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Abstract

This paper reviews the statistical performance analysis of the tail of the steady-state

queue length distribution in a Generalized Processor Sharing (GPS) system. In partic-

ular, we focus on the Large Deviations Principle (LDP) which can be used to estimate

a wide range of traffic sources, including short-range dependent sources, like processes

with Markovian structure, and long-range dependent sources, like self-similar traffic.

Generally, performance bounds, either upper or lower, are derived to characterize the

asymptotic behavior of the queue length for each session which shares the GPS server

with multiple sessions. Other analysis methods, such as service-curve based method,

and bufferless fluid flow approximations are introduced briefly. Finally, a comparison

of different methods and the range where they can be applied are given.

1 Introduction

High-speed packet-switched networks carry traffic for a diversity of different applications.

Each of these applications has its own traffic characteristics and requires specific Quality of

Service (QoS) guarantees. Statistical multiplexing is employed to integrate those services.

A salient advantage of such a network is its high resource utilization. The efficient call

admission control, which determines the resource utilization, is mainly supported by (i)

traffic characterization used to describe the traffic of connections, (ii) the packet scheduling

disciplines at each server or switch in the network, and (iii) the accuracy of the performance

analysis used for call admission control tests.

A well-defined traffic class is characterized as a Markovian process, which is inherently

short-range dependent and can be analyzed through classical queueing models. However,

statistical data analysis has in fact shown that traffic patterns may look similar when ob-

served on various time scales. This behavior is a kind of long-range dependence (LRD),

which means that correlations in the traffic activity decay slowly over time. Since quite a

number of traffic types, ranging from local to wide area network traffic, belong to LRD, the

system fed by LRD traffic has been paid much more attention recently [6, 9].

Scheduling mechanisms play an important role in achieving differentiated QoS. One of the

most important scheduling algorithm is the Generalized Processor Sharing (GPS). GPS is
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characterized by two attractive properties: (i) each backlogged flow is guaranteed a minimum

service rate, and (ii) the excess service rate is redistributed among the backlogged flows in

proportion to their minimum service rates. Its ability to isolate various service classes as

well as allow bandwidth sharing among classes, on the one hand, makes it a desirable fair

queueing scheme to satisfy diverse QoS requirements; on the other hand, it leads to increased

complexity of the bandwidth allocation and thus makes its performance analysis intractable.

As a result, in a GPS system, we are more interested in the performance bounds, rather

than the accurate characterization.

Even though only performance bounds are desired in the GPS system, the accuracy of

these bounds is still of high importance. An effective and efficient method to derive the

bounds is needed. One of the most relevant QoS parameters is the required Cell Loss

Probability (CLP), which can be expressed through the asymptotic behavior of each flow.

In this paper, we focus on the derivation of the tail distribution of each session’s queue length.

By effective [2], we mean that the method is able to produce bounds on the tail distribution

that are relatively tight. A loose bound would reduce the utilization of the network. By

efficient, we mean that the method is simple and fast in order to be used as a part of on-line

call admission control.

Generally, there are several methods to analyze the cell loss in a network: service-curve

based method [15], large deviation approximations [3, 6, 9–13], importance sampling [5, 7, 8]

and bufferless fluid flow approximation [4]. The service-curve based method is based on

Markovian processes, which possess an interesting property that after traversing through a

router or a switch, the output is also Markovian. This property simplifies the derivation

of stochastic bounds for a network of queues. An example is the Exponentially Bounded

Burstiness (EBB) process. However, not every traffic source satisfies the Markovian con-

dition, e.g., subexponential and superexponential processes. Thus, a more general method

is desired. Large Deviations (LD) techniques have been developed on general mathemati-

cal settings and are used to investigate the asymptotic behavior of different traffic classes.

They can not only estimate the probability of the queue size, but also tell us how the queue

reaches that size. An essential step for preventing congestion through a variety of control

mechanisms (buffer dimensioning, admission control, resource allocations) is to determine

how it occurs, hence, in this sense, the LD approximation method is more attractive than

others. Importance Sampling (IS) is usually used in simulation study. When combined with

extreme value theory, an accurate estimation of the tail distribution could be obtained for

Gaussian input sources. In many CAC schemes, the bufferless fluid flow approximation is

employed due to its simplicity. However, to find an efficient and effective method to study

cell loss is still an open problem.

