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Abstract— Regularization energy is defined as the energy
required to move the points of a homogeneous point process in a
bounded set to unique points of a lattice. The optimal mapping
required for this movement is derived for one dimensional
processes, and bounds are derived for the Poisson point process
in one and two dimensions. In addition regularization energy is
evaluated for well known point processes in one dimension by
simulation.

I. I NTRODUCTION

In sensor networks, the locations of the sensor nodes are
generally modeled as a point process on a plane or on a line.
Usually the sensors are not placed in a perfect grid (lattice) due
to physical constraints. Sensor networks with randomly placed
nodes suffer from severe disadvantages in terms of connectiv-
ity, coverage, and efficiency of communication compared with
networks with a regular topology. It is of interest to understand
the properties of the minimum energy required to move the
sensor nodes to unique points of the grid. Another question
that arises is how regularly [1] the points of the underlying
process are arranged. Thus thisregularization energyis also
useful to assess the regularity of a point process.

II. REGULARIZATION ENERGY

Let φ represent afinite homogeneous(stationary, isotropic
and finite on bounded sets) point process [2]–[5] inRd, d =
1, 2. Regularization energyon a ball B(0, R) is defined as
follows. If the energy required to move a unit distance is
1, how much energy is required by the points in the ball
to move into a regular grid? Consider a homogeneous point
process of intensity1 on the plane or on a line. Drop an
equilateral triangular (simplex in the dimension of space under
consideration) meshM (regularizing mesh) of intensity1
on the plane. Then the regularization energy is the average
minimum energy required to move all the points of the point
process inside a ball of radiusR centered around origin to
distinct lattice points. Defining it mathematically

E(R, M) = E{min
f∈F

∑

x∈φ∩B(0,R)

‖x− f(x)‖} (1)

where F = {f : φ ∩ B → M, and f is one to one} and
‖.‖ denotes the distance metric onRd. Figure 1 illustrates an
optimal mapping for a instance of a one dimensional point
process. Observe that the points can be mapped to lattice
points outside the ball. ForR < ∞, E(R, M) < ∞ since
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Fig. 1. Example of an optimal mapping for one dimensional process and
R = 2

the underlying point process is finite.E(R, M) is a difficult
quantity to calculate because the optimal mapping is nontrivial
for many point process. This problem is relatively easy to solve
for a one dimensional point process, as the optimal mapping
can be converted to a tractable optimization problem.

III. O PTIMAL MAPPING FOR ONE DIMENSIONAL

PROCESSES

For the one dimensional process, the lattice is an equally
spaced grid with distance between the lattice points being
1 and B(0, R) is replaced with an interval[−R, R]. The
regularization energy is denoted byE(R, δ), whereδ denotes
the fact that there is a lattice point atδ.

Lemma 3.1:Let a1 < a2 < . . . < an be the points of
φ ∩B(0, R) , then for an optimal mappingf , f(ai) < f(aj)
if i < j.

Proof: Let i < j andf(ai) > f(aj) and defineS(f) =∑ |ai − f(ai)|. Interchangingf(ai) with f(aj) will give an
equal or a smaller value ofS(f). If the orderf(a1) < f(a2) <
. . . < f(an) is not maintained, one can form a new mapping
f ′ by a finite number of interchanges of the mappingf such
that S(f ′) < S(f). Hencef is not an optimal mapping.

Lemma 3.2:Let a, b ∈ φ , a < b and alsoa, b be neighbors,
then for the optimal mappingf , f(b)− f(a) ≤ db− ae.

Proof: Let f(b) = f(a) + db− ae+ k wherek ≥ 0.
Case 1: Letf(a) < a, f(b) < b .

|a− f(a)|+ |b− f(b)| = a + b− 2f(b) + db− ae+ k

By lemma 3.1 there are no points mapped betweenf(a) and
f(b) and hence the minimum value is attained whenk = 0.



Case 2: Letf(a) < a, b < f(b)

|a− f(a)|+ |b− f(b)| = a− f(a) + f(a) +
db− ae+ k − b

= db− ae − (b− a) + k

The minimum value is attained whenk = 0.
Case 3: Leta < f(a) , f(b) < b
Thenf(b)− f(a) < b− a < db− ae
Case 4: Leta < f(a), b < f(b)

|a− f(a)|+ |b− f(b)| = 2f(a) + db− ae − (b + a) + k

The minimum is attained whenk = 0.
By the above two lemmas, the optimal mapping in one

