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Abstract— Interference in wireless networks causes intri- and the path loss functignis monotonically decreasing with
cate dependencies between the formation of links. In curren g(x) = 0(||Q;H*2) as||z|| — oc.
graph models of wireless networks, where vertices represén We assume a motion- and time-invariant MAC scheme. in

transceivers and edges represent links, such dependenciase .
not included. In this paper we propose a random geometric the sense that(x € ®;(k)) =: p does not depend an € ¢

graph that explicitly captures the effect of interference. The ~ NOr k and the joint probabilityP(z € ®.(k) N ®:()) only
graph connects nodes which can communicate with a certain depends onk — i|.

maximum expected delay. We analyze some basic properties of  The most complete and comprehensive graph model is
the graph where nodes form a Poisson point process and use o spatio-temporalSIR graph, as introduced in [2]. It is a
ALOHA as the channel access scheme. . - . . .
weighted directed multigraph, where directed edgg®xist
with weights{k € N: 1;(x — y) = 1}, i.e, an edge with
weightk is present whenever a successful transmission from
Although interference is known to be the maing to 4 has occurred. This graph obviously captures all the
performance-limiting factor of wireless networks, it isuds relevant information about the network, but it is not easy
ally completely ignored when studying the connectivity ofo work with. In this paper, we extract a simpler graph that

these networks. The most prominent model is Gilbert's diskgn be analyzed in more detail. The graph is based on the
graph [1], where the nodes form a stationary Poisson pOiBIngIe-hop delaydefined as follows:

process (PPP) and are assumed to be connected if they
are within a distance. Such models not only disregard Definition 1 (Single-hop delay) The  single-hop  delay
interference, but they are also completely static and thys. 2 — R is defined as
cannot account for half-duplex constraints (nodes cannot
transmit and receive at the same time). Due to the half- D(z,y) 2 E [min 1x(x — y)] (1)
duplex constraint, a network graph representing succlessfu ken
transmissions in a given time slot is necessarily discotenec where the expectation is taken with respect to the MAC
at all times. More precisely, it is a directed forest comsgst scheme and the fading.
of many trees of depth one rooted at the transmitters

To overcome these shortcomings, we take a radical
different approach by defining connectivity on the basis o
the mean delay that it takes to form a connection betwediT”

T —1
two nodes. I T
D(z,y) = (Tlgr;o T ;; Ly(z — y)) :

II. NETWORK MODEL AND DEFINITIONS

I. INTRODUCTION

ince the MAC scheme is time-invariant, we can also define
e delay as the inverse of the long-term average throughput

o ) ) ) If 0 < p < 1,thenitis ensured thdd(x,y) is finite for all
_Let @ be a motion-invariant point process @, parti- z,y € ®, since the SIR condition is satisfied when a large
tioned at each timé N into a transmitter process; (k) enough ball around, is free from interfering transmitters
and a receiver process, (k) by a channel access (MAC) 4nq the fading is not too unfavorable, which happens with
mechanism. _ positive probability. In other words, the SIR graph desedib
Let 1x(z — y) = 1 if = € ®,(k) andy € @,(k) and the  apove has an infinite number of edges between all pairs
following condition on the signal-to-interference rat®IR) o nodes a.s. Generally, the situation is not symmetric,

holds: D(z,y) # D(y,z), and D(z1,y1) may be rather different
SR & hay(k)g(x —y) 0 than D(xq,y2) even if |1 — y1|| = ||z2 — y2|| Since one
Ty = Yo (o) hay(K)g(z —y) > 0. receiver may have more potential interferers in its viginit

We are ready to define the delay graph:
Otherwisel,(xz — y) = 0. The fading random variables
hsy(k) are assumed iid in time and space wikh) = 1, Definition 2 (Delay graph G) The delay graph is the
random geometric digraplis, = ((I),ET), where (z,y) €
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delay graph is related to the SIR graph as follows: In theemma 1 In a PPP with Rayleigh fading and ALOHA, the
delay graph, the edgey is present if the expected smallestmean delay at distanc® is
edge weight in the SIR graph is at mastin other words, in 1 PAYR?
the delay graph, the randomness due to the MAC and fading D(R) = — (1_—2/a) :
in the SIR graph is averaged out, and a single edge indicates pq q
whether the two nodes can be expected to conneetam  Where vy = 76%/°T'(1 — 2/a)I'(1 + 2/a) is the spatial
less time slots. contention parametdor the PPP [4].

