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Abstract—We consider a network where each route comprises
a backlogged source, a number of relays and a destination at a
finite distance. The locations of the sources and the relays are
realizations of independent Poisson point processes. Given that
the nodes observe a TDMA/ALOHA MAC protocol, our objective
is to determine the number of relays and their placement such
that the mean end-to-end delay in a typical route of the network
is minimized. We first study an idealistic network model where all
routes have the same number of hops, the same distance per hop
and their own dedicated relays. Combining tools from queueing
theory and stochastic geometry, we provide a precise character-
ization of the mean end-to-end delay. We find that the delay
is minimized if the first hop is much longer than the remaining
hops and that the optimal number of hops scales sublinearly with
the source-destination distance. Simulating the originalnetwork
scenario reveals that the analytical results are accurate,provided
that the density of the relay process is sufficiently large. We
conclude that, given the considered MAC protocol, our analysis
provides a delay-minimizing routing strategy for random, multi-
hop networks involving a small number of hops.

I. I NTRODUCTION

The premise of multi-hop transmission is that, for a given
power, a larger received signal-to-interference-and-noise-ratio
can be achieved on a per hop basis, compared to transmitting
directly to the final destination. This implies a higher packet
success probability and/or information rate per hop. However,
as argued in [1], a large number of short hops does not
necessarily result in a smaller end-to-end packet delay. On
the contrary, each node that is added between the source and
the destination is also the cause of additional delay since a
packet has to be decoded, re-encoded and wait in the queue
before it is successfully transmitted to the next node.

The purpose of this paper is to conduct a systematic study of
the end-to-end delay performance in a wireless network, taking
into account the fading and interference associated with wire-
less transmissions. We consider a network that consists of a
population of backlogged sources, each with a destination at a
finite distanceR, and a population of relays, that are employed
to forward the source packets to their respective destinations.
The locations of the sources and the relays are randomly drawn
according to independent Poisson point processes. For the sake
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of analysis, we initially simplify this model and assume that
each route has the same number of hops, the same distance per
hop and its own dedicated relays. Given that the nodes observe
a TDMA/ALOHA MAC protocol, we use well established
tools from stochastic geometry and queueing theory, in order to
evaluate the mean end-to-end delay and throughput in a typical
route. Our analytical findings are then tested by simulatingthe
original network setting.

A. Previous work

This work bridges the gap between two existing research
directions. In the first one [2]–[5], a single hop of a multi-
hop route is studied, under the implicit assumption that the
destination lies somewhere at an infinite distance. Single-
hop metrics are devised and evaluated such as the expected
progress [2], [6], i.e., the product (packet success probability)
× (hop length), defined for a given spatial density of trans-
mitters, which reflects the reliability/forward-progresstrade-
off; and the transmission capacity [3], [7], i.e., the maximum
allowable network throughput, defined for a given hop length,
such that a constraint on the packet success probability is
satisfied. In the second body of work [8]–[10], a well defined
route is considered, where the distance to the final destination
and the number of relays are specified. However, the impact
of interference from other transmissions in the network is not
taken into account. A step in the study of random multi-hop
networks is made in [11], where the benefits of opportunistic
vs. shortest-path routing are evaluated.

B. Contributions

Assuming that the network reaches a stationary regime, we
derive closed-form expressions for the mean end-to-end delay
and throughput in a typical route of the network. It is found
that the delay is minimized if the first hop is much larger
than the remaining hops, e.g., in a delay-optimized three hop
route, the first hop can cover half the total distance. More-
over, we demonstrate that the optimal number of hops scales
sublinearly with the source-destination distance. Simulations
are performed with the original network model, where the
relays of each route are selected out of a random population,
according to the above guidelines. The simulation confirms the
validity of the analysis for a sufficiently large relay density and



TABLE I: Commonly used symbols
Symbol Meaning

p source and relay transmission probability
λ density of sources
λr density of relays
R source-destination distance
N number of hops
ps

n
success probability over hopn

rn distance of hopn

that departure from the design guidelines leads to significant
delay penalties.

II. SYSTEM MODEL

A. Network setting

We consider a network composed of an infinite number of
backlogged sources, each with a destination at a finite distance
R and a random orientation, and an infinite population of
relays. The locations of the sources and the relays are drawn
independently according to spatially homogeneous Poisson
point processes of densitiesλ andλr , respectively. A route in
the network consists of a source, a finite number of relays that
forward the source packets, and a final destination (see Fig.1).

