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Abstract—In a wireless network the set of transmitting nodes
changes frequently because of the MAC scheduler and the traffic
load. Analyzing the connectivity of such a network using static
graphs would lead to pessimistic performance results. In this
paper, we consider an ad hoc network with half-duplex radios
that uses multihop routing and slotted ALOHA for the network
MAC contention, and introduce a random dynamic multi-digraph
to model its connectivity. We first provide analytical results about
the degree distribution of the graph. Next, defining the path
formation time as the minimum time required for a causal path to
form between the source and destination on the dynamic graph,
we derive the distributional properties of the connection delay
using techniques from first passage percolation and epidemic
processes. We show that the delay scales linearly with the distance
and provide asymptotic results (with respect to time) for the
positions of the nodes which are able to receive information from
a transmitter located at the origin. We also provide simulation
results to support the theoretical results.

I. INTRODUCTION
In a multihop ad hoc network, bits, frames or packets

are transferred from a source to a destination in a multihop
fashion with the help of intermediate nodes. Decoding, storing,
and relaying introduces a delay that, measured in time slots,
generally exceeds the number of hops. For example, a five-
hop route does not guarantee a delay of only five time slots.
In a general setting, each node can connect to multiple nodes.
So a large number of paths may form between the source
and the destination. Each path may have taken a different
time to form with the help of different intermediate nodes.
Consider a network in which each node wants to transmit to its
destination in a multihop fashion. In general in such a network,
a relay node queues the packets from other nodes and its
own packets and transmits them according to some scheduling
algorithm. If one introduces the concept of queues, the analysis
of the system becomes extremely complicated because of the
intricate spatial and temporal dependencies between various
nodes. In this paper we take a different approach. We are
concerned only with the physical connections between nodes,
i.e., we do not care when a node i transmits a particular packet
to a node j (which depends on the scheduler), but we analyze
when a (physical) connection (maybe over multiple hops) is
formed between the nodes i and j. This delay is a lower bound
on the delay with any queueing scheduler in place.
We assume that the nodes are distributed as a Poisson point

process (PPP) on the plane. In each time slot, every node
decides to transmit or receive using ALOHA. Any transmitting
node can connect to a receiving node when a modified,
noiseless version of the protocol model criterion introduced in

[1] is met. Since at each time instant, the transmit and receive
nodes change, the connectivity graph changes dynamically. We
analyze the time required for a causal path to form between
a source and a destination node. The system model is made
precise in Section II.
This problem is similar in flavor to the problem of First-

Passage Percolation (FPP) [2]–[4], and the process of dynamic
connectivity also resembles a simple epidemic process [5]–
[7] on a Euclidean domain. In a spatial epidemic process, an
infected individual infects a certain (maybe random) neighbor-
ing population, and this process continues until the complete
population is infected or the spreading of the disease stops. In
the literature cited above, the time of spread of the epidemic
is analyzed for different models of disease spread. We draw
many ideas from this theory of epidemic process and FPP.
The main difference between an epidemic process and the
process we consider is that the spreading (of packets) depends
on a subset of the population (due to interference) and is
not independent from node to node. In [8], the latency for
a message to propagate in a sensor network is analyzed using
similar tools. They consider a Boolean connectivity model
with randomly weighted edges and derive the properties of
first-passage paths on the weighted graph. Their model does
not consider interference and thus allows the use of Kingman’s
subadditive ergodic theorem [9] while ours does not. Percola-
tion in signal-to-interference ratio graphs was analyzed in [10]
where the nodes are assumed to be full-duplex. In practice,
radios do not transmit and receive at the same time (at the
same frequency), and hence the instantaneous network graph
is always disconnected. Connectivity between nodes far apart
occurs because of the dynamic nature of the MAC protocol.
In this paper, we first introduce a dynamic graph process to
model and analyze connectivity and then derive the properties
of this graph process for ALOHA.
In Section II, we introduce the system model. In Section III,

we study the connectivity properties of the random geometric
graph formed at any time instant. In Section IV, we derive
the properties of the delay and the average number of paths
between a source and destination and show that the delay
increases linearly with increasing source-destination distance
or, equivalently, that the propagation speed is constant, i.e., the
distance of the farthest nodes to which the origin can connect
increases linearly with time.

