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Abstract—This paper focuses on the meta distribution of
the signal-to-interference-plus-noise ratio (SINR) and rate
in heterogeneous cellular networks (HCNs) with multiple
tiers of base stations, where disjoint frequency bands are
allocated among tiers and users are associated with each
tier with a biased average received power. The meta distri-
bution provides a much sharper version of the “SINR/rate
performance” than that merely considered at the typical
user through spatial averaging, which gives deep insight
into the impacts of heterogeneity, resource coordination,
user association, etc., on the performance of individual
users. Using tools of stochastic geometry, we develop a
general and tractable framework for a fine-grained analysis
for HCNs with joint resource partitioning and offloading.
With it, we derive exact analytical expressions as well
as their asymptotic behaviors for the overall and per-
tier moments of the conditional SINR and rate distribu-
tion given the point processes, based on which the exact
meta distributions are given. We show that although the
offloaded users suffer from SINR degradation, the rate
performance of all individual users can be improved via
load balancing in conjunction with appropriate resource
partitioning.

I. INTRODUCTION

Heterogeneous cellular networks (HCNs) are envi-

sioned as a promising approach to address the challenge

of the explosive mobile data traffic growth and universal

seamless coverage through deploying macro-, pico-, and

femto-base stations (BSs) [1]. Due to the load disparity

between the macro and small cells, it is desirable to

offload users to small cells via flexible cell association

and proper spectrum allocation. As a commonly used

spectrum allocation scheme, spectrum partitioning has

its practical utility since future networks are definitely

fusions of multi-standard and multi-band networks and

thus different types of BSs are quite likely to operate

in non-overlapping bands [2, Chap. 5.2]. It has been

established that these techniques are strongly coupled

and directly influence the user-perceived rate [3–5], how-

ever, the current analysis using stochastic geometry for

the HCNs mostly focuses on the typical user by spatial
averaging, i.e., the evaluation of a certain expectation

over the point processes modeling all tiers of BSs.

Fig. 1. The histogram of the empirical probability density
function of the success probability for two-tier Poisson HCNs
with spectrum partitioning, considering the power path loss law
with Rayleigh fading and strongest-BS association (on biased
average received power), where λ1 = 1/(π2002), λ2 = 10λ1,
α1 = α2 = 4, B1 = 1, μ1 = 46 dBm, μ1 = 100μ2, θ = 2.

While this expected value is certainly important, it

cannot reflect the performance variation among the in-

dividual users in the same tier or different tiers and

how such variation is affected by offloading and resource

allocation strategies. For example, Fig. 1 compares the

distributions of the success probability among users in

each tier and the overall two-tier HCN with different

biasing factors and transmit powers. It is shown that the

overall distribution of the success probability in each

case (i.e., averaging over tier 1 and 2) is almost the

same while the per-tier success probability distribution

is greatly different. This indicates that sometimes a

macroscopic quantity by averaging over all the point

processes conceals the actual performance of individual

users and its variations influenced by the load balancing

and resource partitioning. It is even worse for analyzing

the user-perceived rate since the varied load distribution



among cells and tiers is also averaged. Thus, it is crucial

to study the fine-grained performance for HCNs with

joint offloading and resource partitioning.

A fine-grained performance analysis was formally

formulated in [6], where the meta distribution of the

signal-to-interference ratio (SIR) was introduced and

analyzed in homogeneous Poisson networks. Since the

meta distribution is the distribution of the conditional

success probability given the point process rather than

just the mean, it provides a much sharper version of the

“SIR performance” than that most commonly evaluated

at the typical link. Since then, the meta distribution has

been applied to characterize a series of refined perfor-

mance metrics in various types of wireless networks

[7–10]. However, these studies merely concentrate on

the homogeneous (or, equivalently, single-tier) networks.

Although a very recent work [11] investigated the SIR

meta distribution in HCNs with cell range expansion,

the authors did not consider the spectrum allocation and

offloading jointly as well as their direct influence on the

user-perceived rate.

In this paper, we focus on a fine-grained analysis of

a multi-tier HCN with joint resource partitioning and

offloading, expecting to get deep insight into the impacts

of heterogeneity, resource coordination, user association,

etc., on the performance of individual users. Specifically,

we propose a general and tractable framework to analyze

the overall and per-tier moments of the conditional SINR

and rate distribution given the point process as well as

their asymptotic behaviors. With them, we derive exact

analytical expressions for the meta distribution. The

theoretical results leads to microscopic insights for the

intricate relationships among the performance (i.e., the

SINR and rate) of users in the same tier or different tiers,

the biasing factor, and the spectrum allocation strategy.