Each node has an infinite queue, where packets that are
received from the previous node in the route can be stored
in a first-in, first-out fashion. Time is divided into packet
slots. Within a route, a TDMA/ALOHA protocol is observed,
according to which a node is allowed to transmit everyN
slots with probabilityp. A packet is received successfully by
a node, if the SIR in that slot is above a target thresholdθ. If it
is not, the transmitting node is informed via an ideal feedback
channel and the packet remains at the head of its queue until
the node gets another opportunity to transmit. Note that this
MAC protocol is tailored to routes with a relatively small
number of hops, as it results in no intra-route interference
[10].

The network operation starts at some arbitrary time, with an
arbitrary number of packets in each queue. For convenience,
we assume that different routes are synchronized at the slot
level and that the node of each route which is first allowed to
transmit is selected with probability1/N . Since the population
of relays is common, there is a possibility that, at a given slot,
a relay has to be used, either for transmission or reception,by
more than one routes. We assume that the conflict is resolved
arbitrarily.

The analysis of the network model described above is
complicated by the fact that the number of relays and their
placement differ across routes, as well as the fact that routes
might intersect. In order to simplify the model, we let each
route in the network have the same number of hopsN , the
same distance per hoprn, n = 1, . . . , N , and its own set of
relays. The design guidelines that stem from the analysis ofthe
idealized model are then used to route packets in a simulation
of the original realistic network.

B. Physical layer

The channel between two nodes at distancer includes
Rayleigh fading - with a coherence time of one slot - and path-
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Fig. 1: A network realization (λ = 10−4 sources/m2, λr = 3λ,
R = 800 m andN = 4). Sources are denoted by circles, relays
by diamonds and destinations by x’s. Only10% of the nodes
and a few routes are shown in order to avoid cluttering the
figure.

loss according to the lawr−b, whereb > 2 is the path-loss
exponent. We consider an interference-limited setting, where
thermal noise is assumed to be negligible and all nodes have
the same transmit power, which is normalized to one. The
signal-to-interference-ratio (SIR) at thenth hop of a typical
route is therefore

SIRn =
Anr−b

n
∑

i∈Φn
Bid

−b
i

, n = 1, . . . , N (1)

where rn is the distance of thenth hop; An is the fading
coefficient between the transmitting and receiving node and
exponentially distributed with unit mean;Φn is the process
of interfering nodes over hopn; di is the distance between
interfering nodei and the receiver andBi is the respective
fading coefficient, also exponentially distributed with unit
mean.

The probability of successful packet reception at thenth

hop is defined asps
n = P(SIRn > θ). The following result

provides an expression forps
n, when Φn is a homogeneous

Poisson point process.
Lemma 1 (Corollary 3.2 [5]): Given the definition ofSIRn

in (1) and thatΦn is a homogeneous Poisson point process
with densityλn

ps
n = e−λncr2

n , (2)

wherec = Γ(1 + 2/b)Γ(1 − 2/b)πθ2/b and Γ(x), x > 0, is
the gamma function.

C. Network metrics

The metric of interest is the mean end-to-end delayD, i.e.,
the mean total time (in slots) that it takes a packet to travel
from the source to the destination in a typical route. Assuming
negligible propagation times,D is the sum of the meanwaiting
times and service times along the queues of the route. The



waiting time at a given node is measured starting from the
moment a packet arrives at that node’s queue, till it becomes
the head-of-line packet, i.e., all packets in front of it have been
successfully transmitted to the next node. The service timeis
measured from the moment a packet reaches the head of the
queue, till it is successfully received by the next node and
includes the access delay associated with the MAC protocol.

In addition to the delay, a metric of interest is the Route
Throughput (RT), defined as the expected number of packets
successfully delivered to the destination per slot. The respec-
tive Network Throughput (NT) is then defined asNT = λRT.

III. A NALYSIS

To begin our analysis, we assume that, under certain condi-
tions which will be discussed in Section III-C, the queues
approach a stationary behavior in the long run. Moreover,
due to the randomness and symmetry present in our network
model, we assume that, in this stationary regime, successful
packet transmissions over thenth hop of the typical route
are independent events that occur with probabilityps

n. The
latter assumption allows us to use (2) in order to derive a
set of fixed-point equations that provide solutions for the
success probabilities{ps

n}N
n=1. Our approach is reminiscent

of [12], where a decoupling approximation was made in order
to analyze the performance of the IEEE 802.11 protocol for
wireless local area networks.

In the first part of this section, we use tools from queueing
theory in order to express the mean delay as a function ofp
and{ps

n}N
n=1. In the second part, we evaluate{ps

n}N
n=1.