II. SYSTEM MODEL

The location of the wireless nodes (transceivers) is assumed
to be a Poisson point process (PPP) φ of intensity λ on
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the plane. We assume that time is slotted and the MAC
protocol used is slotted ALOHA. At every time slot each
node transmits with probability p. Nodes are half-duplex, and
they act as receivers if they are not transmitting. We use
an interference-based model to decide if the communication
between a transmitter and a receiver is successful in a given
time slot: A transmitting node located at x can connect to a
receiver located at y if the disk B(y,β‖x−y‖),β > 0, does not
contain any other transmitting nodes.B(x, r) denotes a disk of
radius r centered around x and Bc(x, r) = R2 \B(x, r). β is
a system parameter and captures the resilience of the receiver
against interference. This is a variant of the protocol model
[1] that does not include the power constraint. The standard
SIR model of communication can be related to the protocol
model easily when there is no fading. A detailed discussion
about the protocol model can be found in [11]. We shall use
1(x → y, ∆) to represent a random variable that is equal
to one if a transmitter at x is able to connect to a receiver
y when the transmitting set is ∆, i.e., the interfering set is
∆ \ {x}. We will drop ∆ if there is no ambiguity. At any
time instant k, we denote the set of transmitters (decided by
ALOHA) by φt(k) and the set of receivers by φr(k). So we
have φt(k) ∪ φr(k) = φ and φt(k) ∩ φr(k) = ∅, where ∅
denotes the empty set.
The connectivity at time k is captured by a directed and

weighted random geometric graph g(k) = (φ, Ek) with vertex
set φ and edge set

Ek = {(x, y) : 1 (x → y,φt(k)) = 1, x ∈ φt(k), y ∈ φr(k)} .
(1)

Each edge in this graph g(k) is associated with a weight k that
represents the time slot in which the edge was formed. Let
G(m, n) denote the weighted directed multigraph (multiple
edges with different time stamps are allowed between two
vertices) formed between times m and n > m, i.e.,

G(m, n) =

(

φ,
m
⋃

k=n

Ek

)

.

So G(m, n) is the edge-union of the graphs g(k), m ≤ k ≤ n.
Definition 1: A directed path x0, e0, x1, e1, . . . , eq−1, xq

between the nodes x0 ∈ φ and xq ∈ φ where ei = (xi, xi+1)
denotes an edge in the multigraph is said to be a causal path
if the weight of the edges ei are strictly increasing with i.
This means that the edge ei−1 was formed before ei for 0 <
i < q. For the rest of the paper, we always mean causal path
when speaking about a path.
We observe that the random graph g(k) is a snapshot of

the ALOHA network at time instant k. The random graph
process G(0, m) captures the entire connectivity history up
to time m. The graph g(k) has the flavor of the interference
graph analyzed in [10] where the authors consider only bi-
directional links (full-duplex radios). They proved that such a
graph percolates with respect to the density of the nodes if the
processing gain is high enough. In the graph G(0, m) there is
a notion of time and causality, i.e., packets can propagate only
on a causal path.
We make the following assumption which we shall use

in Section IV. We assume that the interference at different
time instants is independent. More precisely we assume the

following, ∀m *= n and ∀ a, b, c, d ∈ φ,

E[1Em
((a, b))1En

((c, d))] = E[1Em
((a, b))]E[1En

((c, d))]
(2)

where the expectation is taken with respect to ALOHA and
the point process φ. Em is the edge set defined in (1) and,
1Em

((a, b)) is the indicator function of the edge set Em,
which is equal to 1 if and only if the edge (a, b) belongs
to Em.
Assumption (2) is true if B(b,β‖a−b‖)∩B(d,β‖c−d‖) = ∅
or if the node set φ is not random (or if we condition on
the location of the nodes) since the ALOHA protocol chooses
independent transmitter sets across time. In reality interference
is not independent in time but almost because of the MAC
protocol.

