless networks is as follows; if the AP
locations are modeled as a BLCP, then Φ′ represents the
locations of the interfering APs from the perspective of a
user located at a distance r0 from the origin and connected
to an AP located at a distance ||x1|| from the user. The next
theorem characterizes the PGFL for the shifted and reduced
BLCP Φ′.

Theorem 5. For a shifted and reduced BLCP Φ′ = Φ −
(0, r0)\{x1} defined on a BLP with nB lines generated
within B((0, 0), R), the PGFL of a function f(r) = f(||x||),
conditioned on d1 = ||x1|| is given as

G(r0, f(·)) =
1

AD(r0, d1)
×

2In point process theory, the Palm probability refers to the probability
measure conditioned on a point of the process being at a certain loca-
tion [19].



∫∫
DB(0,d1)

exp

(
− 2λ

∫ ∞

√
d21−l2

1− f
(√

y2 + l2
)

dy

)
drdθ×

(
1

2πR

)nB−1
( ∫∫

DB(0,d1)

exp

(
− 2λ

∫ ∞

√
d21−l2

1−

f
(√

y2 + l2
)

dy

)
drdθ+∫∫

D\DB(0,d1)

exp

(
−2λ

∫ ∞

0

1− f
(√

y2 + l2
)

dy

)
drdθ

)nB−1

,

where l = r0 cos θ−r and d1 = ||x1|| is the distance to the
nearest point of Φ − (0, r0) from the origin. Consequently,
the PGFL of Φ′ is evaluated as Ed1 [G(r0, f(·))], where the
distribution of d1 is given by Corollary 1.

Proof. Please see Appendix B.

IV. APPLICATION - TRANSMISSION SUCCESS
PROBABILITY

In wireless networks, several performance metrics are
studied using the transmission success probability. It is
the complementary cumulative density function (CCDF) of
the signal-to-interference-plus-noise ratio (SINR) over the
fading coefficients and the spatial process of the locations
of the APs. In this section, we define and characterize this
metric using the results derived in the previous sections.

A. Success Probability - Definition

Let Φ be a point process containing points {xi} ⊂ R2,
i = 1, 2, . . ., and a test point at the origin, we can order
the points of Φ according to their distance from the origin.
The AP located at x1 is connected to the receiver at the
origin, following the nearest-AP association. Small-scale
fading takes place due to fluctuations of received power from
multiple reflecting paths. Multiplying the received signal
by a random variable h with exponential distribution with
parameter 1 [20] accounts for the impact of small-scale
fading. For a path-loss exponent α, the SINR ξ(r0) is

ξ(r0) =
ξ0||x1||−αh1

1 + ξ0
∑

x∈Φ\{x1} ||x||
−αhx

, (9)

where ξ0 is a constant that takes into account the transmit
power P , AWGN noise, path-loss constant, as well as the
transmit and receive antenna gains. We assume that this
parameter is the same for each transmit node. Typically,
the hx are independent of each other and identically dis-
tributed [20]. For the ease of notation, let us represent
||xi|| by dx. Now, the transmission success probability at
a threshold of γ is defined as the CCDF of ξ(r0) [20]:

pS(γ) = P[ξ(r0) > γ]. (10)

This represents the probability that an attempted transmis-
sion by the nearest AP located at x1 is decoded successfully
by the receiver at the origin. In what follows, we refer to
the transmission success probability as success probability.

B. Success probability for BLCP Locations of APs

The BLCP model is useful for examining the placement
of APs along city streets or industrial warehouses. The

network’s performance analysis depends on the location of
the test point, but since the BLP is isotropic, it only depends
on the distance from the center, not the orientation. We
can assume the test point is on the x-axis and analyze
the performance from the perspective of a point at (0, r0),
without loss of generality. Equivalently, we can consider the
receiver at the origin and study the statistics of the shifted
point process Φ− (0, r0). We assume the receiver connects
to the nearest AP, experiencing interference from all other
APs. In this case, the success probability is characterized as
follows.

Theorem 6. For the network where locations of the APs
are modeled as BLCP, the success probability for a receiver
located at (0, r0) is given by

pS(γ) = Ed1

exp( −γ

ξ0d1
−α

)
G

r0,
1

1 + γr−α

d−α
1

 ,

where G(r0, f(·)) is given by Theorem 5.

Proof. The success probability can be evaluated as

pS(γ) = P[ξ(r0) > γ] = P

[
ξ0d1

−αh1

1 + ξ0
∑

x∈Φ′ dx
−αhx

> γ

]

= P

[
h1 >

γξ0
∑

x∈Φ′ dx
−αhx + γ

ξ0d
−α
1

]

= E

[
exp

(
−γξ0

∑
x∈Φ′ dx

−αhx − γ

ξ0d
−α
1

)]

= Ed1

[
exp

(
−γ

ξ0d
−α
1

)
E!
x1,hx

[
exp

(
−γ
∑

x∈Φ′ d
−α
x hx

d−α
1

)]]
.

