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Abstract—In this paper, we present closed-form ex- is a rich literature on throughput capacity for wireless
pressions of the average per-node throughput for sensor networks [2], [4], [5] with random or regular topologies.
networks with a slotted ALOHA MAC protocol in Rayleigh The seminal paper [2] shows that, under certain assump-
fading channels. We compare networks with three regular . . . . . .

tions, in a static two-dimensional network wiiti nodes

topologies in terms of per-node throughput, transmit o i
efficiency, and transport capacity. In particular, for square and NN/2 randomly selected source-destination pairs,

lattice networks, we present an analysis of the dependencethe end-to-end throughput of a connection is at most
of the maximum throughput and optimum transmit proba- @(W/\/N), where W is the maximum transmission

bility on the signal-to-interference-ratio threshold required  gte for each node. However, such “order of” results
for successful reception. For random networks with nodes do not provide any guidelines for protocol design, since

distributed according to a two-dimensional Poisson point h lina behavior i b . h .
process, the average per-node throughput is analytically the scaling behavior Is very robust against changes in

characterized and numerically evaluated. It turns out that MAC and routing protocols [6]. All the above research
although regular networks have an only slightly higher work assumes networks with randomly located nodes.

per-node throughput than random networks for the same There are also research efforts focusing on networks
link distance, regular topologies have a ;lgnlflcant bgneflt with regular topologies which allow for mathematical
?/;/hce;n;ri];ereendd-to-end throughput in multihop: connections tractability and provide valuable insight. [4] calculates
' the throughput of a regular square networks with a
. INTRODUCTION slotted ALOHA channel access scheme. [6] proves that
A work 1 ists of a | b the ©(N) upper bound on transport capacity is tight
sensor network [1] consists of a large num S6r regular square networks with path loss exponents

of sensor nodeg which are placed -|nS|de.or. ne_argﬂeater thars. [7] compares the performance of regular
phenomenon. Uniformly random or Poisson dlstrlbutloqgIOOIOgieS with random topology in wireless CDMA

gre vyidely accepted models for the location of the nOdggnsor networks. [8] and [9] evaluate the performance
in wireless sensor networks, if nodes are deployed 16t regular grid and random topologies. They assume a

large quantities and there is little control over where theYorus” network to avoid boundary effects and use the

are dropped. A typical scenario is a deployment from %@(pected interference power to replace the exact inter-

airplane for battlefield monitoring. On the other hanqerence power. In particular at high load, replacing the

depending on thg application, it may also be poss_'bé%tual interference by its mean yields overly pessimistic
to place sensors in a regular topology, for example in & its

square grid. Most of the work above is based on a “disk model”,

Throughput is a traditional measure of how muc\rfvhere it is assumed that the radius for a successful

traffic can be delivered by the network [2], [3] Ther?ransmission of a packet has a fixed and deterministic
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03-29766 and CAREER CNS 04-47869) is gratefully acknowledgedf the wireless channel. Such simplified link models



ignore the stochastic nature of the wireless channel. Qotroduced, For a slotted ALOHA MAC scheme, the
analysis is based on a Rayleigh fading channel modetnditional success probability of a transmission for
which includes both large-scale path loss and stochasticode given the transmitter-receiver and interference-
small-scale variations in the channel characteristicseNa@eceiver distances is derived. Section Il evaluates the
that even with static nodes as assumed in this papgrer-node) throughput for networks with three regular
the channel quality varies because any movement in tiopologies and compares their performance. In particular,
environment affects the multipath geometry of the Rfer square networks, the analysis of the dependence
signal, which is easily confirmed experimentally [10, pof the maximum throughput and the optimum trans-
45]. The significant variation of the link quality whenmit probability on signal-to-interference-ratio thretdho
nodes are immobile is also pointed out in [11]-[13], an(BIR) © is provided. Section IV investigates the average
the shortcomings of the “disk model” are discussed throughput for random networks with and without given
[14]. transmitter-receiver distana&). This section also ana-
This paper addresses the throughput problem fiyzes the transport capacity and end-to-end throughput.
large sensor networks with Rayleigh fading channelSection V concludes the paper.
To provide insight on the impact of the topology on
the networks performance, we compare networks with
a random and three regular topologies. We define theWe assume a flat Rayleigh block fading channel. A
throughput as the expected number of successful packapsmission from node to node j is successful if
transmissions of a given node per timeslot. Téwd- the signal-to-noise-and-interference ratio (SINR) is
to-end throughput over a multihop connection, definegbove a certain threshol@ that is determined by the
as the minimum of the throughput values of the nodé9mmunication hardware and the modulation and coding
involved, is a performance measure of a route and thegheme [12]. The SINRy is given by y = %
MAC scheme. It is assumed that every node alway¥ere( is the received power, which is exponentially