III. PROPERTIES OF THE SNAPSHOT GRAPH g(k)

In this section, we will analyze the properties of the random
graph g(k). We first observe that the graphs g(k) are identi-
cally distributed for all k. So for this section we will drop the
time index unless otherwise indicated. g a planar Euclidean
graph even with straight lines as edges [12, Lemma 2]. We
first characterize the distribution of the in-degree of a receiver
node and the out-degree of a transmit node.

A. Node degree distributions

Let Nt(x) denote the number of receivers a transmitter lo-
cated at x can connect to, i.e., the out-degree of a transmitting
node. Similarly, let Nr(x) denote the number of transmitters
that can connect to a receiver at x, i.e., the in-degree of a
receiver node. We first calculate the average out-degree of a
transmitting node.
Proposition 1: E [Nt(x)] = 1−p

p
β−2.

Proof: By stationarity of φ, we have Nt(x)
d
= Nt(o)

where d
= stands for equality in distribution. So it is sufficient

to consider the out-degree of a transmitter placed at the origin,
which is given by

∑

x∈φr
1(o → x,φt). So the average degree

is

E[Nt(o)] = E





∑

x∈φr

1(o → x,φt)





(a)
= λ(1 − p)

ˆ

R2

Eφt
[1(o → x,φt)] dx

(b)
= λ(1 − p)

ˆ

R2

exp
(

−λpπβ2‖x‖2
)

dx

=
1 − p

p
β−2,

where (a) follows from Campbell’s theorem [13] and the
independence of φr and φt. (b) follows from the fact that
1(o → x,φt) is equal to one if and only if the ball B(x,β‖x‖)
does not contain any interferers.
We observe that E[Nt(x)] → ∞ when p → 0. This is because
the interference reduces as p becomes smaller. This behavior
is a modelling artifact; if the interference vanished, a power
constraint would have to be introduced.
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Proposition 2: The probability distribution of Nt is given
by

P (Nt = m) =
∞
∑

k=m

(−1)k+m

k!

(

1 − p

p

)k

Vk(β), (3)

where Vk(β) =
´

R2 · · ·
´

R2 exp
(

−vol
(

∪k
i=1B(xi,β‖xi‖)

))

dx1·
dxk.

Proof: We provide the complete characterization of Nt

using the Laplace transform LNt
(s) and is given by

= E [exp (−sNt)]

= E



exp



−s
∑

x∈φr

1(o → x,φt)









(a)
= Eφt

exp

[

−λ(1 − p)

ˆ

R2

1 − exp(−s1(o → x,φt))dx

]

= Eφt
exp

[

−ap

ˆ

R2

1(o → x,φt)dx

]

, (4)

where (a) follows from the probability generating functional
of a PPP and a = 1−p

p
(1 − exp(−s)). The distribution of

1(o → x) does not change if x is scaled by
√
λp and the

density of φt is reduced by λp. So, letting ν denote a two di-
mensional Poisson point process of density 1, we have LNt

(s)
is equal to Eν exp

[

−a
´

R2 1(o → x, ν)dx
]

. Then LNt
(s)

=
∞
∑

k=0

(−a)k

k!
Eν

(
ˆ

R2

1(o → x, ν)dx

)k

= 1 +
∞
∑

k=1

(−a)k

k!

ˆ

R2

· · ·
ˆ

R2

exp
(

−vol
(

∪k
i=1B(xi,β‖xi‖)

))

dx1 · · · dxk (5)

By comparison of coefficients (replace e−s with z), we obtain
(3).

We next evaluate the in-degree distribution of a receive
node. Since the point process is stationary, the distribution
of Nr(x) is the same for all receivers x.

Proposition 3: The average in-degree E[Nr(x)] of a node
in g is β−2. When β > 1, Nr is distributed as a Bernoulli
random variable with mean β−2.

