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Abstract— Interference in wireless networks causes intri-
cate dependencies between the formation of links. In current
graph models of wireless networks, where vertices represent
transceivers and edges represent links, such dependenciesare
not included. In this paper we propose a random geometric
graph that explicitly captures the effect of interference. The
graph connects nodes which can communicate with a certain
maximum expected delay. We analyze some basic properties of
the graph where nodes form a Poisson point process and use
ALOHA as the channel access scheme.

I. I NTRODUCTION

Although interference is known to be the main
performance-limiting factor of wireless networks, it is usu-
ally completely ignored when studying the connectivity of
these networks. The most prominent model is Gilbert’s disk
graph [1], where the nodes form a stationary Poisson point
process (PPP) and are assumed to be connected if they
are within a distancer. Such models not only disregard
interference, but they are also completely static and thus
cannot account for half-duplex constraints (nodes cannot
transmit and receive at the same time). Due to the half-
duplex constraint, a network graph representing successful
transmissions in a given time slot is necessarily disconnected
at all times. More precisely, it is a directed forest consisting
of many trees of depth one rooted at the transmitters1.

To overcome these shortcomings, we take a radically
different approach by defining connectivity on the basis of
the mean delay that it takes to form a connection between
two nodes.

II. N ETWORK MODEL AND DEFINITIONS

Let Φ be a motion-invariant point process onR2, parti-
tioned at each timek ∈ N into a transmitter processΦt(k)
and a receiver processΦr(k) by a channel access (MAC)
mechanism.

Let 1k(x → y) = 1 if x ∈ Φt(k) andy ∈ Φr(k) and the
following condition on the signal-to-interference ratio (SIR)
holds:

SIRxy ,
hxy(k)g(x − y)

∑

z∈Φt(k)\{x} hzy(k)g(z − y)
> θ .

Otherwise1k(x → y) = 0. The fading random variables
hxy(k) are assumed iid in time and space withE(h) = 1,
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and the path loss functiong is monotonically decreasing with
g(x) = o(‖x‖−2) as‖x‖ → ∞.

We assume a motion- and time-invariant MAC scheme, in
the sense thatP(x ∈ Φt(k)) =: p does not depend onx ∈ Φ
nor k and the joint probabilityP(x ∈ Φt(k) ∩ Φt(i)) only
depends on|k − i|.

The most complete and comprehensive graph model is
the spatio-temporalSIR graph, as introduced in [2]. It is a
weighted directed multigraph, where directed edges−→xy exist
with weights{k ∈ N : 1k(x → y) = 1}, i.e., an edge with
weightk is present whenever a successful transmission from
x to y has occurred. This graph obviously captures all the
relevant information about the network, but it is not easy
to work with. In this paper, we extract a simpler graph that
can be analyzed in more detail. The graph is based on the
single-hop delay, defined as follows:

Definition 1 (Single-hop delay) The single-hop delay
D : Φ2 → R is defined as

D(x, y) , E

[

min
k∈N

1k(x → y)

]

(1)

where the expectation is taken with respect to the MAC
scheme and the fading.

Since the MAC scheme is time-invariant, we can also define
the delay as the inverse of the long-term average throughput,
i.e.,

D(x, y) =

(

lim
T→∞

1

T

T
∑

k=1

1k(x → y)

)−1

.

If 0 < p < 1, then it is ensured thatD(x, y) is finite for all
x, y ∈ Φ, since the SIR condition is satisfied when a large
enough ball aroundy is free from interfering transmitters
and the fading is not too unfavorable, which happens with
positive probability. In other words, the SIR graph described
above has an infinite number of edges between all pairs
of nodes a.s. Generally, the situation is not symmetric,i.e.,
D(x, y) 6= D(y, x), andD(x1, y1) may be rather different
than D(x2, y2) even if ‖x1 − y1‖ = ‖x2 − y2‖ since one
receiver may have more potential interferers in its vicinity.

We are ready to define the delay graph:

Definition 2 (Delay graph Gτ ) The delay graph is the
random geometric digraphGτ = (Φ, ~Eτ ), where(x, y) ∈
~Eτ if D(x, y) ≤ τ .

So a source and a destination node are connected by a
directed edge if the source can be expected to reach the
destination (in a single hop) in at mostτ time slots. The



delay graph is related to the SIR graph as follows: In the
delay graph, the edge−→xy is present if the expected smallest
edge weight in the SIR graph is at mostτ . In other words, in
the delay graph, the randomness due to the MAC and fading
in the SIR graph is averaged out, and a single edge indicates
whether the two nodes can be expected to connect inτ or
less time slots.