dimension, for the calculation ofE(R, δ) can be formulated
as the following optimization problem. Divide the process
φ ∩ B(0, R) into clusters as follows. Start from the leftmost
point and add a point of the process to the same cluster as that
of its left nearest neighbor if the distance between the point and
its left nearest neighbor is less than1. Denote byai the number
of points in clusteri, and byγi the ceiling of the distance
between the rightmost point of clusterai and leftmost point
of clusterai+1, i.e γi = min{d(x − y)e, x ∈ ai+1, y ∈ ai}.
Let x1 < x2 < . . . < xN denote the points of the process
φ ∩B(0, R) andm denote the number of clusters. Letx1 be
mapped to theM th lattice point. Ifxi belongs to clusterak

and is mapped toM ′, then xi+1 is mapped toM ′ + 1 if it
belongs to the same cluster, and is mapped toM ′ + κk if it
belongs to the next cluster, where the optimal values ofM
andκk are determined by the following theorem.

Theorem 3.3:The optimal values ofM, κi for i = 1 . . . m−
1 ,where|M | ≤ N, 0 ≤ κi ≤ γi are the values that minimize

m∑

k=1

{ ak∑

j=1

|M + β(k, j) +
k−1∑
p=1

κp − xβ(k,j)|
}

(2)

whereβ(k, j) =
∑k−1

p=1 ap + j
Proof: Follows from Lemma 3.1 and Lemma 3.2.

Sincem ≤ bRc, the maximum number of searches required
to find the optimum is much less than2NbRcbRc. Figure 2
givesE(R, 0) for different point processes of intensity1. From
Figure 2, one can observe thatE(R, 0) of the Poisson point
process (PPP) is a nonlinear and increasing function ofR .
Also one can observe that the process with larger minimum
distance have a lower regulaization energy than processes with
lower minimum distance.The process obtained by shifting the
lattice uniformly has the lowestE(R, 0). The disturbed lattice
process has points which are exactly unit distance from each
other (variance of nearest neighbor distance (NND) is zero),
which implies that the process is very regular.. This shows that
regularization energy can be used as a metric of regularity.

Lemma 3.4:E(R, 0) is a increasing and continuous func-
tion of R

Proof: Let δ > 0. Then E(R, 0) ≤ E(R + δ, 0) −
E∗

R+δ[R,R+δ]−E∗
R+δ[−(R+δ),−R] , WhereE∗

R+δ[R, R+
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Fig. 2. E(R, 0) for processes withλ = 1

δ] is the average energy required to map the points in the set
[R,R+δ] in the optimal mappings ofE(R+δ, 0). This implies
E(R, 0) is an increasing function. SinceE(φ(δ)) = δ → 0 as
δ → 0, we observe thatE∗

R+δ[R, R + δ] → 0 and hence
E(R, 0) is a continuous function ofR.

Lemma 3.5:For any homogeneous point processφ of in-
tensity1,

E(R, 0) ≥




R/2 , [R] = 0
bRc/2 + (R− bRc)2 , 0 < [R] ≤ 0.5
dRe/2− (dRe −R)2 , [R] > 0.5

where [R] denotes the fractional part ofR. This bound is
achieved by a homoginized lattice i.eβ(1) (Appendix I).

Proof: Let V (i) denote the Voronoi region of theith
lattice point with regard to the lattice points.
Case1 : Let [R] ≥ 0.5.
Since each point of the process has to move to some lattice
point,

E(R, 0) ≥ E
[ ∑

x∈φ∩[−R, R]

min{|x− dxe|, |x− bxc|}
]

Let I
.= E

[∑
x∈φ∩[−R, R] min{|x− dxe|, |x− bxc|}

]
. Since

in the above procedure, the points which get mapped toi are
the points of the process which belong to the Voronoi region
V (i)

I = E
[ ∑

i=b−Rc,...,dRe

∑

x∈φ∩V (i)∩[−R, R]

|x− i|
]

=
∑

i=b−Rc,...,dRe
E

[ ∑

x∈φ∩V (i)∩[−R, R]

|x− i|
]



Using Campbell’s theorem [2] and using the homogeneity of
φ

I
(d)
=

∫ d−Re−1/2

−R

|x− b−Rc|dx

+
∑

i=d−Re,...,bRc

∫ 1
2

−1
2

|x|dx +
∫ R

bRc+1/2

|x− dRe|dx

= 2(2bRc+ 1)
∫ 1

2

0

xdx + 2
∫ R

bRc+1/2

(dRe − x)dx

=
dRe
2

− (dRe −R)2

Case2 : Let 0 < [R] ≤ 0.5.
By similar procedure we get,E(R, 0) ≥ bRc

2 + (R− bRc)2.
Case3 : Let [R] = 0.
By similar procedure we get,E(R, 0) ≥ R

2 .