II. SYSTEM MODEL

A. Network Model

We consider a downlink HCN model consisting of

K independent network tiers, where the BSs in the k-

th tier are spatially distributed according to a homo-

geneous Poisson point process (PPP) Φk with density

λk, k = 1, 2, . . . ,K, with fixed transmit power μk.

We denote by Φ =
K⋃

k=1

Φk the locations of all BSs in

the network. The locations of the users are modeled as

another independent homogeneous PPP Φu with density

λu. The channel gain between the transmitter and re-

ceiver is modeled by the large-scale path loss and the

small-scale fading. A deterministic path loss function

�k(r) = r−αk is adopted, where r is the distance

between the transmitter and the receiver, and αk is the

path loss exponent in the k-th tier. The small-scale fading

coefficient associated with node x ∈ Φ is denoted by hx,

which is an exponential random variable with E(hx) = 1

(Rayleigh fading), and all hx are mutually independent

and also independent of Φ.

B. User Association and Spectrum Allocation

We assume that different tiers of BSs are allocated

separated frequency bands, and the BSs in tier k are

allocated the bandwidth ηkW , where ηk is the resource

partitioning fraction of the k-tier and
∑K

k=1 ηk = 1,

ηk > 0, and W is the total bandwidth. The orthogonal

transmission is considered, where equal time (and/or

frequency) slots are allocated to each user.

We consider a flexible user association that each user

is associated with the BS that offers the strongest biased

average received power. Letting Bk be the association

bias for the k-th tier, given a user located at y, the serving

BS is given by

X(y) = arg max
k∈[K],x∈Φk

μkBk|x− y|−αk , (1)

where [K] � {1, 2, . . . ,K}. Letting v(x) be the index

of network tier which the BS x belongs to, the received

SINR of the typical user at the origin is

SINR� S

I+σ2

=
μx0�v(x0)(|x0|)hx0∑

x∈Φv(x0)\x0

μx�v(x0)(|x|)hx+σ2
, (2)

where x0 denotes the serving BS, μx is the transmit

power of BS x and if x ∈ Φk, μx = μk, and σ2 is the

noise power.

C. Meta Distribution

The SINR and the data rate are two fundamental

performance metrics for users in cellular networks, and

we focus on the fine-grained characterization of these

two metrics. Letting T be the (random) data rate of the

typical user, the meta distributions represent the comple-

mentary cumulative distribution functions (CCDFs) for

the random variables in the following form

Ps(θ) � P
o(SINR > θ | Φ),

Pc(τ) � P
o(T > τ | Φ), (3)

where θ and τ are thresholds for the SINR and rate,

respectively, and the conditional probability is taken over

all the other random effects (such as the fading, the

channel access, etc.) given the BS point process, and the

randomness of (3) is brought by different realizations of

Φ. Therefore, the meta distribution is defined as

F̄ (y, x) � P(P (y) > x), y ∈ R
+, x ∈ [0, 1], (4)

where P (y) is Ps(θ) or Pc(τ) corresponding to y = θ
or y=τ . Due to the ergodicity of the point process, the

meta distribution can be interpreted as the fraction of

links in each realization of the point process that have a



SINR (or rate) greater than θ (or τ ) with probability at

least x.

By such a definition, the standard success probability

(or rate coverage probability) is the mean of Ps(θ) (or

Pc(τ)), obtained by integrating the meta distribution (6)

over x ∈ [0, 1]. The standard success probability (or

rate coverage probability) answers the questions “Given

a threshold θ (or τ ), what fraction of users in the

whole network can achieve the required SINR or rate

on average?”, while the meta distributions provide fine-

grained information for the individual user and answer

more detailed questions such as “What fraction of users

achieve a target link reliability given a threshold θ (or

τ )?”. Since a direct calculation of the meta distribution

seems infeasible, we will derive an exact analytical

expression through the moments Mb(θ) � E
[
Ps(θ)

b
]

and Sb(τ) � E
[
Pc(τ)

b
]
.

III. THE META DISTRIBUTION FOR HCNS

In this section, we first derive the per-tier moments

of the conditional success probability, based on which

the per-tier and overall moments of the conditional rate

coverage are given. Then we give the meta distribution

of the rate for HCNs.

A. Moments of the Conditional Success Probability

The following theorem gives the per-tier moments of

the conditional success probability.

Theorem 1. Given that the typical user is served by tier
k, the moments of the conditional success probability are

Mb|k(θ)=
1

Ak

∞∫
0

exp

(
−2 F1(b,−δk; 1−δk,−θ)r

−bσ2θ

μk

( r

πλk

)
αk
2−

∑
i∈[K]!