(11)

Here, E!
x1

refers to the expectation taken with respect to the
Palm probability of the shifted and reduced point process,
i.e., conditioned on a point of Φ − (0, r0) being located at
x1 and then removing it. The 1st term, exp

(
−γ

ξ0d
−α
1

)
, takes

into account the impact of the noise and thus only depends
on d1 and N0. The second term E!

x1,hx
[·], takes into account

the impact of the interference and can be further simplified

E!
x1,hx

[
exp

(−γ
∑

x∈Φ′ d−α
x hx

d−α
1

)]
= E!

x1

[
Eh1

[ ∏
x∈Φ′

exp

(
−γd−α

x hx

d−α
1

)]]

= E!
x1

[ ∏
x∈Φ′

[
Eh1

exp

(
−γd−α

x hx

d−α
1

)]]

= E!
x1

∏
x∈Φ′

1

1 + γd−α
x

d−α
1

 = G

r0,
1

1 + γr−α

d−α
1


Applying the PGFL from Theorem 5 gives

G

r0,
1

1 + γr−α

d−α
1

 =
1

AD(r0, d1)
×

∫∫
DB(0,d1)

exp

(
−2λ

∫ ∞

√
d21−l2

(
γ
[
y2 + l2

]−α
2

d−α
1 + γ [y2 + l2]−

α
2

)
dy

)
drdθ



(a) (b)

Fig. 2. (a) Success probability with respect to r0. Here R = 50. (b) E
[
d1
d2

]
with respect to r0.

(
1

2πR

)nB−1
( ∫∫
DB(0,d1)

exp

(
− 2λ

∫ ∞

√
d21−l2(

γ
[
y2 + l2

]−α
2

d−α
1 + γ [y2 + l2]−

α
2

)
dy

)
drdθ+∫∫

D\DB(0,d1)

exp

(
− 2λ

∫ ∞

0(
γ
[
y2 + l2

]−α
2

d−α
1 + γ [y2 + l2]−

α
2

)
dy

)
drdθ

)nB−1

.

Employing the above in (11) completes the proof.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we discuss some numerical results to high-
light the applications of the derived framework in analyzing
the wireless network. Unless otherwise stated, all results are
for R = 50, α = 2, ξ0 = 2.9858 · 10−8 and, γ = 0.1 dB.

A. On the Success Probability

In Fig. 2a, we plot the success probability with respect
to r0 for different values of λ and nB. We observe that the
success probability first increases slightly with r0, reaches a
maximum, and starts decreasing. To delve deeper into this
phenomenon, we plot the expected value of the ratio of the
distance from the nearest BLCP point to the distance of the
second nearest BLCP point with respect to r0 in Fig. 2b. In
case the majority of the interference power is contributed by
the nearest interferer, this parameter acts as a good indicator
of the success probability. We note that the value of E

[
d1

d2

]
decreases with r0 at first, reaches its minimum value near
r0 = R and increases beyond that. This indicates that as we
move away from the city center, although both the serving
AP and the interferers become statistically distant from the
test point, the relative increase in d1 is higher as compared
to the relative increase in d2 with r0. Such an insight for
urban networks, in case the streets follow a BLCP cannot
be obtained with PLCP models (also shown in Fig. 2b for
different densities).

Next, consider a simple ALOHA access scheme where
each interfering AP transmits with a probability p [21].
The success probability is obtained by weighting each
interference term by the probability of the corresponding

node transmitting. Fig. 3 plots the success probability w.r.t.
location of AP for different values of λ, transmit power P ,
and transmission probability p. We see that for P = 0.01,
and lower values of λ ≤ 0.01 success probability decreases
as r0 goes from the city center to the outskirts irrespective
of the value of p. However, for λ ≥ 0.05, an optimum
distance exists from the center where the success probability
is maximum. The success probability for λ = 0.001 shows
a varying trend for different transmit power values and
transmission probability. When P = 0.01 and p = 0,
λ = 0.001 results in the minimum success probability for
all values of r0. However, for P = {1, 10} and p = 1,
we observe the highest success probability for some initial
values of r0. The reason behind this is that a lower value
of p leads to lower interference power. In this case, a lower
density results in the serving AP being farther from the user,
leading to poor success probability. Conversely, for a higher
value of p, a lower value of λ proves beneficial to have fewer
interferers near the user.