has a packet to transmit (heavy traffic) and that all tiéstributed with mear). Ny denotes the noise power,
networks have the same density= 1. and [ is the interference powei,e., the sum of the

We consider slotted ALOHA [4], which is a simpleréceived power from all the undesired transmitters. Over

random access scheme often used. It assumes thaf ffansmission of distaneéwith an attenuationl®, we
every timeslot, every node transmit with probability have@ = Pyd~*, whereF, denotes the transmit power,
The traffic distribution in a sensor networks is usu? iS the path loss exponent. Our analysis is based on the
ally spatially and temporally bursty,e, busy periods following theorem:

alternate temporally and busy areas alternate spatiallyTheorem 1:In a Rayleigh fading network with slotted
with periods and areas with little or no traffic. It mayALOHA, where nodes transmit at equal power levels
therefore be impractical to employ reservation-base&dth probability p, the success probability of a transmis-
MAC schemes such as TDMA and FDMA that requirsion given a desired transmitter-receiver distatigand

IIl. THE RAYLEIGH FADING LINK MODEL

a substantial amount of coordination traffic and cannatother nodes at distances (i = 1,...,n) is
be implemented efficiently and in a fully distributed
; ; Pyay,....d
fashiort. In any case, the slotted ALOHA scheme is 05e50n
. . n
the simplest meaningful MAC scheme and therefore :exp<7 ©Ny ) H <1 B Op ) 1
provides a lower bound on the performance for more Pody ™ Pl (%)O‘ + O

elaborate schemes. Since areas of the network or periods

with little or no traffic pose no problems, our analysi¥herer is the transmit powetV, the noise power, and

focuses on and applies to busy areas and busy periétighe SINR threshold.

of the network where collisions are unavoidable and the Proof: Let (), denote the received power from the

throughput is interference-limited. desired transmitter and);, i = 1,...,n, the received
In Section II, the Rayleigh fading link model ispower from n potential interferers. All the received

powers are exponentially distributede., pg,(¢;) =

In general this problem is NP-hard. 1/@1-6.*%‘/@, where Q; denotes the average received



power Q; = Pid;*. The cumulated interference powewhich is the Laplace transform of the interference power

at the receiver is I evaluated at the SIR thresho®i®
7= - 5,0, Proof: With unit transmit power, the mean power
_Z v from the i-th interferer at distance; is 1/r®. The

Laplace transform of the exponential distribution with

wheresS; is a sequence of ||d Bernoulli random variables
Si d meanl/u is /(v + s), thus the Laplace transform éf

with P(S; = 1) = p andP(S; =0) = 1—p. The success

probability of a transmission is s [18] .
Prtytronnts = E1[BIQ0 > O + No) | 1] 11 (2 1)
=1
_ @(Z:‘L:1 SiQi + NO) n
=Eg,s [exp ( — Q )} H 4)
0 ey 1+ 7““/3
= exp ( ®N0>EQ S [HGXP ( (%Qi))} From (2) and withr; : d;/do (normalized distances), if
Qo Qo No =0, ¢ = /%0 :
0 pr—
ONy \ 1 n
=exp | — — P(S;=1
< Pody ) 21;[1{ ( ) A | | ( : +na/@) (5)
o) ) ; =1
- / exp ( - Q(é >PQi(qz‘)dqz' + P(S; = 0)} we get (3). [
0
B ONy \ 1 D [1l. REGULAR NETWORKS
P ( a P0d5a> 1:[1 (1 + @(%)0‘ 1 _p) In this section, we investigate networks with three
ON n @ regular topologies (square, triangle, hexagon) in which
—exp( f]a> (1 - +) (2) every node has the same number of nearest neighbors
Pody™/ i (g—;) +0 and the distance between all pairs of nearest neighbors