We would like to explore the connectivity properties Proof: Let C be the event that the node at the origin

of G,. A necessary condition for successful transmissio . — . .
G y g ccessfully connects to its receiver in a single trandoriss

is that the desired transmitters transmits and the intend?((l%e time slot)conditioned on®. Conditioned ond, the

retce|ver !|st¢ns. I thes(;e tw_ctJhevent:sba_llr_te p(;:rfectlg(/ cotledl,a transmission success events are temporally independént wi
a transmission succeeds with probability at mosk{p, 1 iSprobability P°(C), so the conditional delay is geometric

pt = 1/2.If they are_md_ependent, the lower bound with meanP°(C)~!. The mean delay is then obtained by
max, p(1 —p) = 1/4. This gives lower bounds on the dEIayintegration with respect to (W.r.tJ:

of 2 and 4, respectively. Focusing on the independent case,
we have that forr < 4, all nodes are isolated, while for D(R) = E° ( 1 ) 3)
T — 00, the graph is fully connected. Thus it can be expected ’

)

Po(C)

that the connectivity exhibits phase transitionwith respect  where the inner probability is a conditional probabilityen

to 7, in the sense that there exists a finite critical vadue @, and the expectation is taken over the point process.
such thatG- a.s. has an infinite out-component for> 7. To calculateP?(C), consider an arbitrary time slot, and let

(i.e, there is a node from which an infinite number of nodeghe |ocation of the receiver be The interference at is
can be reached, or, equivalently, there is a positive pritihab

that an infinite number of nodes can be reached from the I'= Z hazeallx = z[|7,
typical node), while it a.s. consists of finite out-compatsen ee®\{o}
only if 7 < 7.. The critical value where h,., is the fading coefficient and, € {0,1} is 1

o if node « transmits in this time slot. Both sets of random
7. = inf{7 € R | G, has an infinite out-component §.s. variables are iid,h, ~ exp(1) and e, ~ Bernoulli(p).
_ _ The desired signal power i§ = h,, R, since|z| =
is called thepercolation threshold R, andP°(C) = P°(SIR > 6 | ®) = P(h,R® >
The delay graph is alsotaroughput grapffor throughput  g7) = Eexp(—R*I | ®). This last expression is the
7~!, in the sense that if there is an edgg this means that conditional Laplace transform of the interferencg(s |
the direct throughput fromz to y is at leastr—" (packets @) = Eexp(—sI | ®), wheres = OR. From (3), it follows
transferred per unit time). Thedirectthroughputr — z — 4 o+ the local delay giver is then given byE® 1
defined as the minimum throughputof— 2 andz — . Li(s]®) )
o ghp Y» which follows from [5, Lemma 17.30, vol. II, p. 90]:
may be larger. ' ’ '
We focus onG - for the case wheré is a homogeneous E° ( 1 ) _ 1 exp ( / bs dx) ’
r2 8¢ + ||l

PPP of intensityl, and transmitters are chosen at each time Lr(s|®) pq

with probability p independently, such thak. (k) is a PPP 1 pAC(a)s?/@

of intensity p for eachk. The path loss law is the power - p_qex <ql—72/a) ’
law ¢(z) = |z||~, and the fading random variables are

with C(a) = 7T'(1 4+ 2/a)T'(1 — 2/«). The local delay
conditioned on a link distanc® is obtained by replacing

s by OR. The result follows sinc€(a)(R)?/* = vR2.
I1l. DELAY GRAPHS IN STATIC POISSONNETWORKS n

exponential (Rayleigh fading).

A. The mean delay in the average network As expected,D(R) is finite for all R for 0 < p < 1. The
delay-minimizing choice op cannot be expressed in closed-
form. We can give good bounds, though. Let= \yR2.
Then D(R) = exp(pc/q*~2/*)/(pq). Since0 < 1 —2/a <

Consider the typical node i, assumed at the origin,
and add a reference receiver at distafit¢hat listens with
probability g £ 1 — p. Conditioning on® having a point at

o implies that the expectations that involve the point precesl' we have
are taken with respect to the Palm distributi®hof ¢ and exp(pc) exp(pe/q)

<DR) < ———. (4)
denoted byE® [3]. pg -

We define thamean delay at distancB to be the number The two bounds can be minimized, yielding
of time slots it takes for the typical node to connect to 1
the receiver at distanc®, averaged over the fading, MAC 1 (3 4+c—V1+4+6¢c+ 62) < Popt

scheme, an@®. We have the following result: 1
<5 (1+c— \/4+c2) . (5)



Both bounds tend td /¢ for large ¢, so they are asymptot-
ically tight, andp,pt < 1/c is a trivial but reasonably tight
upper bound. It follows that, aB — oo,

Popt (R) =0 (RiQ)

and
min D(R) ~ M\yR?,
p
which shows that when the optimum is chosen, the
delay is increasing quadratically in the distance, rathant
exponentially, as is the case for fixgdper (2).

split a hop into two shorter hops if possible, although, to
determine the optimum hop length, many other factors need
to be considered [6].

