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Abstract— Regularization energy is defined as the energy Interval under consideration UniqU_e
required to move the points of a homogeneous point process in a Mapping
=

bounded set to unique points of a lattice. The optimal mapping /\
required for this movement is derived for one dimensional —¢0——
processes, and bounds are derived for the Poisson point process

in one and two dimensions. In addition regularization energy is

evaluated for well known point processes in one dimension by

simulation.
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|. INTRODUCTION Fig. 1. Example of an optimal mapping for one dimensional process and
In sensor networks, the locations of the sensor nodes &r& 2
generally modeled as a point process on a plane or on a line.

Usually the sensors are not placed in a perfect grid (lattice) due . . o . -

to phyZicaI constraints. Sen§or networkg with rgndo(mly p|2:lC upderlylng point process Is fmné.(R, M) IS a @fﬁcult .
nodes suffer from severe disadvantages in terms of connec antity to galculate becau.se the °p“T”a' mapping 1 nontrivial
ity, coverage, and efficiency of communication compared wi rmany po_|nt Process. Thls problem s relatively easy to solye
networks with a regular topology. It is of interest to understa graone dimensional point Process, as Fhe optimal mapping
the properties of the minimum energy required to move ik be converted to a tractable optimization problem.

sensor nodes to unique points of the grid. Another question

that arises is how regularly [1] the points of the underlying 1. OPTIMAL MAPPING FOR ONE DIMENSIONAL

process are arranged. Thus thégularization energyis also PROCESSES

useful to assess the regularity of a point process.
For the one dimensional process, the lattice is an equally

Il. REGULARIZATION ENERGY spaced grid with distance between the lattice points being

Let ¢ represent dinite homogeneoufstationary, isotropic 1 and B(0, R) is replaced with an interva]-R, R]. The
and finite on bounded sets) point process [2]-[5Rih d = regularization energy is denoted By R, ), whered denotes
1,2. Regularization energyn a ball B(0, R) is defined as the fact that there is a lattice point &t
follows. If the energy required to move a unit distance is Lemma 3.1:Let a; < a2 < ... < a, be the points of
1, how much energy is required by the points in the bait N B(0, R) , then for an optimal mapping, f(a;) < f(a;)
to move into a regular grid? Consider a homogeneous poift < j.
process of intensityl on the plane or on a line. Drop an Proof: Let¢ < j and f(a;) > f(a;) and defineS(f) =
equilateral triangular (simplex in the dimension of space undgrf |a; — f(a;)|. Interchangingf(a;) with f(a;) will give an
consideration) mesiM (regularizing mesh) of intensity equal or a smaller value &f( f). If the orderf(a;) < f(a2) <
on the plane. Then the regularization energy is the average < f(a,) is not maintained, one can form a new mapping
minimum energy required to move all the points of the point’ by a finite number of interchanges of the mappifguch
process inside a ball of radiuB centered around origin to that S(f’) < S(f). Hencef is not an optimal mapping. ®

distinct lattice points. Defining it mathematically Lemma 3.2:Leta,b € ¢, a < b and alsa, b be neighbors,
B i then for the optimal mapping, f(b) — f(a) < [b— a].
E(R, M) = E{ijel? Ew%;@ " lz = f@)lI} (@) Proof: Let f(b) = f(a) + [b—a| + k wherek > 0.

Case 1: Letf(a) < a, f(b) <b.

where ' = {f : ¢ " B — M,and f is one to one} and

|||l denotes the distance metric &{. Figure 1 illustrates an |a — f(a)| +|b— f(b)] = a+b—2f(b)+[b—a] +k
optimal mapping for a instance of a one dimensional point

process. Observe that the points can be mapped to latty lemma 3.1 there are no points mapped betwggr) and
points outside the ball. FoR < oo, E(R,M) < oo since f(b) and hence the minimum value is attained wies 0.