m s the same.
Note that in Theorem 1, the success probability &. Square networks

obtained without knowing who is transmitting among \yse first analyze square networks withnodes placed
the n nodes in each timeslot. We are interested in the ihe vertices of a square grid with distantéetween
interference-limited case, so we focus on the interferengg pairs of nearest nodes (density. The next-hop
part of (2),i.e, the second factor. This implies thatecejver of each packet is one of the four nearest neigh-
the results obtained will have to be multiplied by thgor nodes of the transmitter, so the transmitter-receiver
noise term that is easy to determine and therefore Rgtianced, — 1. If the receiver nod® is located in the
included in our derivations. In addition, by increasingenter of the network as shown in Fig. 1 and notlés

the transmit power, the noise term approacheso our he desired transmitter, the success probability for node
results represent MAC-dependent bounds that can B€,55ed on (5) can be written as:

approached but not exceeded even if the transmit power

3 4

were not constrained. Py(p) = (1 - 1a@f@) : (1 - (\/;)ﬁ)

Corollary 2: Under the same assumptions as in The- VN2
orem 1 but withNy = 0 and unit transmit power ' H {(1 __©p )4. (1 B Op )4
P, = 1, the success probability given a desired link of - i+ 0 (V2i2)> +©
normalized distance, = dy/dp = 1 andn other nodes ﬁ ( op )8}
at normalized distances = d;/d is: . 1- . (6)

" =1 ( /i2 _|_j2)a _|_@
Pojroryyrn = H (1 - ﬁ) =L1(0), (3) The first term in (6) accounts for the other three nearest

3The identity between the Laplace transform of the interference
2A similar calculation has been carried out in [15] for a networkand the reception probability in Rayleigh fading channels has been
with known simultaneously transmitting nodes. pointed out in [16], [17].
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Fig. 2. For a square network with0 x 40 nodes, with® = 10,
(a) the analytic throughpuj(p) based on equation (6) and (b) the
simulated throughput.
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Fig. 1. The topology of a square network. No@eis the receiver gmaX(@)' From (5),g can be written as
and nodeA is the desired transmitter, whedg = |OA| = 1. n

p

g:p(l—p)H(l—m), (8)
=1 4

neighbor nodes of the receiver; the second term fomh%vherer» = d;/dy

diagonal nodes at distangé2; all the other terms from Sincepz ’

the nodes located on the dashed squares with edge J

in Fig. 1. The throughpdtis given by

pt = argmax, g(p) = argmax, log (Q(P))f we
maximize

log(g) =log(p) + log(1 — p)
9(p) = p(1 = p)Py(p), (7) - p

+;log(1 41—#7"?/@)’ 9)
where p is the probability thatA transmits andl — p . 6 it
) . . log(1 ~uaf Iz, Id
is the probability thatD does not transmit in the sameUSIng og(1 + )~ for smallx,” yielding
timeslot. The analytic throughput vs. p based on (6) pgpt — Popt(1 +25) + s =0, (10)
and (7) for a regular square network with x 40 nodes

with node densityd = 1 is displayed in Fig. 2 (a). with
For a = 4, the maximum throughpu,.x, = 0.0247 is s = % (11)
achieved at an optimal transmit probability,, = 0.066. > i1 T+re/©

The transmit efficiency, defined &3¢ = gmax/Popt, IS Note r; = d; for dy = 1. S0, popt is given by

37.4%. The simulation resuitof the throughput for a 1

40 x 40 square network is plotted in Fig. 2 (b), where Dopt = S + 5(1 —V1+ 452). (12)
for a = 4, the maximum throughpW,., = 0.0252 is

achieved ajpoy, = 0.066. It is shown that the analytic 9max €N be WItten a%max = popt (1 — Popt) La(Popt),
results match the simulation perfectly. where P;(popt) is obtained by pluggingoy: into (6),