πλi

(
Biμi

Bkμk

)δi
(πλk)αk/αi

r
αk
αi

)
dr, (5)

where b∈C, δk = 2
αk

, [K]! = [K]\{k}, 2F1 is Gaussian
hypergeometric function and

Ak=2πλk

∞∫
0

r exp

(
−π

∑
i∈[K]

λi

( μiBi

μkBk

)δi
rαkδi

)
dr. (6)

Proof: Define the nearest-point operator

NP(Φ) � arg min{x ∈ Φ: |x|} (7)

and the reduced point process Φ! � Φ \ {NP(Φ)}.

Given that the typical user is served by a BS in the

k-th tier, we have x0 = NP(Φk), and the conditional

success probability of the typical user served by tier k
is

P
o(SINR > θ | Φ, x0 ∈ Φk)

= P
o
( μk�k(x0)hx0∑

x∈Φ!
k

μk�k(x)hx + σ2
> θ | Φ, x0 ∈ Φk

)

=E

{
exp

(
−θ

σ2

μk
+
∑

x∈Φ!
k
�k(x)hx

�k(x0)

)
|Φ, x0∈Φk

}
= e

− σ2

μk
θ|x0|αk

∏
x∈Φ!

k

1

1+θ(|x0|/|x|)αk
. (8)

The b-th moment follows as

Mb|k(θ)

=E

[(
P
o(SINR > θ | Φ, x0 ∈ Φk)

)b]
=E

[
e
−σ2bθ

μk
|x0|αk

∏
x∈Φ!

k

1

(1+θ(|x0|/|x|)αk)b

]

(a)
=

∞∫
0

fk(r)e
−σ2bθ

μk
rαk−−2πλk

∞∫

r

(
1− 1

(1+θ( r
z
)αk )b

)
zdz
dr

=

∞∫
0

2πλkr

Ak
e
−σ2bθ

μk
rαk

exp

(
−
∑

i∈[K]!

πλir
αkδi

(
Biμi

Bkμk

)δi

−πλkr
2

(
1+2

1∫
0

(
1− 1(

1+θzαk)b

)
z−3dz

))
dr

(b)
=

1

Ak

∞∫
0

exp

(
−bσ2θ

μk

( r

πλk

)αk
2−

∑
i∈[K]!

πλi

(
Biμi

Bkμk

)δi
(πλk)αk/αi

r
αk
αi

−2F1(b,−δk; 1− δk,−θ)r

)
dr, (9)

where

fk(r) =
2λkπr

Ak
exp

(
−
∑
i∈[K]

πλir
αkδi

(Biμi

Bkμk

)δi
)

(10)

is the distribution of |NP(Φk)| given that the typical user

is served by tier k [3], Ak is the association probability

of the user with tier k, given by

Ak=2πλk

∞∫
0

r exp

(
−π

∑
i∈[K]

λi

( μiBi

μkBk

)δi
rαkδi

)
dr. (11)

Step (a) follows from the probability generating func-

tional (PGFL) of the PPP [12] and (b) uses the identity

[6]

1+2

1∫
0

(
1− 1(

1+θzα)b

)
z−3dz ≡ 2F1(b,−δ; 1− δ,−θ).

(12)

The following corollary gives the asymptotic behavior

of the moments of the conditional success probability in

the high-reliability (θ → 0) and high-spectral efficiency

(θ → ∞) regimes, respectively.

Corollary 1. The asymptotics for the moments of the
conditional success probability in the k-tier are

Mb|k(θ)∼ 1

Ak

∫ ∞

0

exp

(
− bθ

δk
1− δk

r − bσ2θ

μk

( r

πλk

)
αk
2



−
∑
i∈[K]

πλi

(
Biμi

Bkμk

)δi
(πλk)αk/αi

r
αk
αi

)
dr, θ → 0, (13)

Mb|k(θ)∼ 1

Ak

∫ ∞

0

exp

(
− θδkξ(b, δk)r − bσ2θ

μk

( r

πλk

)
αk
2

−
∑

i∈[K]!

πλi

(
Biμi

Bkμk

)δi
(πλk)αk/αi

r
αk
αi

)
dr, θ → ∞, (14)

where ξ(b, δk) =
∫∞
0

(
1−(

1+z−1/δk)−b
)
dz.