Case 2: Letf(a) < a, b < f(b)

**—Poi‘sson %l

la—f(a)[+|b—fO) = a-—f(a)+ f(a)+ af DM
(b — cﬂ +k—0 a5l iﬁiti;rn:ocess 0.2 |

= [b-al=(b-a)+k , mvie Tl

The minimum value is attained whén= 0.
Case 3: Letu < f(a) , f(b) <b

Then f(b) — f(a) <b—a < [b—a]

Case 4: Letn < f(a), b < f(b)

la—fla)|+1b—fB) = 2f(a)+[b—a]—(b+a)+k
The minimum is attained wheh = 0. ] :

By the above two lemmas, the optimal mapping in one o ‘ ‘ ‘ ‘
dimension, for the calculation of(R,§) can be formulated e ! oo 2 e °

as the following optimization problem. Divide the process
¢ N B(0, R) into clusters as follows. Start from the leftmost
point and add a point of the process to the same cluster as that
of its left nearest neighbor if the distance between the point and

its left nearest neighbor is less tharDenote byu; the number , , o
of points in clusteri, and by~; the ceiling of the distance 4] is the average energy required to map the points in the set

between the rightmost point of cluster and leftmost point [t f21-0] in the optimal mappings (R +4,0). This implies
of clusterar, i.e v = min{[(z — y)],z € ais1,y € as)- &(R,0) is an increasing function. SincB(¢(§)) =0 — 0 as
Let z; < 25 < ... < xzy denote the points of the proces§ — 0, we observe thattr;, s[R, R + 6] — 0 and hence

Fig. 2. &(R,0) for processes withh = 1

¢ B(0, R) andm denote the number of clusters. Let be < (£ 0) is a continuous function of. u
mapped to thel/th lattice point. Ifz; belongs to clustet,
and is mapped td/’, thenz;,; is mapped toM’ + 1 if it Lemma 3.5:For any homogeneous point procesof in-

belongs to the same cluster, and is mapped#fo+ «; if it tensity1,
belongs to the next cluster, where the optimal values\of
and k;, are determined by the following theorem. R/2 ,[R]=0

Theorem 3.3:The optimal values o/, x; fori = 1...m— E(R,0)>{ |R]/2+ (R—|R])?> ,0<[R] <05
1 ,where|M| < N,0 < k; < ~; are the values that minimize o [R]/2— ([R] - R)? ,[R] > 0.5_

m ag k—1
Z{Z|M+/3(k,j) +> —xﬂ(lm‘)} (2)  where [R] denotes the fractional part ak. This bound is

k=1"j=1 p=1 achieved by a homoginized lattice i®1) (Appendix I).
where3(k, j) = Z’“:} ap +j Proof: Let V(i) denote the Voronoi region of théh
Proof: Follows from Lemma 3.1 and Lemma 3.2. lattice point with regard to the lattice points.

m Casel : Let [R] > 0.5.

Sincem < | R|, the maximum number of searches require§"?ce each point of the process has to move to some lattice
to find the optimum is much less thaiV|R|L%). Figure 2 Ppoint,
gives& (R, 0) for different point processes of intensity From
Figure 2, one can observe th&tR,0) of the Poisson point E(R0) > E Z min{|z — [2]], | — L$J|}]
process (PPP) is a nonlinear and increasing functiotk of -

Also one can observe that the process with larger minimum
distance have a lower regulaization energy than processes with
lower minimum distance.The process obtained by shifting thet I = E Zx€¢ﬁ[—R, R] min{|z — [z]], | — |z]|}|. Sihce
lattice uniformly has the lowest(R,0). The disturbed lattice in the above procedure, the points which get mappedae
process has points which are exactly unit distance from eable points of the process which belong to the Voronoi region
other (variance of nearest neighbor distance (NND) is zerdj()

which implies that the process is very regular.. This shows that

z€¢N[—R, R]

regularization energy can be used as a metric of regularity. ,
Lemma 3.4:£(R,0) is a increasing and continuous func- =k Z Z |z~ Zﬂ
tion of R i=|—R],...,[R] z€pNV (i)N[—R, R]
Proof: Let § > 0. Then &(R,0) < &(R + 6,0) — — S E[ 3 |x—z'|}

E% s[R, R+0]—-E% s[—(R+0),—R] , WhereE};  s[R, R+ i=|=R|,....,[R] «€énV())N[-R, R