We would like to explore the connectivity properties
of Gτ . A necessary condition for successful transmission
is that the desired transmitters transmits and the intended
receiver listens. If these two events are perfectly correlated,
a transmission succeeds with probability at mostmax{p, 1−
p} = 1/2. If they are independent, the lower bound is
maxp p(1− p) = 1/4. This gives lower bounds on the delay
of 2 and4, respectively. Focusing on the independent case,
we have that forτ < 4, all nodes are isolated, while for
τ → ∞, the graph is fully connected. Thus it can be expected
that the connectivity exhibits aphase transitionwith respect
to τ , in the sense that there exists a finite critical valueτc,
such thatGτ a.s. has an infinite out-component forτ > τc

(i.e., there is a node from which an infinite number of nodes
can be reached, or, equivalently, there is a positive probability
that an infinite number of nodes can be reached from the
typical node), while it a.s. consists of finite out-components
only if τ < τc. The critical value

τc = inf{τ ∈ R | Gτ has an infinite out-component a.s.}

is called thepercolation threshold.
The delay graph is also athroughput graphfor throughput

τ−1, in the sense that if there is an edge−→xy, this means that
the direct throughput fromx to y is at leastτ−1 (packets
transferred per unit time). Theindirect throughputx → z →
y, defined as the minimum throughput ofx → z andz → y,
may be larger.

We focus onGτ for the case whereΦ is a homogeneous
PPP of intensity1, and transmitters are chosen at each time
with probability p independently, such thatΦt(k) is a PPP
of intensity p for eachk. The path loss law is the power
law ℓ(x) = ‖x‖−α, and the fading random variables are
exponential (Rayleigh fading).

III. D ELAY GRAPHS IN STATIC POISSONNETWORKS

A. The mean delay in the average network

Consider the typical node inΦ, assumed at the origino,
and add a reference receiver at distanceR that listens with
probability q , 1 − p. Conditioning onΦ having a point at
o implies that the expectations that involve the point process
are taken with respect to the Palm distributionP

o of Φ and
denoted byEo [3].

We define themean delay at distanceR to be the number
of time slots it takes for the typical node to connect to
the receiver at distanceR, averaged over the fading, MAC
scheme, andΦ. We have the following result:

Lemma 1 In a PPP with Rayleigh fading and ALOHA, the
mean delay at distanceR is

D(R) =
1

pq
exp

(

pλγR2

q1−2/α

)

, (2)

where γ = πθ2/αΓ(1 − 2/α)Γ(1 + 2/α) is the spatial
contention parameterfor the PPP [4].

Proof: Let C be the event that the node at the origin
successfully connects to its receiver in a single transmission
(one time slot)conditioned onΦ. Conditioned onΦ, the
transmission success events are temporally independent with
probability P

o(C), so the conditional delay is geometric
with meanP

o(C)−1. The mean delay is then obtained by
integration with respect to (w.r.t.)Φ:

D(R) = E
o

(

1

Po(C)

)

, (3)

where the inner probability is a conditional probability given
Φ, and the expectation is taken over the point process.

To calculatePo(C), consider an arbitrary time slot, and let
the location of the receiver bez. The interference atz is

I =
∑

x∈Φ\{o}

hxzex‖x − z‖−α ,

where hxz is the fading coefficient andex ∈ {0, 1} is 1
if node x transmits in this time slot. Both sets of random
variables are iid,hx ∼ exp(1) and ex ∼ Bernoulli(p).
The desired signal power isS = hozR

−α, since ‖z‖ =
R, and P

o(C) = P
o(SIR > θ | Φ) = P(hoR

−α >
θI) = E exp(−θRαI | Φ). This last expression is the
conditional Laplace transform of the interferenceLI(s |
Φ) = E exp(−sI | Φ), wheres = θRα. From (3), it follows

that the local delay givenR is then given byEo
(

1
LI(s|Φ)

)

,
which follows from [5, Lemma 17.30, vol. II, p. 90]:

E
o

(

1

LI(s | Φ)

)

=
1

pq
exp

(

λ

∫

R2

ps

sq + ‖x‖α
dx

)

,

=
1

pq
exp

(

pλC(α)s2/α

q1−2/α

)

,

with C(α) = πΓ(1 + 2/α)Γ(1 − 2/α). The local delay
conditioned on a link distanceR is obtained by replacing
s by θRα. The result follows sinceC(α)(θRα)2/α = γR2.