Proof: According to (12), we have

2F1(b,−δ; 1−δ,−θ)

=1+2

∫ 1

0

(
1− 1(

1+θzα)b

)
z−3dz

(a)∼ 1+2

∫ 1

0

(
1− (1− bθzα)

)
z−3dz, θ → 0

∼ 1+ bθ
δ

1− δ
, θ → 0, (15)

where (a) follows from 1
(1+x)b

∼ 1− bx, x → 0, and

2F1(b,−δ; 1−δ,−θ)

= 1+2θ
2
α

∫ θ
1
α

0

(
1− 1(

1+zα)b

)
z−3dz

∼ 2θ
2
α

∫ ∞

0

(
1− 1(

1+zα)b

)
z−3dz, θ→∞

(b)∼ θδ
∫ ∞

0

1− 1(
1+z−1/δ)b

dz, θ→∞, (16)

where step (b) follows from z−2 �→ z and δ = 2/α.

Thus, (13) and (14) are obtained by substituting (15)

and (16) into (5), respectively.

When we consider an interference-limited network,

i.e., σ2 = 0, and αk = α, k ∈ [K], we have

Mb|k(θ)=
1

1+ λk(Bkμk)δ∑

i∈[K]

λi(Biμi)δ
(2F1(b,−δ; 1−δ,−θ)−1)

,

(17)

Mb|k(θ)∼1− λk(Bkμk)
δ∑

i∈[K] λi(Biμi)δ
bδ

1−δ
θ, θ → 0, (18)

Mb|k(θ)∼
∑

i∈[K] λi(Biμi)
δ

λk(Bkμk)δξ(b, δ)
θ−δ, θ → ∞. (19)

B. Moments of the Conditional Rate Coverage

According to Thm. 1, we derive the per-tier moments

of the conditional rate coverage probability as follows.

Theorem 2. Given that the typical user is served by
tier k, the moments of the conditional rate coverage
probability are

Sb|k(τ) =
∞∑

n=0

Pn,kMb|k
(
2

(n+1)τ
ηkW − 1

)
, b ∈ C, (20)

where

Pn,k =
1

n!

(
λuAk

7λk

)n
(2n+ 5)!!

15

(
1 +

λuAk

3.5λk

)−3.5−n

,

(21)

and n!! is the double factorial.

Proof: Given Φ and that the typical user is served by

the BS from a certain tier, the conditional rate coverage

probability is expressed as

Pc,k(τ) = P
o(T > τ | Φ, x0 ∈ Φk). (22)

Letting Nk denote the number of users served by the

tagged BS (the serving BS of the typical user) in tier k,

the transmission bandwidth for each is ηkW/Nk and the

transmission rate is

T =
ηkW

Nk
log(1+SINR). (23)

Therefore, the moments of the conditional rate coverage

probability are

Sb|k(τ)=E

[
P
o

(
T >τ | x0∈Φk,Φ, Nk

)]b

(a)
=

∞∑
n=1

Pn,kE

[
P
o
(
SINR>2

nτ
ηkW−1 |x0∈Φk,Φ

)]b
︸ ︷︷ ︸

X

=
∞∑

n=1

Pn,kMb|k(2
nτ

ηkW−1), (24)

where (a) starts from n = 1 since Nk includes the

typical user, and comparing X and (9), we have X =
Mb|k(θ) with θ = 2

nτ
ηkW−1. Pn,k = P(Nk = n) is given

as follows.
Letting No,k be the number of the users except for the

typical user, i.e., Nk = No,k + 1, we have P(Nk = n+
1) = P(No,k = n). As in [3], we assume the probability

generating function (PGF) of Nk,o to be

GNk,o
(z) =

(
1− λuAk(z − 1)

3.5λk

)−3.5

. (25)

Thus, we have

Pn,k=
1

n!
G

(n)
Nk,o

(0)

=
1

n!

(
λuAk

7λk

)n
(2n+5)!!

15

(
1+

λuAk

3.5λk

)−3.5−n

.

(26)

By substituting (26) into (24), we obtain (20).
The following corollary gives the overall moments of

the conditional rate coverage for HCNs.

Corollary 2. For K-tier HCNs with spectrum partition-
ing among tiers, the moments Sb of the conditional rate
coverage probability are

Sb(τ)=
∑

k∈[K]

∞∑
n=0

Pn,kMb,k

(
2

(n+1)τ
ηkW − 1

)
, b ∈ C, (27)
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where

Mb,k(θ) =

∫ ∞

0

exp

(
−2 F1(b,−δk; 1−δk,−θ)r

−bσ2θ

μk

( r

πλk

)
αk
2−

∑
i∈[K]!