B. Optimal Network Parameters

In Fig. 4a-4c, we plot the success probability with respect
to λ and nB respectively for different values of r0. We
observe that an increase in the number of lines may increase
or decrease the success probability depending on the location
of the test device and the density of deployment. Particularly
in Fig. 4a, a higher density of APs is favorable in a scenario
with dense streets i.e. nB = 20 as compared to nB = 10.
Thus, based on the location of the test device, there may
exist an optimal deployment density of the APs. Fig. 4a
shows that as λ increases the success probability decreases,
due to the increase in interference, after a certain λ value,
more streets provide a higher success probability than fewer
streets. Similarly, in Fig. 4c, we observe that nB maximizes
the success probability for a given r0 and λ. For high values
of λ, the success probability increases with nB and then
decreases. Whereas the the success probability decreases
with nB for smaller values of λ. In Fig. 5 we plot the optimal
value of λ versus the transmit power P for which the success
probability is maximized for two different locations of test
point i.e. r0 = 0 and 200. We see that optimal λ decreases as
P increases, indicating the relative reduction in deployment
realizes an optimal success probability in the case of higher



Fig. 3. Success probability for α = 4 and different values of λ, power P and transmission probability p.

(a) (b) (c)

Fig. 4. (a) Success probability with respect to the density of APs. (b) & (c) Success probability with respect to nB.

transmit powers. We also see that asymptotically optimal λ
converges for r0 = 0 and 200, thus indicating at higher P
values, lower λ is desired regardless of whether the user is
at the city center or outside the city.

VI. CONCLUSIONS AND FUTURE WORK

We have characterized the binomial line Cox process
(BLCP) which takes into account the non-homogeneity of
lines in a Euclidean plane. Although there are several line
processes studied in the literature, none of the existing
models take into account the non-homogeneity of the lines.
This is a drawback of the existing models since practical
problems e.g., wireless network planning or transport in-
frastructure planning needs to deal with non-homogeneous
streets in a city. We derive the line length density that help us
visualize varying street densities. We also derive probability
generating functional of the BLCP, and used it to analyze
the transmission success probability in a wireless network.
Then, we have provided extensive numerical results to
derive system design insights for such network deployments.
We envisage that the statistical model developed in this
paper will be employed in the study of practical problems
involving urban street planning. The shortest path length and
non-homogeneous PLCP are indeed interesting directions of
research, which will be taken up as future work.

Fig. 5. Optimal λ versus transmit power. Note, here α = 4.
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APPENDIX A
PROOF OF THEOREM 4

Consider a BLP line, L0, that is generated at the point
(0, r0) where 0 ≤ r0 ≤ min{t, R}, ans let S = B ((0, 0), t).
The domain band D× is determined by the intersection
within S of L0 and all Li ∈ L lines. The range of r for
a given θ where the generated line intersects (0, r0) within
S is

max

{
−R,

(
r0 cos θ −

√
t2 − r20 sin θ

)}
≤ ri ≤

min

{
R,

(
r0 cos θ +

√
t2 − r20 sin θ

)}
.

For t > R, the domain band gets clipped to R and −R in
the upper and lower limits, thus the area of the domain band
for these two cases i.e. t ≤ R and t > R can be derived as
follows.

Case 1: t ≤ R. The domain band’s area is averaged for
uniformly distributed r0 values between 0 and t. As S ⊂
B((0, 0), R), there is no clipping in the values of r.

Case 2: t > R. Here B((0, 0), R) ⊂ S. Accordingly, the
values of r are limited to R and −R. The values of θ for
which r are clipped are obtained by solving for θ in the
equations r0 cos θ −

√
t2 − r20 sin θ = −R and r0 cos θ +√

t2 − r20 sin θ = R, respectively. Thus, within these limits
of θ, the area of the domain band for a line to intersect the
line L0 within S is

AD×(t) =


πt; if t ≤ R,
2
R

(
t2 arcsin

(
R
t

)
+

2R2 arccos
(
R
t

)
−
√
t2 −R2

)
; if t > R.

Accordingly, the probability that a line intersects a single
line within S is obtained as P×(t) =

AD× (t)

2πmin{t,R} . Now,
let us assume that k lines are generated in S. Each of these
intersects L0 with probability P×(t). As a result, the average
number of intersections on L0 within S from the k lines is

N ′ =

k∑
j=0

j

(
k

j

)
(P×(t | t ≤ R))j (1− P×(t | t ≤ R)k−j =

k

2
.

Finally in order to determine the average number of in-
tersections on all the lines within S, we take the expectation
over the number of lines are generated within S. This is
evaluated as

N1 =

nB−1∑
k=0

(
nB

k + 1

)(
t

R

)k+1(
1− t

R

)nB−k−1

×

k

2
× (k + 1)× 1

2
=

nB(nB − 1)

4

(
t

R

)2

.