Proof: We have Nr(x)
d
= Nr(o) and hence,

E[Nr(o)] = E





∑

y∈φ

1φt
(y)1(y → o,φt)





= λp

ˆ

R2

Eφt
[1(y → o,φt)] dy = β−2.

If β > 1, at most one transmitter can connect to any receiver,
so Nr is Bernoulli. Since E [Nr(x)] = β−2, we have Nr(x) ∼
Bernoulli(β−2).

Observe that the in-degree Nr(x) does not depend on p. This
is because of the homogeneity of the protocol model and the
point process. Also observe that E[Nt(x)] and E[Nr(x)] are
spatial averages and not time averages. We have pE [Nt] =
(1 − p)E [Nr].

IV. THE TIME EVOLUTION GRAPH G(0, n)

In the previous section we analyzed the connectivity graph
formed at a particular time instant. In this section we will
consider the superposition of these graphs and study how the
connectivity evolves over time.

A. Asymptotic analysis of G(0, n)

We first define the connection time between two nodes. For
x, y ∈ φ, we denote the path formation time between x and y
as

T (x, y) = min {k : G(0, k) has a path from x to y} .

For general x, y ∈ R2, define T (x, y) = T (x∗, y∗) where x∗

(resp. y∗) is the point in φ closest to x (resp. y). Since the
point process is isotropic, it is sufficient for most cases to
consider destinations along a given direction. For notational
convenience we define for y ∈ R, T (x, y) = T (x, (y, 0)).
This path formation time is the minimum time required for a
packet to propagate from a source x to its destination y in an
ALOHA network. In this section we show that this propagation
delay increases linearly with the source-destination distance.
Similar to T (x, y) we define

Tn(x, y) = min
k>n

{k − n : G(n, k) has a path from x to y} .

Let
B̃t =

{

x : x ∈ R
2, T (o, x) ≤ t

}

denote the set of points which can be reached from the origin
by time t. The evolution of the graph G(0, n) is similar to
the growth of an epidemic on the plane and one can relate
this problem to the theory of Markovian contact processes
[7] which was used to analyze the growth of epidemics. We
now provide bounds on the path formation time between two
points.
Direct connection: By assumption (2), we have that the time

taken for a direct connection between two points x and y is a
geometric random variable with parameter

η(x, y) = p(1 − p)E
[

exp
(

−λpπβ2‖x∗ − y∗‖2
)]

where the average is with respect to the distribution of ‖x∗ −
y∗‖. For most of the analysis we assume ‖x−y‖ to be large so
that ‖x∗−y∗‖ ≈ ‖x−y‖. Henceforth we shall not distinguish
between x and x∗ .
Lemma 1: For large x ∈ Z+, the tail probability of T (o, x)

is bounded as

P(T (o, x) > k) ≤ I1−η(o,a)(k + 1, m)

for any 1/
√
λ < a < x, where m = /x/a0 and

I1−η(o,a)(k + 1, m) =
(m + k + 1)!

m!(k + 1)!

ˆ η(o,a)

0
tm(1 − t)kdt

is the regularized beta function.
Proof: We imposed 1/

√
λ < a so that ‖(0, a)∗‖ ≈ a.

Let t1(a) be the time for an edge to form between o and
(a, 0) and t2(a) be the time required for a direct connection to
form between (a, 0) and (2a, 0) after the first edge is formed.
Similarly define tk(a) to be the time required for a connection
to form between ((k−1)a, 0) and (ka, 0) after all the previous
k − 1 connections are formed. See Figure 1. By assumption
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(0, 0) (x, 0)

t1 t2 t3

Figure 1. The node at the origin can transfer packets to a node at (x, 0) by
using the shorter hops (indicated by dashed line) or using longer hops (solid
lines). Longer hops are difficult to form but only few are required to reach
the destination. Shorter hops are easy to form but a higher number is required
to reach the destination.