Using Campbell’'s theorem [2] and using the homogeneity of

(b —#— Poisson, E(R,0) ¥
4F | —%— Lattice + U(0,1)
(d) [-R]-1/2 —Fp— Uniform
I = / |l‘ — I_—RJ |d.13 35F Mgtern h=0.45
—R — * - quson, E(R,0.2)
1 R 3l — & — Uniform E(R,0.2)
2 ~ % - Matern, h=0.45, E(R,0.2)
+ Z /2 |x|dw + / |x — (R] |dx P Lattice +U(0,1), E(R,0.2)
i=[~Rl,lR)T 2 LRI +1/2 e
3 R ¥ oep
= 2(2|R]+ 1)/ :z:dx+2/ ([R] — x)dx 15|
0 LRJ+1/2
[R] A
= (R - Ry
057
Case2 : Let 0 < [R] <0.5. 0 ‘
. . 0.5 1 1.5 2 25 3
By similar procedure we ge€(R,0) > L& 1 (R — |R])2. .
Case3 : Let [R] = 0.
By similar procedure we geE(R’ 0) = %- Fig. 3. &(R, M) with lattice at zero and a shifted version.

For a homoginized lattice i.8(1), let the uniform noise in

[0, 1] be denoted by’ |z —y| > 6. Let R € Z™ and choose: > 0 such that it is the

Casel: [R] =0. smallest integer such thayn < 4. Then
&(R,0) = PWU<05)EUIU <0.5)2R
+P(U > 0.5)E(U|U > 0.5)2R
< (1- 1-0.
— 0.5[2R/4+2R/4] = R/2 E(R,0) < { Ny leﬁk po) = ( 05”0)@
4)
Case2: 0 < [R] < 0.5. whereo = 1/n and N = 2Rn.
&(R,0 Proof: Since R is an integer andp is homogeneous
(£,0) &(R,0) = &(R,R). Let B(R,R) = UN"" ¢ whereg, =
— ’ - ’ . ’ - k=1 -
= PWU<[R)CLE] +1)[H]/2 [(k — 1)/n,k/n) for k < N andéy., = {2R}.
+ P([R <U <0.5)2[R])((0.5—[R])/2 + [R]) Define ¥ = {f; f : B(R,R) — Z, f is increasing,f is
+ P05<U<1-[R])(2|R])(1-[R]—-0.5)/2+ [R]) constant orty, f(&x) # f(&;) for i # j and boundefl
+ P(U>1-[R])(2|R|+1)[R]/2 Observe thatf 9: are simple functions [6]. Defméf(+ =
— |R)/2+ (R |R))? {: f(@) > 2}, X" ={a: flz) <z}. Ao XT N X~ =0
N and X+ U X~ = B(R,R). Let u(.) denote the standard
Case3: [R] > 0.5. Similarly we get Lebesgue measure [6].
The functions ofF’ restricted tog belong toF and hence
&(R,0) = [R]/2+([R]-R)
. ER0) = E[imf > Jr- sl
- : . . " feF
Is regularization energy invariant with regard to the position r€¢NB(R,R)

of lattice, i.e. iIs€(R,0) = E(R,0)? One can observe that

E(R,0) = E(R,k) wherek is an integer. Also€(R,0) =

&(R,1-9), since the underlying point process looks the sanfdnced does not depend op, the expectation can be moved
(invariant) from—R and R and relative to the lattice. So it inside. Hence

suffices to check fof < § < 0.5. It is not true in general that

&(R,0) = &(R, ). For example in the case of lattice disturbed &(R,0) < inf E{ S - f(l“)H}

by uniform noise, whenR] = 0, &(R,d) = E(R,0) = R/2. T€T L conB(R.R)
But if 0 < [R] < 0.5, § < [R] andd + [R] < 0.5, then
— 2 2
R0 = LRI+ (R=LR)"+0 B Let 1(/) = B[ Socomminm Iz = F@)]. Then

So in general£(R, §) # E(R,0).