�

As expected,D(R) is finite for all R for 0 < p < 1. The
delay-minimizing choice ofp cannot be expressed in closed-
form. We can give good bounds, though. Letc = λγR2.
ThenD(R) = exp(pc/q1−2/α)/(pq). Since0 < 1 − 2/α <
1, we have

exp(pc)

pq
< D(R) <

exp(pc/q)

pq
. (4)

The two bounds can be minimized, yielding

1

4

(

3 + c −
√

1 + 6c + c2
)

< popt

<
1

2c

(

1 + c −
√

4 + c2
)

. (5)



Both bounds tend to1/c for large c, so they are asymptot-
ically tight, andpopt < 1/c is a trivial but reasonably tight
upper bound. It follows that, asR → ∞,

popt(R) = Θ(R−2)

and
min

p
D(R) ∼ λγR2 ,

which shows that when the optimump is chosen, the
delay is increasing quadratically in the distance, rather than
exponentially, as is the case for fixedp per (2).

It is interesting to note that the lower bound in (4) is the
high-mobility bound, since the delayexp(pc)/(pq) would
be the exact delay achieved if a new realization of the point
process were drawn in each time slot. The deviation ofD(R)
from this lower bound is due to the dependence induced by
the static point process, and the upper bound in (4) gives the
maximum “penalty” caused by this dependence. This upper
bound gets tighter asα grows, which is intuitive since for
largeα, only a few nearby nodes contribute significantly to
the interference.

Lemma 1 provides insight into whether splitting a long
hop into two (or more) shorter hops is beneficial from a
delay perspective. For a delay comparison, pre-constants do
not matter, so we may consider̃D(R) = exp(bR2) for some
b > 0. It pays off to split a hop of length2R into two hops
of lengthR (if possible) if D̃(R) > 2D̃(R/2) or

bR2 >
4 log 2

3
. (6)

Generally, there is an optimum number of hops for each
distanceR. Let

h(n) ,
n(n + 1)

√

log(1 + 1/n)
√

b(2n + 1)
, n > 0 ,

andh(0) , 0. This function yields the distanceRn = h(n)
for which nD̃(Rn/n) = (n + 1)D̃(Rn/(n + 1)). So at
distanceRn, the delay forn hops is the same as the delay
for n + 1 hops, hence for smaller distances,n hops is better
thann + 1. It follows that

n hops is optimum⇐⇒ h(n − 1) < R ≤ h(n) .

As n → ∞, h(n) ∼ n/
√

2b, so to cover a distanceR, the
optimum number of hopsnopt ≈ ⌈R

√
2b⌉. A more detailed

analysis reveals thath(n) is tightly lower bounded ash(n) >
(n + 2−3/2)/

√
2b, so n̂opt = ⌈R

√
2b − 2−3/2⌉ is the true

optimum for almost allR > 1/(4
√

b), and too large by1
hop for the other values ofR. If n was a real number, the
optimum would be

ñopt =

√
2pλγ

q1/2−1/α
R ,

in agreement with the asymptotic results fornopt ∈ N.
The optimum hop lengthlopt is thus about1/

√
2b. Within

this distance the typical transmitter finds an average of
λπl2opt = πq1−2/α/(2pγ) nodes in a PPP of intensityλ.
This value can give an indication whether it makes sense to

split a hop into two shorter hops if possible, although, to
determine the optimum hop length, many other factors need
to be considered [6].

We observe that with multi-hopping, the delay scales
linearly in R, while the single-hop delay increases expo-
nentially.

Since the optimump is not available in closed-form, it is
not possible to jointly optimize the number of hops and the
channel access probability analytically.

B. Connectivity

Lemma 1 relates the delay and the maximum admissible
link distance. The conditionD(R) ≤ τ implies an upper
bound onR:

R2 ≤ q1−2/α

pλγ
log(τpq) . (7)

Clearly, if p < 1/τ or p > 1 − 1/τ , the right hand side
(RHS) is negative, so there is no distanceR ≥ 0 such that
the delay is smaller thanτ . This is obvious already from (2),
since in these cases,1/(pq) > τ . The exact condition for the
existence of a positive range ofR is p ∈ (pmin, 1 − pmin),
where

pmin =
1

2

(

1 − 1

τ

√

τ2 − 4τ

)

.

A natural question is what is the optimum choice ofp that
maximizes the RHS of (7). There is no closed-form solution,
but for τ not too small (not too close to4), the optimump is
essentially given by maximizinglog(τp)/p (since the terms
in 1 − p matter less ifτ is not too small), which yields the
approximation and upper boundpopt < e/τ .

Fig. 1 shows the condition (7) onR2 as a function of the
transmit probabilityp for different values ofτ , and Fig. 2
displays the optimum value ofp that maximizes (7) together
with the approximatione/τ . Also shown in Fig. 1 are the
values forR2 obtained by lettingp = e/τ . It can be seen
that the resulting values for the bound onR2 are very close
to the actual maxima.

Let

f(x) ,
(1 + log x)x1−2/α

1 − x
, 0 < x < 1 .