For the analyss of the troughput as a function 'R0 B0 Y G S e o
©, we need to determing,:(©) and gm.x(©). We y y app

. L . involved in the derivation oAnalytic lislog(1+z) ~ =.
use three analytic approximations to fipg,:(©) and .
Yue app «(©) For a = 4, we usei? to approximatel? for the nodes

located in one quadrant. As shown in Fig. 3, the distance
*The throughput is calculated as the throughput of the centef nodei (i = 1,...,8) in the first quadrant to the

node. This is the worst case since most other nodes experieaneeeeiver node0 is d.. Table | compare$l4 and i2 for
lower interference. In the case of infinite networks, the interference v v

distribution is the same at every node. i = 1,...,8. By Euler's summation formuladgl ~ i
*We use MATLAB to simulate the MAC scheme and the Rayleigh

fading channel. For the simulation, we consider only the center node$The approximation is accurate for smalin the range of interest,

to avoid boundary effects. ie, 0<p<0.3.
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allows a simplification (the node at distanteis the
desired transmitter):

k+1

1 k+3/2 3
—_— \/@( arctan — arctan )
; 1+ 22/@ \/@ 2\/@ % 10 15 20
(13) 6 (dB)
! 14
s (14) Fig. 4. For a square network with0 x 40 nodes anda = 4,

3
the numerical results and analytic results frémalytic 1, Analytic 2

1 - 3 7
4\/@<2 arctan 2\/6)

. and Analytic 3for (a) the relationship betwe and ©; (b) the
where 4 in (14) comes from the fact that nodes arpdationszip betwe(e%mx and©. P Pt ®)

located in4 quadrants. Plugging (14) into (12) is our

methodAnalytic 2 impact on the throughput (thys,,;) for small © (see

In methodAnalytic 3 we use the approximation=
1/(44/©), which is within20% for the practical range
9/(2cot(0.8))? ~ 2.4 < © < 9/(2cot(1.2))? ~ 14.9,
and substitute it into (12),

(13)). Thus for smalb, this lower interference leads to
a higherp,p; than forAnalytic 1 The transmit efficiency
iS Teff = Gmax/Popt = (1 — popt)e_pf’r’t/s, which is

monotonically increasing fromim; .o Tef -1

— ~
~

(&

1 1 1 0.37 to lim, .~ Teff = 1/2. The upper bound is achieved
Dopt = m + 5(1 —/1+ 10 ) (15) if the interference goes to zero, in whigh,, = 1/2
and gmax = 1/4. For the lower bound, as — 0, we
Based on (9) and (11}m.x is given by have pop; — 0 and gmax — 0, and Teg converges to
Gmax = Popt (1 — Popt) € Pot/%. (16) e~ . Hences is a measure for spatial reuse. Indeed

for s — 0, which happens forv — 0 7 or © — oo,
The numerical result obtained by direct maximizatiohe network does not permit any spatial reuse. In this
of (6) for different® is compared with the results fromease, the transmit efficiency reduces to the efficiency of
the three analytical approximations in Fig. 4.Analytic  conventional slotted ALOHA [19], where for a network
2, approximating interfering nodes at distant;eby the \ith N nodes,pops = 1/N and Terr = limy_o0(1 —
larger distance!/2 (shown in Table I) results in lower

interference. The interference has a more significantin fact, o — 2 is sufficient for infinite networks..



(a) Triangle Network (b) Hexagon network

Fig.
Fig. 5.
network.

validates our approximations. Note that whiealytic 1
provides a better approximation, the other two methods
yield closed-form expressions that are much more easily

Triangle

Hexagon

0.4

0.6

(@)

6.

0.06
0.05
0.04 “J
0.03 ‘w‘
0.02 ‘

0.01

TABLE I
1/N) = e~ [4]. The fact that our limit coincides compariSON OF SQUARE TRIANGLE AND HEXAGON NETWORKS
with the limit for conventional slotted ALOHA further rora = 4 aND © = 10, WHERE Popt , gmax AND T DENOTE THE

(b)

AND TRANSMIT EFFICIENCY.