We observe that with multi-hopping, the delay scales
linearly in R, while the single-hop delay increases expo-
nentially.

Since the optimunp is not available in closed-form, it is
not possible to jointly optimize the number of hops and the
channel access probability analytically.

B. Connectivity

It is interesting to note that the lower bound in (4) is the Lemma 1 relates the delay and the maximum admissible

high-mobility bound since the delayxp(pc)/(pg) would

be the exact delay achieved if a new realization of the poiftound onZR:

process were drawn in each time slot. The deviatioPaR)

link distance. The conditioD(R) < 7 implies an upper

1-2/a
R? <

log(pq) - (7)

from this lower bound is due to the dependence induced by

the ;tatic point process, and the upper bound in (4) gives theclearly, if p < 1/7 or p > 1 — 1/7, the right hand side
maximum “penalty” caused by this dependence. This UPP@RHS) is negative, so there is no distange> 0 such that

bound gets tighter as grows, which is intuitive since for

the delay is smaller than. This is obvious already from (2),

large , only a few nearby nodes contribute significantly tosince in these cases/(pq) > 7. The exact condition for the

the interference.

existence of a positive range & is p € (Pmin, 1 — Pmin)

Lemma 1 provides insight into whether splitting a longyhere

hop into two (or more) shorter hops is beneficial from a
delay perspective. For a delay comparison, pre-constants d

not matter, so we may consideX(R) = exp(bR?) for some

b > 0. It pays off to split a hop of lengtBR into two hops

of length R (if possible) if D(R) > 2D(R/2) or
4log?2

bR? )
-3

(6)

1 1
pmin—§<1——\/7'2—47') .
T

A natural question is what is the optimum choicepahat
maximizes the RHS of (7). There is no closed-form solution,
but for 7 not too small (not too close t¢), the optimuny is
essentially given by maximizintpg(7p)/p (since the terms
in 1 — p matter less ifr is not too small), which yields the

Generally, there is an optimum number of hops for eacPProximation and upper bound,: < ¢/7.

distanceR. Let

h(n) 2 n(n +1)y/log(1+1/n)

b(2n+1)

, n>0,

and h(0) = 0. This function yields the distanck,, = h(n)
for which nD(R,,/n) (n + 1)D(R,/(n + 1)). So at

distanceR,,, the delay forn hops is the same as the delay

for n+ 1 hops, hence for smaller distanceshops is better
thann + 1. It follows that

n hops is optimum—> h(n — 1) < R < h(n).

As n — oo, h(n) ~ n/v/2b, so to cover a distanc®, the
optimum number of hop&,,; ~ (R\/%]. A more detailed
analysis reveals that(n) is tightly lower bounded ak(n) >
(n +273/2)/\V/2b, SO fiopy = [RV2b — 273/2] is the true
optimum for almost allR > 1/(4v/b), and too large byl
hop for the other values ak. If n was a real number, the
optimum would be

_ V2pAy

flopt = 172170

in agreement with the asymptotic results fag,. € N.
The optimum hop length,, is thus about /v/2b. Within

Fig. 1 shows the condition (7) oR? as a function of the
transmit probabilityp for different values ofr, and Fig. 2
displays the optimum value @fthat maximizes (7) together
with the approximatiore/r. Also shown in Fig.1 are the
values for R? obtained by lettingp = e¢/7. It can be seen
that the resulting values for the bound &3 are very close
to the actual maxima.

Let

2 (1 +logz)zt=2/e
N 1—2z

f(x)

So, lettingp = ¢/7, the typical node can connect to the
probe receiver at distande in at mostr time slots if

/\'YRQ < f(g) ) (8)

where¢ = 1 — e/7. For the bound to be positive, > ¢!
or 7 > e/(1 —e™ ') ~ 4.3, which is close to the obvious
conditionT > 4. A simple bound onf(z) for 2 < 1 that
gets asymptotically tight ag — 1 is

<

fla) < =

This follows from (1 + logz)/x?/® < 1 for < 1. Since
e/t < 1 for graphs that are not overly sparse, a simple

, O<ax<l.

x

this distance the typical transmitter finds an average oglationship is based on this upper bound:

Arl?