So, lettingp = e/τ , the typical node can connect to the
probe receiver at distanceR in at mostτ time slots if

λγR2 ≤ f(ξ) , (8)

whereξ = 1 − e/τ . For the bound to be positive,ξ > e−1

or τ > e/(1 − e−1) ≈ 4.3, which is close to the obvious
condition τ > 4. A simple bound onf(x) for x ≤ 1 that
gets asymptotically tight asx → 1 is

f(x) ≤ x

1 − x
.

This follows from (1 + log x)/x2/α ≤ 1 for x ≤ 1. Since
e/τ ≪ 1 for graphs that are not overly sparse, a simple
relationship is based on this upper bound:

λγR2 ≈ τ

e
− 1 . (9)
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Fig. 2. The optimump that maximizes the bound onR2 in (7) for α = 4.
The solid curve shows the exactpopt, while the dashed curve is the bound
e/τ .

Fig. 3 shows delay graphs on the same PPP realization for
p = 0.25 and various choices ofτ .

On average a link distance larger thanR means that
the edge does not exist. In a single realization of the
point process, the distance of the longest edge leaving a
node is obviously a random variable, and from Jensen’s
inequality we can infer that the average node degree in a
particular realization islower boundedby the node degree
corresponding to the mean distanceR. This is confirmed by
another simulation, shown in Fig. 4, wherep = 0.05, and
Table I.

Lastly, in Figs. 5 and 6, a smaller simulation result is
shown for fixedτ = 50 and variable transmit probabilityp.
In Fig. 5,p is chosen optimally ase/τ , whereas in Fig. 6,p is
chosen to be 25% and 50% smaller and larger. As expected,
the mean out-degree is largest forp = popt.
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Fig. 3. Delay graphs forτ = 20, 50, 100, 200 for λ = 1, transmit
probability p = 0.25, path loss exponentα = 4, and SIR thresholdθ = 10.
Unidirectional edges are shown in gray, whereas bidirectional edges are
bold. The mean out-degrees are1.01, 1.81, 2.28, and2.89, respectively.

τ ℓ̄ ℓmax N̄out var(Nout) R NPoi

50 0.750 1.678 3.852 2.918 1.040 3.395

100 1.044 2.322 7.450 7.644 1.395 6.115

200 1.304 3.707 11.31 12.51 1.677 8.835

500 1.607 3.937 16.82 22.69 1.989 12.43

TABLE I

SIMULATION RESULTS FORλ = 1, p = 0.05, α = 4, θ = 10.

SIMULATION AREA IS 15 × 15, SEEFIG. 4. MEAN EDGE LENGTH ℓ̄,

MAXIMUM EDGE LENGTH ℓmax , MEAN OUT-DEGREEN̄out , VARIANCE

OF OUT-DEGREEvar(Nout), THE CORRESPONDING VALUE OF THE

RADIUS PER(7), AND THE AVERAGE DEGREE OF THE DISK GRAPH WITH

THAT RADIUS.

IV. CONCLUDING REMARKS

We have introduced a new and fundamental delay-based
notion of connectivity in wireless networks and analyzed
some properties of thedelay graphfor Poisson networks.

When averaged also over the point process, a connection
can be established between the maximum edge lengths in
the disk graph and the delay graph, see (7). This condition
can be used to maximize the mean link distance for a given
delay thresholdτ . It turns out that the ALOHA transmit
probability should be chosen asp = e/τ . It is apparent from
simulations that this choice maximizes the connectivity of
the delay graph in terms of the mean out-degrees.

Many interesting questions remain open. For example,
what can be said about the distribution of the edge lengths in
the delay graph? More importantly, is there acritical delay
τc, such that the delay graph percolates forτ > τc, whereas
it does not forτ < τc? Are there good bounds onτc?
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Fig. 4. Delay graphs forτ = 50, 100, 200 for λ = 1, transmit probability
p = 0.05, path loss exponentα = 4, and SIR thresholdθ = 10. The radius
of the circles at each node is proportional to the node degree. Some of the
properties of these graphs are listed in Table I.
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p = popt. N̄out = 5.48.

Fig. 5. Delay graph forτ = 50 for λ = 1, path loss exponentα = 4,
SIR thresholdθ = 10, and popt = e/τ ≈ 0.0544. Unidirectional edges
are shown in gray, whereas bidirectional edges are bold.
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(a) p = 1/2popt. N̄out = 2.93.
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(b) p = 3/4popt. N̄out = 5.27.
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(c) p = 3/2popt. N̄out = 5.00.
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(d) p = 2popt. N̄out = 4.34.

Fig. 6. Delay graphs forτ = 50 for λ = 1, path loss exponentα = 4,
and SIR thresholdθ = 10. Unidirectional edges are shown in gray, whereas
bidirectional edges are bold.popt = e/τ ≈ 0.0544. Except for p, the
parameters are the same as in Fig. 5.
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