The analytic throughpuj(p) vs. p for two-dimensional

The topology of (a) triangle network and (b) hexagoRetworks with (a) triangle topology and (b) hexagon topology, where
© =10 and N = 1600 nodes.

OPTIMUM TRANSMIT PROBABILITY, MAXIMUM THROUGHPUT

evaluated.

B. Triangle networks and hexagon networks

Popt Jmax Tem d() gmaxd()

Square | 0.0660 | 0.0247 | 0.37 1.0 0.0247

Triangle | 0.0570 | 0.0213 | 0.37 | 1.0746 | 0.0229
Hexagon| 0.0870 | 0.0326 | 0.37 | 0.8774 | 0.0286

Some other regular topologies of interest are the
triangle topology and its dual, the hexagon topology

(Fig. 5). For each triangle, there are three vertices and g&nventional slotted ALOHA and does not depend on

nearest neighbors for each vertex, while for the hexag(BH‘,a

there are six vertices for each hexagon and three nearest

neighbors for each vertex. Again, the next-hop receiver
of each packet is one of the nearest neighbor nodessg)I
the transmitter, so the transmitter-receiver distadcés
equal to the side length of the regular polygon. In th
triangle network, each node is located in a hexagon wi
area@d%. For node density i, dy = \/% Similarly,

for hexagon networksjy = E for density1.

The calculation ofP; in (6) depends on the geometry
of the node placement. Similar to the derivation ol ..
square lattice networks as in (6), we get the relationshie
between the throughpyt and the transmit probability

0.06

and compare the performance of triangle and hexagc,,, /
networks in Fig. 6 (a), (b). To compare the performanc,,/

of the three network, we introduce tlransport capacity

0

topology.

IV. RANDOM NETWORKS

ere, we assume that the positions of the nodes con-

d,=0.55216

ute a Poisson point process. Note for large networks,
this is equivalent to a uniformly random distribution for
%eq practical purposes. For a given realization of a random
network with N = 1600 nodes, Fig. 7 (a) displays the
analytic throughput based on (5) for a node in the center

d,=055216

0.1
0.08
0.06

o
0.04

0.02

a=4

——analytic
——simulation

which can be defined a8 := ¢,,..do. The comparison
of square, triangle, and hexagon networks do& 4 is
shown in Table Il. The performance difference amonFq
the three topologies can be explained by the distarw'%1

0.2

0.4

(b)

0.6

0.8

. 7. For areceiver node in the center of a fixed network realization

R ) N = 1600 nodes around andy, = 0.5522, (&) analytic result
and number of the potential interfering nodes. Note thétthroughputg vs. transmit probabilityy based on equation (5) and

the transmit efficiencylw is very close to the one of (b) simulation result ove2000 runs comparing with analytic result
for a = 4 and© = 10.



area with the transmitter-receiver distanfe= 0.5522. Integrating (21) with respect to the joint density (19),
The simulation result of its throughput based 2000 and in particular, evaluating it foft = 4, we obtain
runs is compared with the analytic result fer= 4 in oo TN
Fig. 7 (b). It is shown that they match each other well. Pyq, :/ (AW)Ne_A”N / /
In the following, we will investigate the throughput 0

N
averaged over network realizations when the transmitter- H =} + ( p)Ody doy - dzy_y }de_
receiver distancedy is fixed (Section IV-A) and not fixed i1 v} +Od;

(Section IV-B). (22)
A. Average throughput for fixed, By applying a similar inductive technique as in [18], it

In this case, we assume the distance between @@ be shown that
desired transmitter and receiver is fixed and there are
N other nodes constituting a two-dimensional Poisson / / H 4 da;l RN (]
point process. Although (5) gives the success probability “° z + @d

conditioned ondy, ds, . .., dy, we still need to find the P ry \(\V!
! ’ = P arctan .

joint density of di,ds,...,dy (ordered distances). It (N — 1)-( 0 (\/®d3)>

is well known that for one-dimensional Poisson point (23)

processes with density, the ordered distance fromCombmlng (22) and (23), we have

nodes to the desired receiver form the arrival times of a

Poisson process [18]. The inter-arrival intervals are iid p, | _/OO ()N e_meQ + (1 - p)Od;
exponential with parameter (N -1)! 22 + Od}