A. Queueing analysis

Assume that we are looking at the queue of the first relay.
A packet arrival occurs at the end of slotmN, m ∈ Z, if
the source transmitted in that slot and the transmission was
successful. The probability of this happening ispI = pps

1.
Provided that the queue is not empty, at the beginning of slot
1 + mN , a packet departs from the head of the queue with
probability pO = pps

2. This procedure is repeated everyN
slots.

Modeling the queue of the relay as a Random Walk , whose
state is the number of packets in the queue at the end of slot
mN , we can derive the steady-state probability of being in
statek [13]. The mean waiting time at the first relay,Q1, can
then be computed by Little’s theorem, as the average queue
size, excluding the head-of-line packet, divided by the arrival
rate, in this casepI/N . The resulting expression is

Q1 = N
pI

pO

1 − pO

pO − pI
.

It is also straightforward to show that the service time for the
head-of-line packet is

H1 = N

(

1

pO
− 1

)

+ 1,

so the total time in the queue of the first relay is

Q1 + H1 = N
pI

pO

1 − pO

pO − pI
+

N

pO
− N + 1

= N
1 − pI

pO − pI
− N + 1. (3)

If the queue of the first relay is stable, i.e.,ps
1 < ps

2, the
packet arrival probability to the second relay ispps

1. In fact,
as long as all intermediate queues are stable, i.e.,ps

1 < ps
n,

n = 2, . . . , N , the packet arrival probability to relayn is pps
1.

We can thus calculate the total time in the queue of relayn
by settingpI = pps

1 andpO = pps
n in (3).

Adding the service time at the source and the total times at
the queues ofN − 1 relays, the mean end-to-end delay for a
packet at the head of the source queue,D, is found to be1

D =
N

pps
1

+ N

N
∑

n=2

1 − pps
n

pps
n − pps

1

. (4)

Since a packet is received by the destination everyN slots
with probability pps

1, the route throughput isRT = pps
1/N .

B. Evaluation of packet success probabilities

The following facts are useful and are stated without proof.
Fact 1: The Lambert function,y = W (x), is the unique

solution to the equationyey = x, x ≥ −e−1 andy ≥ −1.
Fact 2: The functiong(x) = xeµx, µ > 0, x ≥ 0, is con-

tinuous and strictly increasing. The equationy = g(x), µ >
0, x, y ≥ 0, has a unique solutionx1 = W (µy)/µ.

Under the assumption that packet success events are in-
dependent across routes, the queue of relayn of the typical
route is not empty at the beginning of its assigned slot with
probability ps

1/ps
n, hence the relay transmits a packet with

probabilitypps
1/ps

n. As a result, the interfering nodes over hop
n constitute a homogeneous Poisson point process with density

λn =
λp

N
+

λp

N

N
∑

k=2

ps
1

ps
k

,

where the first term represents the transmitting sources, while
the second term represents the total population of transmitting
relays. From Lemma 1,ps

n satisfies the fixed-point equation

ps
n = e

−
λ
N

p

„

1+
P

N
k=2

ps
1

ps
k

«

cr2

n

, n = 1, . . . , N. (5)

Eq. (5) illustrates the coupling effect between concurrent
transmissions in a wireless network. The packet success prob-
abilities depend on the interference level in the network and
vice versa.

The solution of (5) over{ps
n}N

n=1 for general values of
r1, . . . , rN appears complicated. However, ifr2 = · · · = rN ,
i.e., hops2, . . . , N are equidistant, we haveps

2 = · · · = ps
N

and (5) results in

ps
n = e

−
λ
N

p
“

1+(N−1)
ps
1

ps
n

”

cr2

n , n = 1, 2. (6)

1Since the sources are backlogged, the only meaningful way todefine the
end-to-end delay is for a packet at the head of the source queue.



Dividing the two expressions and arranging terms

ps
1

ps
2

e
λ
N

(N−1)pc(r2

1
−r2

2
)

ps
1

ps
2 = e−

λ
N

pc(r2

1
−r2

2
). (7)

By Fact 2, (7) has the following unique solution with respect
to ps

1/ps
2

ps
1

ps
2

=
W

(

λ
N (N − 1)pc(r2

1 − r2
2)e

−
λ
N

pc(r2

1
−r2

2
)
)

λ
N (N − 1)pc(r2

1 − r2
2)

. (8)

Substituting (8) in (6), the solutions forps
1, p

s
2 can be obtained.

The following proposition is quite straightforward to prove
and shows that settingr2 = · · · = rN minimizesD.

Proposition 1: The mean delay, given by (4), is minimized
when the relays are placed on the line between the source and
the destination andr2 = · · · = rN = R−r1

N−1 .
Proof: See [13].