For a homoginized lattice i.eβ(1), let the uniform noise in
[0, 1] be denoted byU
Case1: [R] = 0.

E(R, 0) = P (U ≤ 0.5)E(U |U < 0.5)2R

+P (U > 0.5)E(U |U > 0.5)2R

= 0.5[2R/4 + 2R/4] = R/2

Case2: 0 < [R] < 0.5.

E(R, 0)
= P (U ≤ [R])(2bRc+ 1)[R]/2
+ P ([R] < U ≤ 0.5)(2bRc)((0.5− [R])/2 + [R])
+ P (0.5 < U ≤ 1− [R])(2bRc)((1− [R]− 0.5)/2 + [R])
+ P (U ≥ 1− [R])(2bRc+ 1)[R]/2
= bRc/2 + (R− bRc)2

Case3: [R] ≥ 0.5. Similarly we get

E(R, 0) = dRe/2 + (dRe −R)2

Is regularization energy invariant with regard to the position
of lattice, i.e. isE(R, 0) = E(R, δ)? One can observe that
E(R, 0) = E(R, k) where k is an integer. AlsoE(R, δ) =
E(R, 1−δ), since the underlying point process looks the same
(invariant) from−R and R and relative to the lattice. So it
suffices to check for0 ≤ δ ≤ 0.5. It is not true in general that
E(R, 0) = E(R, δ). For example in the case of lattice disturbed
by uniform noise, when[R] = 0, E(R, δ) = E(R, 0) = R/2.
But if 0 < [R] < 0.5, δ < [R] andδ + [R] < 0.5, then

E(R, δ) = bRc/2 + (R− bRc)2 + δ2 (3)

So in general,E(R, δ) 6= E(R, 0).

Theorem 3.6:Let φ be a one-dimensional homogeneous
point process with intensityλ = 1, such that∀x, y ∈ φ ⇒
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Fig. 3. E(R, M) with lattice at zero and a shifted version.

|x− y| > δ. Let R ∈ Z+ and choosen > 0 such that it is the
smallest integer such that1/n ≤ δ. Then

E(R, 0) ≤ µ0

[
min

−N≤x1≤N

N∑

k=1

|x1 + k(1− µ0)− (1− 0.5µ0)|
]

(4)
whereµ0 = 1/n andN = 2Rn.

Proof: Since R is an integer andφ is homogeneous
E(R, 0) = E(R, R). Let B(R, R) =

⋃N+1
k=1 ξk where ξk =

[(k − 1)/n, k/n) for k ≤ N andξN+1 = {2R}.
Define F′ = {f ; f : B(R, R) → Z, f is increasing,f is
constant onξk, f(ξk) 6= f(ξj) for i 6= j and bounded}.
Observe thatf ∈ F′ are simple functions [6]. DefineX+ =
{x : f(x) ≥ x}, X− = {x : f(x) < x}. Also X+ ∩X− = ∅
and X+ ∪ X− = B(R, R). Let µ(.) denote the standard
Lebesgue measure [6].

The functions ofF′ restricted toφ belong toF and hence

E(R, 0) = E
[

inf
f∈F′

∑

x∈φ∩B(R,R)

‖x− f(x)‖
]

SinceF does not depend onφ, the expectation can be moved
inside. Hence

E(R, 0) ≤ inf
f∈F′

E
[ ∑

x∈φ∩B(R,R)

‖x− f(x)‖
]

Let I(f) .= E
[∑

x∈φ∩B(R,R) ‖x− f(x)‖
]
. Then

I(f) = E
[ ∑

x∈φ∩X+

(f(x)− x)−
∑

x∈φ∩X−
(f(x)− x)

]



SinceX+, X− are measurable bounded sets, Campbell’s the-
orem [2] can be applied

I(f) =
[ ∫

X+
(f(x)− x)dx−

∫

X−
(f(x)− x)dx

]

=
[
(
∫

X+
f −

∫

X−
f)− (

∫

X+
x−

∫

X−
x)

]

Let ck be the mid point ofξk, i.e., ck = (k− 0.5)µ0. Sincef
is a simple function,

I(f) =
[ N∑

k=1

f(ck)[µ(ξk ∩X+)− µ(ξk ∩X−)]

+ [
∫

X−
xdx−

∫

X+
xdx]

]

By construction of ξk and definition of f , µ(ξk ∩ X+),
µ(ξk ∩X−) can be onlyµ(ξk) or 0. Let K+ = {k : f(ck) >
ck}, K− = {k : f(ck) < ck}. Then

I(f) = µ0

[ ∑

k∈K+

(f(ck)− ck)−
∑

k∈K−
(f(ck)− ck)

]

= µ0

N∑

k=1

|f(ck)− ck|

Hence
E(R, 0) ≤ inf

f∈F′
I(f)

(a)
= µ0

[
min

−N≤x1≤N

N∑

k=1

|x1 + k(1− µ0)− (1− 0.5µ0)|
]

(5)

(a) follows from lemma 3.2 and the fact thatf is increasing
( hence for the optimalf , f(ck+1) = f(ck) + 1).