(2), we have ti, 1 ≤ i ≤ m, to be independent. So we have

T (o, x) ≤
m

∑

i=1

ti(a) (6)

The ti are iid geometrically distributed with parameter η(o, a).
Hence we have

P(T (o, x) > k) ≤ P

(

m
∑

i=1

ti(a) > k

)

(7)

(a)
= I1−η(o,a)(k + 1, m),

where (a) follows from the fact that the sum of geometric
random variables follows a negative binomial distribution.
In the following arguments we rely on the spatial subadditivity
of T (o, x) to analyze the asymptotic properties. Subadditivity
of random variables is a powerful tool which is often used to
prove results in percolation and geometric graph theory. The
problem of finding the minimum delay path is similar to the
problem of first-passage percolation. From the definition of
T (o, y), we observe that

T (o, y) ≤ T (o, x) + TT (o,x)(x, y). (8)

We also have that TT (o,n)(x, y)
d
= T (x, y) from the way

the graph process is defined. Observe that (8) resembles the
triangle inequality (specially if TT (o,y)(x, y) was T (x, y)) and
thus provides a pseudo-metric, which holds in FPP problems
and is the reason that the shortest paths in FPP are called
geodesics. In the next two lemmata we show that the average
time for a path to form between two nodes scales linearly with
the distance between them.
Lemma 2: The time constant defined by

µ = lim
x→∞

ET (o, x)

x

exists when x ∈ Z+.
Proof: Let y ∈ Z+. From (8), we have

T (o, y + x) ≤ T (o, y) + TT (o,y)(y, y + x). (9)

From the definition of the graph, Ek does not depend on
Ei, i < k. Hence we have that TT (o,y)(y, y + x) has the
same distribution as T (y, y + x). Also from the invariance of
the point process φ, we have T (y, y + x)

d
= T (o, x). Taking

expectations of (9), we obtain

ET (o, y + x) ≤ ET (o, y) + ET (o, x),

and the result follows from the basic properties of subadditive
sequences.
We do not require assumption (2) to prove Lemma 2. Consis-

tent with the FPP terminology we will call µ the time constant
of the process. We now prove that the time constant for the
modified protocol model is always greater than zero and finite.

Lemma 3: For the modified protocol model

β
√

pπλ
√

ln(1 + p(1 − p))
≤ µ ≤ β

√
2πλ exp(1/2)

(1 − p)
√

p
(10)

Proof: Upper bound: Taking expectation on both sides of
(6) and since ti(a) are identically distributed for all i (we drop
the i in the subscript for notational convenience), we have

ET (o, x) ≤
⌈x

a

⌉

Et(a) ≤
(x

a
+ 1

)

Et(a).

Dividing both sides by x and taking the limit we obtain

lim
x→∞

ET (o, x)

x
≤

Et(a)

a
.

Assuming ‖(0, a)∗‖ ≈ a, t(a) is a geometric random variable
with mean p(1 − p) exp(−pλπβ2a2). So we get

µ ≤
exp(pλπβ2a2)

ap(1 − p)
.

The upper bound is obtained by using a = 1/(β
√

2pλπ) for
which the right hand side of the above equation is minimized.
Lower bound: Taking large hops to reach the destination
requires fewer hops but the success probability for each hop
would be small and hence it takes more time to connect. On
the other hand taking smaller hops will result in a higher
probability of success for each hop and result in a smaller
time of connection, but we require a large number of hops to
get to the destination. We will use the tradeoff between the
hopping distance versus time to show that

P(T (o, x) < cx) → 0

as x → ∞ for some positive c and x ∈ Z+. This implies
ET (o, x)/x > c for some c > 0 and hence µ > 0. For the
sake of notational convenience let cx be identified with /cx0.
So to evaluate the event {T (o, x) ≤ cx}, we consider only
those paths which have a maximum of cx hops. By the union
bound we have