C. A discussion on stability

In the preceding subsections, we evaluated the mean end-
to-end delay over a typical route, based on the assumptions
that the queues approach a stationary behavior in the long run
and that packet successes are independent across routes. The
latter assumption is justified when the probability of random
accessp is sufficiently small [14].

Determining if and under what conditions the network
attains a stationary regime, i.e., it is dynamically stable[5], is
a complicated problem, as transmissions interfere with each
other, creating couplings between different queues. However,
we can determine conditions under which the network is rate
stable, i.e., the queue backlogs remain finite over time. It is
known that rate stability is a necessary condition for dynamic
stability of the network [15].

It is quite easy to see that a necessary condition for rate
stability is r1 > rn, n = 2, . . . , N . Indeed, assuming that all
the relay queues in the network are backlogged, they are rate
stable if

pe−λpcr2

1 < pe−λpcr2

n , n = 2, . . . , N,

or, equivalently,r1 > rn, n = 2, . . . , N . This condition can
also be deduced by demanding that the denominators in (4)
are greater than zero. We now propose a sufficient condition
for rate stability.

Proposition 2: The relay queues are rate stable ifr1 >√
Nrn, n = 2, . . . , N .

Proof: Since the sources are backlogged, the success
probability in the first hop is the largest when no potential
interfering relay has a packet to transmit. From (2), an upper
bound to the success probability in the first hop is thus
p̄s
1 = e−

λ
N

pcr2

1 . Similarly, the success probability in the second
hop is the smallest when all nodes that are potential interferers
in the second hop have packets to transmit. In this case,
the density of interferers isN−1

N λp + 1
N λp = λp and a

lower bound to the success probability in the second hop is
ps
2

= e−λpcr2

2 . A sufficient condition for the stability of the

first relay queue is thereforēps
1 < ps

2
. Definingps

n
= e−λpcr2

n

as the lower bound to the success probability of hopn,
n = 2, . . . , N , a set of sufficient conditions for the stability
of all relay queues is

p̄s
1 < ps

n
⇔ r1 >

√
Nrn, n = 2, . . . , N.

The factor
√

N is the result of the considered worst-case
scenario, according to which the density of interferers in hop
n is N times larger than the density of interferers in the first
hop. Since packets arrive at the queues of the initially empty
relays with positive probability, the packet arrival probability
to the backlogged relays is expected to progressively decrease
due to increasing interference. For this reason, it appearsthat
Proposition 2 may be far from necessary. We conjecture that
the conditionr1 > rn, n = 2, . . . , N , is also sufficient for the
rate stability of the relay queues, which is corroborated byour
simulation results in Section IV.

IV. N UMERICAL RESULTS

In this section, we present analytical and simulation results
with parameter valuesλ = 10−4 sources/m2, b = 4 and
p = 0.05. Since our analysis determines the mean delay over
a typical route, in the simulation, the delay is evaluated as
an average over time, over different routes, as well as over
different network realizations. The simulated network size is
5000 × 5000 m2, which on the average yields2500 sources
(and routes). In order to alleviate the impact of edge effects,
metrics are collected only for routes with sources inside an
inner square of size1100×1100 m2. The desired placement of
the relays is determined by Proposition 1. Routing in each hop
is performed by selecting the relay closest to and to the right of
the respective desired point. As a result, routes with a smaller
number of hops than that theoretically specified may exist in
the network. The average end-to-end delay is calculated over
those routes as well.

In Fig. 2,D is plotted vs.R for different numbers of hops.
For eachN , the distance of the first hopr1 is determined such
that (4) is minimized. GivenR, an optimal number of hops
exists that minimizesD. Moreover, the distance between the
switching points (values ofR for which N and N + 1 hops
yield the same delay) progressively increases, which points to
a sublinear relationship betweenN andR (Fig. 6). Also note
that the optimal total service time, plotted with a dashed line,
provides a rather tight lower bound to the optimal end-to-end
delay. This demonstrates that, for optimally placed relaysand
selectedN , the total waiting time along the route is quite small
compared to the service time.

The simulation results, shown with points, correspond to
a relay densityλr = 2(N − 1)λ. We observe that, in the
range ofR for which a given number of hops is optimum, the
match between the theoretical and simulated delay values is
satisfactory. AsR increases, the average number of crossings
between routes increases, so the discrepancy between theory
and simulation becomes larger. We confirm that the discrep-
ancy decreases with increasing relay density in Fig. 3. The
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Fig. 2: D vs. R, for N = 1, . . . , 5. The dashed line shows the
optimal end-to-end service time. Simulation points are shown
for λr = 2(N − 1)λ.

value (N − 1)λ is considered the minimum required relay
density, as a route withN hops employsN − 1 relays.