If t > R, nB lines are generated, so the average number
of intersections on all lines is determined similarly as

N2 =

nB−1∑
k1=0

k1P×(t | t > R) =
nB(nB − 1)

2πR2

(
t2 arcsin

(
R

t

)
+

R

(
2R arccos

(
R

t

)
−
√

t2 −R2

))
.

Thus, the average number of intersections within a disk of
radius t centered at the origin is

N =



nB(nB−1)
4

(
t
R

)2
; if t ≤ R,

nB(nB−1)
2πR2

(
t2 arcsin

(
R
t

)
+

R
(
2R arccos

(
R
t

)
−
√
t2 −R2

))
; if t > R.

(12)
Consider concentric circles centered at the origin with radii
l = {w, 2w, . . . }. Equation (12) calculates the ratio of
the average number of intersections to the area of i−th
annulus which will help us to determine the intersection
radial density.

ρ×,i(w) =





1
πw2(2i+1)

(
nB(nB−1)

4
×(

(w(i+1))2

R2 − (wi)2

R2

))
; for (i+ 1)w ≤ R,

nB(nB−1)

2π2R2w2(2i+1)

(
(i+ 1)2w2 arcsin

(
R

(i+1)w

)
+

2R2 arccos
(

R
(i+1)w

)
−R

√
(i+ 1)2w2 −R2−

i2w2 arcsin
(

R
iw

)
− 2R2 arccos

(
R
iw

)
+

R
√
i2w2 −R2

)
; for (i+ 1)w > R.

The final result of the intersection radial density of a BLP
can be obtained by substituting iw = r and taking the limit
w → 0 in the equation above.

APPENDIX B
PROOF OF THEOREM 5

Let f(r) be a positive, measurable, monotonic, and
bounded function for the first part of the proof. Here we will
find the PGFL of the restricted point process Φ′∩B((0, 0), t).
The theorem follows from the monotone convergence theo-
rem with t → ∞. Recall that for a PPP of intensity λ and a
function ν(·), the PGFL is [22]:

GPPP = exp

(
−λ

∫
Rd

(1− ν(x)) dx

)
. (13)

Next, note that the distance of a BLP line Li corresponding
to the generating point (r, θ) in D from the origin in R2 is
|r0 cos θ − r| and let l = r0 cos θ − r. A point located at
a distance y from the perpendicular projection of (0, r0) to
Li, has a distance

√
y2 + l2 from (0, r0). The length of the

chord is 2
√
t2 − l2 when t ≥ |r0 cos θ − r|.

G1(r0, r, θ)

= lim
t→∞

exp

(
− 2λ

∫ √
t2−l2

0

1− f
(√

y2 + l2
)
dy

)
(a)
= exp

(
−2λ

∫ ∞

0

1− f
(√

y2 + l2
)
dy

)
,

where step (a) is due to the monotone convergence theorem.
We can categorize each line in Φ′ into two groups: (1) those
that intersect with B((0, 0), d1) and (2) those that do not.
For a particular r0 and d1, a line is intersecting if |r0 cos θ−
r| ≥ d1 and non-intersecting otherwise. By averaging over
(r, θ) ∈ D, we can express the PGFL of each group as

GI(r0, d1) =
1

AD(r0, d1)
×∫∫

DB(0,d1)

exp

(
−2λ

∫ ∞

√
d21−l2

1− f
(√

y2 + l2
)

dy

)
drdθ,

GNI(r0, d1) =
1

(2πR−AD(r0, d1))
×∫∫

D\DB(0,d1)

exp

(
−2λ

∫ ∞

0

1− f
(√

y2 + l2
)

dy

)
drdθ.

Next, note that the line containing the nearest point of
the BLCP intersects the disk B((0, 0), d1) almost surely.
Whereas, the other nB − 1 lines may or may not intersect
the disk. Thus, the PGFL for Φ− (0, r0) is evaluated as

G(r0, f(·))

(a)
= GI(r0, d1)︸ ︷︷ ︸

T1

nB−1∑
n=0

(
nB − 1

n

)[(
AD(r0, d1)

2πR
×GI(r0, d1)

)n

︸ ︷︷ ︸
T2

×
((

1− AD(r0, d1)

2πR

)
×GNI(r0, d1)

)nB−n−1

︸ ︷︷ ︸
T3

]

(b)
= GI(r0, d1)

(
1

2πR

)nB−1 (
AD(r0, d1) GI(r0, d1)+

(2πR−AD(r0, d1)) GNI(r0, d1)
)nB−1

.

In step (a), the term T1 corresponds to the line containing
the nearest point. The term T2 corresponds to the probability
that a set of n lines intersect the disk and the conditional
PGFL given that the lines intersect the disk. The term T3

corresponds to the probability that a set of nB −n− 1 lines
do not intersect the disk and the conditional PGFL given
that the lines do not intersect the disk. The statement of the
theorem follows from the above.