P(T (o, x) < cx) ≤
cx
∑

i=1

pi (11)

where pi = P(T (o, x) < cx | there is a path from
o to x with i hops). The time to form any single direct link
between two nodes o and y is a geometric random variable
with parameter η(o, y) = p(1 − p) exp(−c1‖o − y‖2), where
c1 = λpπβ2. So the times to form the hops in a k-hop
path between o, x1,x2 . . . , xk−1, x are a series of geometric
random variables ti with parameters η(xi−1, xi) which are
independent because they occur in different time slots, see (2).
Let ξ > 0. So we have pk ≤ P(

∑k
i=1 ti < cx). We also have

that if t1, ..., ti are independent geometric random variables
with parameters pi, then

P(
k

∑

i=1

ti < a) ≤ exp(ξa)

(

e−ξ

1 − e−ξ

)k k
∏

i=1

pi (12)
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for any ξ > 0 (follows from Chernoff bound). So

pk

(a)
≤ exp(ξcx)

1

(exp(ξ) − 1)k

k
∏

i=1

η(xi−1, xi)

= exp(ξcx)

(

p(1 − p)

exp(ξ) − 1

)k

exp(−c1(‖o − x1‖2

+‖x2 − x1‖2 + . . . + ‖xk−1 − x‖2))
(b)
≤ exp(ξcx)

(

p(1 − p)

exp(ξ) − 1

)k

exp

(

−c1
x2

k

)

.

(a) follows from (12) and (b) follows from the fact that the
minimum value of ‖x1‖2 + ‖x2 − x1‖2 + . . . + ‖xk−1 − x‖2

is x2/k. So from (11), we have P(T (o, x) < cx)

≤
cx
∑

k=1

exp(ξcx)

(

p(1 − p)

exp(ξ) − 1

)k

exp

(

−c1
x2

k

)

(a)
≤ cx exp(ξ′cx) exp

(

−c1

c
x
)

,

where (a) follows by choosing ξ = ξ′ such that p(1 −
p)/(exp(ξ′) − 1) < 1 and using k = cx for all the terms.
The right hand side goes to 0 if c <

√

c1/ξ′. Hence we
have E[T (o, x)/x] > c which implies µ > c. We can choose
ξ′ = (1 + ε) ln(1 + p(1 − p)) for any 1 > ε > 0 and we then
have the lower bound c ≥ (1 − ε)

√

λpπβ2

(1+ε) ln(1+p(1−p)) .
In the modified protocol model we are considering, we do
not have any power constraint. So any node can potentially
connect to any receiver no matter how far it is but the
probability decreases exponentially with distance and hence
µ < ∞. This is in contrast to standard first-passage percolation
on a lattice where the probability distribution (CDF) on each
edge should have a mass less than Pc at zero for µ < ∞,
where Pc is the bond percolation threshold of the lattice. If
we had considered a power constraint, for example by putting
a hard limit on the maximum link distance, ‖x − y‖ < R
(original protocol model), then there is no guarantee that the
time constant µ < ∞. We conjecture that if R is chosen
so that the disk graph formed by placing disks of radius R
around each node of φ percolates, i.e., for R >

√

1.435/λ
[14] then µ < ∞. In deriving the lower bound we have used
assumption (2). In practice the constants may change but the
scaling with respect to the different parameters would remain
the same. From the lower bound on µ we have that µ > 0 when
p → 0, but as noted previously, this is an observation that is
of mathematical interest only, since the noise-free assumption
does not hold when p → 0. We also observe that the lower
bound on the time constant increases with p. From the upper
and lower bounds we observe that µ scales like β

√
λ.

Since we do not have T (o, x + y) ≤ T (o, x) + T (o, y),
Kingman’s subadditive ergodic theorem [9] cannot be directly
applied to (8). But since TT (o,x)(x, y)

d
= T (x, y), there is hope

that such a result holds. In the next lemma, we prove that this
is indeed the case.
Lemma 4: Let µ be the time constant of the process,

T (o, x)

x
−→ µ, x → ∞ (13)

x ∈ Z+ and where the convergence is in L2 and hence in
probability.