N-1
famd, (@5 — xi_1) = Ae A @—Tim1), (17) (:L’ — py/ ©d} arctan ( )) dz. (24)

So for the ordered distan®e< d; < --- < dy, the joint
density function of the inter-arrival intervals is

X
NGr
Based on (24), we numerically evaluate the average
throughputE[g|do] = p(1 — p) Py 4, (averaged over all

fdydoydn (T1, T2, ,ZN) network realizations) and plot it as a function pfin
=Fiy oy —dy (T1, T2 — X1, TN — TN 1) Fig. 8 (a) for a network with node numberé = 100,
:(Ae—kxl)(Ae—)\(xQ—:m»”.(Ae—k(mN—mN_l)) 121 and 144, wheredy, = 1. It is shown that they
N are very close, indicating that only a portion of nodes
=ATe N, 0<z;<ay<---<ayn (18)

interferes at the receiver and that nodes further away have
When nodes are distributed according to a twdittle impact on the transmission. Fig. 8 (b) compares
dimensional Poisson point process with densitythe the analytical average throughplifg|dy] (dashed line)
squared ordered distances from the desired receiver hageording to equation (24) with the simulation result of
the same distribution as the arrival times of a Poisstine throughput for center link withy = 1 averaged over
process with density\w [18]. The squared ordered10000 network realizations (marked by). Note that the
distances have a joint distribution with density analytical approach used to derive (23) is restricted to
Amzn a = 4. Luckily, this value ofa is of significant practical

s o — Am) Ve~
fag @ (@1, 2n) = (Am) e ’ relevance [21]. For other values af one has to resort
0<z <2< <aw, (19) to simulation.

because from [20], we have

B. Average throughput for variablé
fea (@ —xii1) = Awe @) (20)

In the previous analysis, we assumed the transmitter-
The conditional success probability can be written aeceiver distancd, is fixed andN potential interfering
(see (5)) nodes are uniformly distributed around. Now we assume
(@)% + (1= p)Ods thgt the receiver chated gt the centgr selects its nearest
Pydody, o dy = H (@)% + 0ds 0, (21) neighbor node as its desired transmitter. Then there are
i=1 N — 1 nodes further away than the desired transmitter.
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Fig. 8. Fora = 4 and® = 10, (a) The analytical average throughput
Elg|do = 1] based on equation (24) for networks with node number
N = 100, 121 and 144. (b) Comparison of the analytical average

throughputE[g|do = 1] (dashed line) with the simulation result fo
the center link ove 0000 network realizations-{ mark), where the
receiver hasV = 144 potential interfering nodes around.
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—— Analytic
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Fig. 9. Fora =4 and® = 10, E[g] vs. p for random network
with N = 144. The analytic result from (26) and (29) is displayed

by solid line; the simulation result ovai0000 runs by+ mark.

and
fo i@, enoa|dg) =
()\ﬂ_)N—le—ATr(:L’N,l—dg)’
where0 <dj < a1 <---<ay_1. (27)
By induction, it can be shown that
xz + (1 — p)Od}
dry...dxy_
/ /d? Zl_[ e @d4 r1...deN_o
- - _ 4
_(N_2)|{xN | —d2— p\/Od}
2 N-2
arctan ( N1 ) — arctan ( dy )]} . (28)

NGT: VOds

The success probability averaged ovgris given by:

P, — / fa, (2) Py,

r

(29)

The distance to the nearest neighbor has the Rayle@absntute (27) and (28) into (26) and evaluate (29) with

density function (as shown in [15]):

fa,(z) = o2rxe ™. (25)

Since dy is the nearest distance? in (21) can be
varying from d? to d?,,. So we integrater; from d

to z;41:

TN-1

o0
Py4, =/2 fdf,...,di,lldg(xh--wa—ld%)){/dQ
NI }

p)Od} de,

dapn_
.’17+@d4 TN—1

Sdry_o

(26)

(25), we obtain the relationship betwe&fy] = p(1 —
p) P and p, which is plotted in Fig. 9. It is shown that
the analytic (solid line) and simulation result (marked by
+) match each other perfectly.