Theorem 3.6:Let ¢ be a one-dimensional homogeneous 1 = E{ Z fﬂx) - o) - Z fﬂx) B x)]
point process with intensith = 1, such thatvz,y € ¢ = veonx reonx



Since X+, X~ are measurable bounded sets, Campbell’s the-
orem [2] can be applied

10 = [ t@-o— [ (f@) -]

(o= fo =S

Let ¢, be the mid point ok, i.e., ¢, = (k —0.5)up. Since f
is a simple function,

[Zf ) (€ N XF) = p(&r N X7

+ [/;de—/)ﬁxdx]}

By construction of¢, and definition of f, u(& N XT),
w(&x N X~) can be onlyu(&) or 0. Let K+ = {k : f(cx) >

Ck}, K = {k : f(Ck) < Ck}. Then
1) = o] Y (Flew) =) = D (flew) — )
keK+ keK—
N
= oY |f(er) — el
k=1
Hence
E(R,0) < flélsfmf(f)
(a) =
= ”0[_N13i?<zvz |21 + k(1 = po) — (1 — 0-5M0)|} (5)
<a1<N £

(a) follows from lemma 3.2 and the fact thgtis increasing
( hence for the optimaf, f(cks1) = f(ck) + 1). [ |

Also NO[Inin—NSzlgN Zgzl e + k(1 — po) — (1 —

05#0)\} ~ ([1/8] — 1)R? for § < 1. This can be verified
by simulation.

IV. &(R, M) BOUNDS FORPOISSONPOINT PROCESS(PPP)
IN TWO DIMENSIONS

A heuristic upper bound can be obtained &R, M) for
PPP of intensity\. Let the volume of the Voronoi region (cell)
of a lattice point in the mesM be V. The idea is as follows.

If only one point of the processg exists in a Voronoi cell”’

of the regularizing lattice, the optimal mapping would be to
move the point to the center (lattice point ) of the Voronoi
cell.

o Let e be very small number.

« Expand points ofp by a factora: forming a new process
¢'. Chosea such that with high probability, only one
or zero points appear in a Voronoi cell of the original
reference lattice. Led’ be the new intensity.

i.e., Choosex such that,P(¢'(C) = 0) + P(¢'(C)
1)=1-—¢ i€
exp(—=A'Ve)(1 4+ MVe)

—¢ . If X is very small,

one can usexp(—\V¢) = (1 — MV), so we get\’ =
Ve/Ve , whereVe is the volume of the cell.
Choosea = \/A/N = \/A\Vo/ /e

The energy expended in the above process
E(> ey lax — zf). Using Campbell’s theorem [2]

B o =) = Ala = 1] [ Jellda

TED

is

(6)

The new process formed by expansion of the old process
is also a Poisson point process [7, pg 18]. Once there
is only one or zero point in each Voronoi region of the
reference lattice, the optimal solution would be to move
to the center of the Voronoi cell. The energy for the point
in one Voronoi cell to move to the center is

Ev:/ || || d
c

The number of Voronoi cells inB is approximately
VB/Ve and the probability for each Voronoi cell to
contain one point is\'Vg exp(—\'V¢)

The total energy expended is

)\\a—1|/ ||z ||dz
B

(Vs V)N Ve exp(—NVe) / iz dac
C

)

<

~
~

E.(B)

When B = B(0, R), the normalizedt,.(B) is

S f :ﬁ(\/%l)R

eexp

/ Jeldz

A lower bound can be obtained as follows.

Consider the Voronoi cell§’ of the regularizing lattice.
Move the points ofy in a Voronoi cell to the center of
the cell.

This certainly lower-boundg (R, M) because, each point
x € ¢ is closer to the center of the Voronoi cell to which
it belongs rather than to any lattice point. Movement to
any other lattice point would require more energy.

o For a PPP of intensity\, the energy required for this

procedure is given by

eRM) = 120 | falds

8)

An interesting but suboptimal mapping is as follows

Find the Voronoi regions of the reference lattice.

In each Voronoi cell map the center of the cell to the
nearest € ¢.

Remove the mapped points of the lattice and

Continue this procedure with the remaining lattice points
and the remaining points of the process



V. CONCLUSION

In this paper the minimum average energy (regulanzatmn B(B) = {U{kaﬁJr%}} +U(0, max{3,2 — 8}

energy) required to move the points of a point process to

unique lattice points is defined. The mapping that attains th , ,

minimum energy is proposed for one dimensional processg&ereU(a,b) represents a uniform random variable between
The regularization energy has been evaluated for one dimé&n2"
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