In Fig. 4, we plot the simulated success probability in the
first hop as a function of time, for a few randomly selected
routes. The parameter values areR = 500 m, N = 3 and
λr = 2λ. After a transient period, the time traces settle into
their stationary values, which are close to, but smaller than
the theoretical valueps

1 = 0.18, computed by (6). This is due
to the fact that the actual relays are situated close to but not
exactly at the optimal positions.

In Fig. 5, we explore the sensitivity of the delay to the
placement of the first relay, for three different pairs of val-
ues (R, N). The curves correspond to the theoretical delay
obtained by (4). The simulation confirms the validity of the
analysis for a relay densityλr = 2(N − 1)λ. The discrepancy
at r1 = 450 m for R = 500 m is explained by the existence of
a large number of two-hop routes in the network, for which the
delay is very large, as the - only - relay is placed very close to
the destination. Note that the delay is minimized if the distance
of the first hop is significantly larger than the distance of the
remaining hops, i.e., the optimalr1 for R = 500 m (N = 3)
is approximately250 m, i.e., half the total distance, while the
optimal r1 for R = 1000 m (N = 5) is 350 m, i.e., about a
third of the total distance. The presence of an optimalr1 is
explained as follows: whenr1 → R, ps

2 → 1 and the service
time at the source dominates the delay; on the other hand, as
r1 → R/N , i.e., all hops tend to become equidistant,ps

2 → ps
1

and the queueing delay at the relays obtains very large values,
e.g., anr1 approximately100 m short of the optimal value
results in a large delay penalty.

In Fig.6 we plot the optimal number of hops as a function
of R. It is seen that this number scales sublinearly withR;
specifically, we find thatN ≈ η1R

0.74, where η1 > 0 is
determined by the sublinear fit. We can also verify that the
optimal distance for the first hop also scales sublinearly with
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R, i.e., r1 ≈ η2R
0.43, η2 > 0, and that asR increases,ps

2

approaches a constant valuep̃s
2 ≈ 0.55, while ps

1 progressively
decreases [13]. As a result, solving (6) overps

1 for large values
of R, we have the following approximation

ps
1 ≈ p̃s

2

W
(

λpcr2

1

p̃s
2

e−
λpc

N
r2

1

)

λpcr2
1

.

From Fig. 2, the optimal mean end-to-end delay can be
approximated by the total service time so, for largeN ,

D ≈ λcr2
1N

p̃s
2W

(

λpcr2

1

p̃s
2

e−
λpc

N
r2

1

) + N2

(

1

pp̃s
2

− 1

)

. (9)

Taking into account thatp ≪ 1, we have

D ≈ λcη1η
2
2R1.6

p̃s
2W

(

η3η1

p̃s
2

R0.74
) +

η2
1R

1.48

pp̃s
2

, (10)
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where η3 ,
λpcr2

1

N e−
λpcr2

1

N ≤ e−1. SinceW (x) = O(lnx)
for x → ∞, it also holds thatW (x) = O(x). Moreover,
W (x) = Ω(1). As a result, the first term in (10) isΩ(R0.86)
andO(R1.6). The superlinear scaling ofD with R in (10) is
a result of the scaling of the optimalr1 with R, as well as the
TDMA nature of the MAC protocol, i.e., the constraint that a
node is allowed to transmit only once everyN slots. These
scaling results indicate that the MAC protocol is tailored to a
small number of hops and, asR increases, intra-route spatial
reuse should be considered.

As a final side note, sinceR is present in every expression
in the productλcR2, for a givenR, we also conclude that the
optimal number of hops scales with(

√
λc)0.74 or (λc)0.37.

V. CONCLUDING REMARKS

We conducted an analytical and simulation study of random,
interference-limited, multi-hop networks. We first evaluated
the mean end-to-end delay using an idealized network model
and obtained the optimal placement of the relays and number
of hops such that the delay is minimized. We then employed
these design insights in order to perform routing in a realistic
network environment, where the relays are picked from a
random population. The simulation results confirmed that
significant gains in terms of delay can be achieved, if routing
is performed according to the optimal hopping distances
indicated by the analysis. Moreover, we demonstrated that
departure from these guidelines can lead to substantial delay
penalties.

In conclusion, we view this work as a first step in un-
derstanding the end-to-end performance in random networks.
Extending our analysis in order to accomodate varying source-
destination distances, intra-route spatial reuse, or morecom-
plicated MAC/scheduling protocols, as well as providing a
framework for a dynamical network analysis are all interesting
topics for future research.
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