Fig. 9 implies random networks have better average
throughput for local data exchange than regular net-
works. This can be explained byy, the transmitter-
receiver distance. In random networks, a varialie
leads to a variable throughput. Fig. 10 (a) displays
E[g|do] vs. p for dy from 0.5 to 1.5. Fig. 10 (b) shows
the relationship ford, = 0.1, 0.5, 1.0 and 1.5. Not
surprisingly, smallerdy results in higher throughput.
For the variabledy case, it is assumed that the desired
transmitter is the nearest neighbor of the receiver. With
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Fig. 11. Comparison of the average throughput of regular square
(a) network and random network. For both networks= 1600, do = 1,
a=4and© = 10.

0.25 T
__d=01

_..d
.d
\...d

o within sector¢. The probability density ofly is given
by [15]: 2
-15 | fa,(x) = zpe™™ /2, (30)

If the routing sectow = 7/2, thenE[dy] = 1. Fordy =
_____ 1, Fig. 11 displays the throughput for square network
o.0s f7 ] and random network wittv' = 1600. It turns out that for
‘ the same transmitter-receiver distance, square networks
oz TToa os o8 1 have a slightly higher average throughput than random
networks.
(b) We compare the transport capacity.xdo of regular
and random networks. Fig. 12 (a) shows.x Vvs. dp and
Fig. 10. Fora = 4 and® = 10, average throughput ([g|do] popt VS. dp for a random network. Fig. 12 (b) compares
‘;iaplfgr do from 0.5 10 1.5. (b) E[gldo] vs.p for do = 0.1, 0.5, 1.0 the transport capacity of random and regular networks.
It is shown that at a specific transmitter-receiver dis-
tancedy, regular networks slightly outperform random
tworks in terms of transport capacity.
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the pdf of (25), the probability thad, is greater than
1 (the inter-node distance in square regular networﬂ)e
is Pldy > 1] = e ™ = 0.043. So for most nodes, C. End-to-end throughpujzx in a random network
the received signal power from the desired transmitterin wireless sensor networks with multihop communi-
is greater than that in regular networks. In Fig. 1@ation, the end-to-end throughput (the minimum of the
(b), for dy = 0.1, it is shown that the strong signalthroughput values of the nodes involved) of a route with
power resulting from very smalf, offsets the impact an average number of hops is a better performance indi-
of interference even for high transmit probabilitiegs  cator than the average throughput. For two-dimensional

Now consider the generic routing strategy from [15Fandom sensor networks (areax m, density1, rout-
each node in the path sends packets to its nearest neigf-within sector¢) with uniformly randomly selected
bor that lies within a sectap, i.e., within +¢/2 of the source and fixed destination located at the cSrnee
source-destination direction. The previous scheme whean approximate the average path length in hops
dy is obtained as the distance to the nearest neighbor B~ _i (31)
makes no progress in the source-destination direction. Dn’
Such a choice ofly would correspond to routing within ] o

For the many-to-one traffic typical in sensor networks, we assume

_‘b =2, Clearly an |neff|C|.ent choice 0?5 More sen3|.ble the data sink for all connections to be in one of the corners of the
is ¢ < . Letdy be the distance to the nearest neighbgquare) network.



0.5 P 0.01 i
v p — =Tt
\ _e -
Q opt - - - =2
0.008 1
—+Ynax e @=TU3
0.006
i
[=2)
0.004f.
0.002
Q-0 0 s ;
=29e 9 0 0.1 0.2 0.3 0.4 0.5

2 2.5

p

Fig. 13. The average end-to-end throughput of random networks
for different routing sectorg, wherea = 4 and© = 10.