πλi

(
Biμi

Bkμk

)δi
(πλk)αk/αi

r
αk
αi

)
dr. (28)

Proof: Given Φ, the conditional rate coverage prob-

ability of the typical user in the entire network is

expressed as

Pc(τ) = P
o(T > τ | Φ)

=
∑

k∈[K]

P
o(T > τ | Φ)1{x0∈Φk|Φ}, (29)

where 1{·} is the indicator function. Then, the overall

b-th moment can be expressed as

Sb(τ)=E

[
Pc(τ)

b
]

=E

∑
k∈[K]

(
P
o(T > τ | Φ)1{x0∈Φk|Φ}

)b

=
∑

k∈[K]

AkE

(
P
o(T > τ, | x0 ∈ Φk,Φ)

)b

=
∑

k∈[K]

Ak

∞∑
n=1

P(Nk = n)Mb|k(2
nτ

ηkW−1).(30)

By substituting (5) into (30), we obtain (27).

According to the Gil-Pelaez theorem, the meta distri-

bution of the rate is given by

F̄Pc(τ)(x)=
1

2
+

1

π

∞∫
0

� (
e−jt log xSjt

)
t

dt (31)

where Sjt can be Sjt|k in (20) or Sjt in (27) cor-

responding to the per-tier and overall distributions of

the conditional rate coverage probability, respectively,

j �
√−1, �(z) and 
(z) are the imaginary and real

parts of z ∈ C.

IV. NUMERICAL RESULTS

In this section, we present numerical results of vari-

ous performance metrics involved in the framework in

Section III for HCNs, where K = 2, λ1 = 1
π2002 ,

λu = 50λ1, α1 = α2 = 4, B1 = 1, μ1 = 46 dBm,

μ2 = μ1/100 = 26 dBm, τ = 1 Mbps, W = 10 MHz,

σ2 = 0 and λ2 = κλ1, η1 = νη2.
Fig. 2 shows the per-tier success probabilities M1|k

and the variance of the conditional per-tier success

probabilities M2|k−M2
1|k as well as their asymptotics as

a function of θ for each tier, respectively. It is observed

that the asymptotic curves match the exact results well,

especially for large θ, i.e., the asymptotic curve as

θ → ∞ performs extremely well over a large range of θ.

The variance has a maximum at some finite value of θ for

both tiers, because it necessarily tends to zero for both

θ → 0 and θ → ∞. Moreover, it can be seen that a larger

B2 offloads more users to small cells (tier 2), causing

the association probability for tier 1 to decrease but the

success probability for tier 1 to improve. However, an

excessively large association bias can cause the small

cells to be overly congested with users of poor SINR.

That is why for B2 = 1 and B2 = 50, the comparative

results between tier 1 and tier 2 are just reversed.
Fig. 3 shows the impacts of BS densities, biasing fac-

tor, and spectrum partitioning fraction on the overall rate

meta distribution. As expected, increasing BS density

improves the quality of the individual links due to the

decreased load at each BS. In addition, since the bias

policy controls the serving distance of users and the

load distribution between the two tiers, it influences the

received SINR and the available resource at each user,



exerting an effect on the corresponding data rate. When

κ = 5 and B2 = 1, the curve with ν = 3 outperforms

the other two curves, because in this case A1 = 0.67 and

A2 = 0.33, so the average load served by each BS in tier

1 is ten times that in tier 2, hence more spectral resources

should be allocated to tier 1. In contrast, when κ = 5
and B2 = 10, the curve with ν = 1 performs the best,

since in this case more users are offloaded to tier 2 and

the allocated resource should be adjusted accordingly.

Furthermore, it is observed that there is an intersection

point between the ν = 1/3 and ν = 3 with B2 = 10,

which verifies that the meta distribution provides more

information on the rate performance, i.e., for different

link reliability constraints, the fraction of users that have

a rate greater than the target rate is quite different for

different resource partitioning fractions, and this cannot

be reflected by the average ergodic rate or standard rate

coverage probability.

V. CONCLUSIONS

In this paper, we have provided an analytical frame-

work for a fine-grained analysis of HCNs with joint

offloading and resource partitioning. Although it is es-

tablished that these two techniques play an important

role in radio resource management, our work is the first

to analyze the meta distribution of the SINR and rate

in a HCN, while incorporating resource partitioning and

a user association policy with biasing. The availability

of a functional form for the refined SINR and rate

performance as functions of system parameters unlocks

a plethora of avenues to gain deep design insights. Using

the developed analysis, the importance of combining

load balancing with resource partitioning in terms of

the meta distribution was clearly established. The meta

distribution is a key refined metric for studying these

techniques, and insights based on just the mean SINR

distribution are inconclusive.
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