Proof: From (8), and TT (o,x)(x, x+y)
d
= T (o, y) and the

fact that TT (o,y)(y, x + y) is independent of T (o, y) (because
of assumption (2)), we have

Fx+y(ξ) ≥ (Fx ∗ Fy)(ξ),

where Fx is the CDF of T (o, x). E(T (o, x)2) < ∞ follows
from Lemma 1. So we have a superconvolutive sequence and
hence by Kesten’s lemma [15], [16], [17, p. 120] holds1.
This result shows that with high probability, the delay required
for a packet propagation scales linearly with distance.

V. SIMULATION RESULTS
In this section we illustrate the results using simulation

results. For the purpose of simulation we consider a PPP
of unit density in the square [−50, 50]2. For most of the
simulations, we use β = 1.2, and we average over 200
independent realizations of the point process. In Figure 2,
ET (o, x) is plotted with respect to x for different values of p.
The time constant µ is plotted as a function of p in Figure 3.
We make the following observations:
1) The time constant increases with the ALOHA parameter

p.
2) In Figure 2, we observe that ET (o, x) ≈ µ(p)x + C(p),
where C(p) is a decreasing function of p and µ(p) is
increasing. For smaller values of p, the time taken for a
node to become a transmitter is large, but the probability
of a successful transmission is also high because of the
low density of transmitters. This results in a large C(p)
and smaller µ(p) for small p.

3) Figure 2 also implies that the presence of interfering
transmitters causes the delay to increase when the packet
has to be transmitted over longer distances. So when the
packet transmission distance is large, it is beneficial to
decrease the density of contending transmitters.

4) For each x, there is an optimal p which minimizes the
delay, and the optimum p is a decreasing function of x.

For two nodes located at o and x and ‖x‖ large, there will in
general be many paths between o and x which form by time
µ‖x‖. From such an ensemble of delay-optimal paths, we will
consider paths which have the minimum number of hops and
call them fastest paths. In Figure 4, we show the average hop
in these paths. We observe that for a given p, the average hop
length decreases as the source-destination distance x increases.
This shows that for larger source-destination distance, it is
beneficial to use shorter hops since they are more reliable and
form faster than longer hops. Also from Figure 3, we observe
that for larger x, it is beneficial to be less aggressive in terms
of spatial reuse and use a smaller p.

VI. CONCLUSIONS
Connectivity in a wireless network is dynamic and directed

because of the MAC scheduler and the half-duplex radios.
Since these properties are not captured in static graph models
that are usually used, we have introduced a dynamic connec-
tivity graph and analyzed its properties for ALOHA. We have
shown that the time taken for a causal path to form between a
source and a destination on this dynamic ALOHA graph scales

1To prove the a.e. convergence using Kesten’s lemma, we would require
that T (o, n) be a monotone sequence, which is not true in our case.
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Figure 2. ET (o, x) as a function of x, for β = 1.2. We first observe the
linear scaling of ET (o, x) with the distance x and that the slope increases
with p. Also for small values of x we observe that ET (o, x) ≈ p−1 since
for small x the path delay time is dominated by the MAC contention time.
For small values of p, once the source is a transmitter, long edges form due
to the low interference.
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Figure 4. Average hop length in the fastest path versus the source-destination
distance.

linearly with the source-destination distance and have derived
bounds on the pre-constants. This implies that every node can
be reached in a time that is linear with the distance. The result
shows that one does not require full connectivity in a single
instant; hence the requirement of a giant connected component
(percolation) in a network with interference [10] is greatly
relaxed. Hence, e.g., in a route discovery flooding algorithm,
the time to find the route scales linearly with the diameter of
the network. By simulations we showed that it is beneficial
to use higher values of the ALOHA contention parameter for
smaller source-destination distances and lower values for large
distances, and that the average hop length of the fastest paths
first increases rapidly but then decreases slowly as a function
of the source-destination distance. This observation provides
some insight how to choose the hop length for efficient routing
in ad hoc networks.
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