005 e Random So the average path length in hops can be approxi-
0.0l o Square mated by plugging (32) and (33) into (317). To evaluate
A triangle the end-to-end throughput of a route withhops, we
20,03 . % hexagon | use a semi-analytic approach by generatinghamop
U-é ¥, path with each hop length obtained as a realizatio® of
0,02/ ] according to pdf in (30), and evaluate the throughput of
\ each hop based on Fig. 10 (a). The average end-to-end
0.01f \ ' throughput is then obtained by taking the minimum of
Eldgl=1 each path and averaging the minimum over the number
% 05 1 g 15 5 25 of realizations of the simulated routes. Fig. 13 shows

(b)

that the maximum end-to-end throughpuiz is 0.0086,
0.0053 and0.0039 for ¢ = m, /2 andx/3.
What is the end-to-end throughput for regular net-

Fig. 12. WithN = 1600, @ = 4 and© = 10, (a) gmax Vs. do and WOrks? It can be directly obtained from Fig. 2 (a) and

poptd vs. do gor a ralmdom netxvork_, Ir(]b)htranSpOrt Gapa@é}{axdg fOOIIr Fig. 6, which is0.0247, 0.0213 and 0.0326 for square,

random and regular networks with the same size and node den

For random networksE[do] = 1 for ¢ — /2. sfFYangIe and hexagon networks. For regular networks.,
every hop has the same length, and the throughput is

where 7 denotes the expected distance between tﬁglgulqted for a node in the center of the network,
source-destination paif) the expected hop length and Wh.IC'h is the worst case, so the end-tq-end thro_ughput
the expected path efficiency, where the path efficiency(g1In|rnurn throughput of all the nodes involved) is the
the ratio between the Euclidean distance and the travelfcte]gJUQhlout of the center node. In terms of the end-

distance of a pathDn can be viewed as the effective h0|50'enOI thro_ughPUt for multihop communication, regular
length — the average hop length projected in the desirg(atworks significantly outperform random networks. For

source-destination direction. The mean distance fromlaéger networks, the benefit is larger since larger

random point in a square to a corner can be derived frJ%SUItS in longer paths.
[22, Exercise 2.4.5]: V. CONCLUSIONS

_ V2 1 1 We have shown that for a noiseless Rayleigh fading
= |3 " garctanmﬁ)] m & 0.769m,  (32)  penvork with slotted ALOHA, the success probability of
From [15], we know that a transmission is the Laplace transform of the interfer-
’ ence evaluated at the SIR threshéld Even though for
D = l7 n= zsm(?). (33) sensor networks, more elaborate MAC schemes might
2¢ ¢ 2 be used in practice, the analysis for slotted ALOHA



provides lower bounds of the performance for other
MAC schemes and can serve as a benchmark.

Among the three regular networks (square, triangle,
hexagon), the hexagon network provides the highest
throughput since every node has only three neare
neighbors which is the smallest number among the three
networks. The analysis of the dependence of the maxi-

mum throughpuy,.x and optimum transmit probability

Transactions on Communicatignsl. COM-31, no. 8, pp. 974—
982, Aug. 1983.

] M. Grossglauser and D. Tse, “Mobility Increases the Capacity

Popt ON © for square networks shows that the transmit

efficiency Tegr = gmax/Popt Varies frome=! to 1/2 as
the spatial reuse increases frammto oo. In practical

(8]

networks ¢/© < 1) that are optimized for throughput,

the spatial reuse does not permit a transmit efficienceé
close to1/2. So, in most cases, it will be closer to

]

e~!, which implies that at maximum throughput, the

packet loss rate is abo60%, which is surprisingly high.

These results hold quantitatively for the other two regular

networks — triangle and hexagon networks.

[11]

For random networks, two scenarios are considered

— fixed and variable transmitter-receiver distangge

[12]

In the latter case, the throughput is averaged over the

actual distribution of the nearest-neighbor distadge

Conditioned ond, being the same for random and
regular networks, regular networks slightly outperform

random networks in terms of (per-node) throughput a

transport capacity. In the case of variakle where the
receiver selects the nearest neighbor node as its desired vol- 8, no. 5, pp. 762771, June 1990.

: 1
transmitter, the average throughput of random networks

3]

is better than that of regular ones. This is because strong
signal powers resulting from very small, offset the [16]
impact of interference even for high transmit probabil-

ities. This result, however, only pertains to local data7]
exchange. When multihop communication and effective

routing is taken into account, regular topologies have a
significant advantage in terms of end-to-end throughput.

(1]

(2]

(3]

(4]
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