2. = m¢"7*/*/(2py) nodes in a PPP of intensity.

This value can give an indication whether it makes sense to

T

/\WRzzg—l. 9)
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Fig. 1. The bound onR? in (7) fora = 4, A\ = v = 1, andt €
{10,20,...,100}. The lowest curve is the one far = 10. The circles -4
indicate the approximate maximum achievedpat e/7.

: : Fig. 3. Delay graphs forr = 20, 50,100,200 for A = 1, transmit
——exact (a=4) probability p = 0.25, path loss exponent = 4, and SIR threshold = 10.
A -~ -bound e/t Unidirectional edges are shown in gray, whereas bidireaticedges are
bold. The mean out-degrees ar®1, 1.81, 2.28, and2.89, respectively.

0.25

T l lmax | Nout var(Nout ) R Npoi
50 0.750 | 1.678 | 3.852 2.918 1.040 | 3.395
100 | 1.044 | 2.322 | 7.450 7.644 1.395| 6.115
200 | 1.304 | 3.707 | 11.31 12.51 1.677 | 8.835
500 | 1.607 | 3.937 | 16.82 22.69 1.989 | 12.43
TABLE |

SIMULATION RESULTS FORA = 1,p = 0.05, a« = 4, 6 = 10.
SIMULATION AREA IS 15 x 15, SEEFIG. 4. MEAN EDGE LENGTHY,
MAXIMUM EDGE LENGTH £max, MEAN OUT-DEGREEN,ut, VARIANCE
10 20 30 40 50 60 70 80 90 100 OF OUT-DEGREEvar(Nout ), THE CORRESPONDING VALUE OF THE
RADIUS PER(7), AND THE AVERAGE DEGREE OF THE DISK GRAPH WITH
THAT RADIUS.

0.2

0.1

0.05

Fig. 2. The optimunp that maximizes the bound aR? in (7) for o = 4.
The solid curve shows the exaetpt, while the dashed curve is the bound
e/T.

IV. CONCLUDING REMARKS

Fig. 3 shows delay graphs on the same PPP realization forywe have introduced a new and fundamental delay-based
p = 0.25 and various choices aof. notion of connectivity in wireless networks and analyzed

On average a link distance larger thdh means that some properties of thdelay graphfor Poisson networks.
the edge does not exist. In a single realization of the when averaged also over the point process, a connection
point process, the distance of the longest edge leavingcan be established between the maximum edge lengths in
node is obviously a random variable, and from Jensentge disk graph and the delay graph, see (7). This condition
inequality we can infer that the average node degree ingan be used to maximize the mean link distance for a given
particular realization idower boundecby the node degree delay thresholdr. It turns out that the ALOHA transmit
corresponding to the mean distange This is confirmed by probability should be chosen as= ¢/. It is apparent from
another simulation, shown in Fig.4, whepe= 0.05, and simulations that this choice maximizes the connectivity of
Table I. the delay graph in terms of the mean out-degrees.

Lastly, in Figs. 5 and 6, a smaller simulation result is Many interesting questions remain open. For example,
shown for fixedr = 50 and variable transmit probability. ~ what can be said about the distribution of the edge lengths in
In Fig.5,p is chosen optimally as/7, whereas in Fig.6pis  the delay graph? More importantly, is thereritical delay
chosen to be 25% and 50% smaller and larger. As expected, such that the delay graph percolates for 7., whereas
the mean out-degree is largest for= popt. it does not forr < 7.? Are there good bounds an?
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(a)p = 1/2popt- Nous = 2.93.

Fig. 4. Delay graphs for = 50, 100, 200 for A = 1, transmit probability

p = 0.05, path loss exponent = 4, and SIR threshold = 10. The radius s
of the circles at each node is proportional to the node de@eme of the :
properties of these graphs are listed in Table I. 2
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(d) p= 2popt- Nouy = 4.34.

Fig. 6. Delay graphs for = 50 for A = 1, path loss exponent = 4,
and SIR threshold = 10. Unidirectional edges are shown in gray, whereas
bidirectional edges are bolghopt = e/7 ~ 0.0544. Except forp, the
parameters are the same as in Fig.5.

Fig. 5. Delay graph forr = 50 for A = 1, path loss exponent = 4,
SIR thresholdd = 10, andpopt = e/T ~ 0.0544. Unidirectional edges
are shown in gray, whereas bidirectional edges are bold.
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