Also µ0

[
min−N≤x1≤N

∑N
k=1 |x1 + k(1 − µ0) − (1 −

0.5µ0)|
]
≈ (d1/δe − 1)R2 for δ < 1. This can be verified

by simulation.

IV. E(R, M) BOUNDS FORPOISSONPOINT PROCESS(PPP)
IN TWO DIMENSIONS

A heuristic upper bound can be obtained onE(R, M) for
PPP of intensityλ. Let the volume of the Voronoi region (cell)
of a lattice point in the meshM beVR. The idea is as follows.
If only one point of the processφ exists in a Voronoi cellC
of the regularizing lattice, the optimal mapping would be to
move the point to the center (lattice point ) of the Voronoi
cell.

• Let ε be very small number.
• Expand points ofφ by a factorα forming a new process

φ′. Choseα such that with high probability, only one
or zero points appear in a Voronoi cell of the original
reference lattice. Letλ′ be the new intensity.
i.e., Chooseα such that,P (φ′(C) = 0) + P (φ′(C) =
1) = 1− ε, i.e
exp(−λ′VC)(1 + λ′VC) = 1 − ε . If λ′ is very small,

one can useexp(−λ′VC) = (1− λ′VC), so we getλ′ ≈√
ε/VC , whereVC is the volume of the cell.

• Chooseα =
√

λ/λ′ =
√

λVC/
√

ε
• The energy expended in the above process is

E(
∑

x∈φ ‖αx− x‖). Using Campbell’s theorem [2]

E(
∑

x∈φ

‖αx− x‖) = λ|α− 1|
∫

B

‖x‖dx (6)

• The new process formed by expansion of the old process
is also a Poisson point process [7, pg 18]. Once there
is only one or zero point in each Voronoi region of the
reference lattice, the optimal solution would be to move
to the center of the Voronoi cell. The energy for the point
in one Voronoi cell to move to the center is

Ev =
∫

C

‖x‖dx (7)

• The number of Voronoi cells inB is approximately
VB/VC and the probability for each Voronoi cell to
contain one point isλ′VC exp(−λ′VC)

• The total energy expended is

Er(B) / λ|α− 1|
∫

B

‖x‖dx

+(VB/VC)λ′VC exp(−λ′VC)
∫

C

‖x‖dx

• WhenB = B(0, R), the normalizedEr(B) is

E(R, M)
πR2

/ 2
3
λ
(√

λVC√
ε
− 1

)
R

+
√

ε exp(−√ε)
VC

∫

C

‖x‖dx

A lower bound can be obtained as follows.

• Consider the Voronoi cellsC of the regularizing lattice.
• Move the points ofφ in a Voronoi cell to the center of

the cell.
• This certainly lower-boundsE(R, M) because, each point

x ∈ φ is closer to the center of the Voronoi cell to which
it belongs rather than to any lattice point. Movement to
any other lattice point would require more energy.

• For a PPP of intensityλ, the energy required for this
procedure is given by

E(R, M) ≥ VB

VC
λ

∫

C

‖x‖dx (8)

An interesting but suboptimal mapping is as follows

• Find the Voronoi regions of the reference lattice.
• In each Voronoi cell map the center of the cell to the

nearestx ∈ φ.
• Remove the mapped points of the lattice andφ.
• Continue this procedure with the remaining lattice points

and the remaining points of the processφ.



V. CONCLUSION

In this paper the minimum average energy (regularization
energy) required to move the points of a point process to
unique lattice points is defined. The mapping that attains the
minimum energy is proposed for one dimensional processes.
The regularization energy has been evaluated for one dimen-
sional process by simulation. It is observed from simulations
that regular processes have lower regularization energy and
regularization energy is invariant with respect to lattice po-
sition for some one dimensional processes. Lower and upper
bounds have been proposed for one dimensional processes.
Hueristic bounds on regularization energy for two dimensional
PPP have been presented.

APPENDIX I
BETA PROCESS

Beta process is a homogeneous process of intensity1 and
is parameterized by0 < β < 2.

B(β) =
[ ⋃

k∈Z
{2k, β + 2k}

]
+ U(0, max{β, 2− β})

whereU(a, b) represents a uniform random variable between
a andb
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