In this paper, we mainly focus on deriving the bounds of cell loss probability in a GPS

system, by using LD principles. We can show that this method is applied not only for tra-

ditional Markovian processes (short-range dependent), but also for long-tailed traffic found

empirically.
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2 Performance analysis methods in the network

2.1 Service-curve based method

Cruz [17] first presented how to use the service-curve based method to effectively evaluate

the end-to-end delay induced by a connection with linearly constrained traffic. Parekh and

Gallager [18,19] extended his work to a GPS system and derived the worst-case upper bounds

on both the delay and backlog of each session. The basic idea is to find a deterministic,

piecewise-linear function that provides lower bounds for the service offered by a GPS server

to a session, and then calculate the delay and backlog bounds according to the deterministic

arrival curve and service curve. This method is readily extended to the EBB traffic.

Recently, [15] studied the LRD traffic and used, instead of Leaky Bucket mechanism, the

Fractal Leaky Bucket (FLB) mechanism to monitor LRD sources, which is more effective

than the classic Leaky Bucket (LB) policy. Since a LB has only two parameters, the leaky

rate ρ and a token buffer size σ which are not sufficient to completely characterize the target

traffic, it is a difficult task for it to police the bursty source. The problem is that the

regulated traffic is implicitly bounded by a linear function of time, while it is not true for

bursty sources, particularly for LRD. The FLB mechanism has been proposed to overcome

the inefficiency of the LB mechanism for policing LRD traffic. This mechanism constrains

traffic to the Fractional Brownian Motion (FBM) envelope process, as follows:

ÂFLB = ρt + ψtH (2.1)

where Â represents the output traffic of the FLB, ρ corresponds to the mean arrival rate

of the source, and H is the Hurst parameter. The parameter ψ is given by kσ, where σ

and k are constants associated to the standard deviation of the arrival process and to the

probability of the violation of ÂFLB by the arrival process, respectively. This mechanism,

if appropriately choosing the value of k, could well approximate the LRD traffic. By using

similar deduction technique to that in [18, 19], a deterministic bound on both end-to-end

delay and backlog of each session is obtained for LRD traffic.

2.2 Bufferless fluid flow approximation method

The advantage of the bufferless fluid flow approximation over other methods is its simplicity

[4]. Under the bufferless assumption, cell loss due to overflow occurs if and only if the sum

of the traffic rates of all active connections denoted by R exceeds the link capacity C. So, a

cell loss rate function (CLRF) F (m) is defined as:

F (m) , E[(R−m)+] ,
∑

x

(x−m)+f(x) (2.2)

where f(x) is the probability density distribution of the traffic. There are several attractive

features which facilitate the analysis of cell loss in the bufferless fluid flow model:
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• F(C) denotes the cell loss rate of traffic with traffic density distribution f(x);

• Traffic sources with similar CLRF can be regarded as equivalent in the cell loss analysis;

• If f(x) and g(x) are the traffic density distribution of independent traffic sources X1

and X2, respectively, then the cell loss rate function of f(x) ·g(x) equals to F (x) ·G(x);

• Let f(x), g(x) and q(x) be the traffic density distribution of independent traffic sources

X1, X2, and X3, respectively. Denote the CLRF of f(x), g(x), f(x)·q(x) and g(x)·q(x)

by F (m), G(m), FQ(m) and GQ(m) respectively. If for F (m) and G(m) the condition

F (m) ≥ G(m) holds for any m, then FQ(m) ≥ GQ(m) for any m.

These properties of the CLRF enable us to decompose the complex analysis of the aggregation

of several traffic sources into the analysis of individual traffic sources, hence the analysis is

greatly simplified. Furthermore, for heterogeneous sources, as long as they have a similar

CLRF, they can be treated as homogeneous sources. Therefore, as an application, the cell

loss due to the multiplexing of the N heterogeneous on-off sources are upper bounded by

the cell losses due to the multiplexing of N independent homogeneous on-off sources with

peak cell rate (pcr) as the maximum among all N sources’ pcr, and mean cell rate (mcr) as

the average of the N mcrs. From this perspective, the bufferless fluid flow approximation

method is applicable in on-line CAC for the heterogeneous sources.

2.3 Importance Sampling (IS)

The basic idea underlying the IS technique is the biasing of the examined system [5,7,8], so

that the target rare event becomes more likely to occur. This is mainly used in simulation

study. In the case of a stationary Gaussian inut process, the IS technique can be used to

derive a tight bound on the tail distribution of the queue length. The Gaussian process model

is useful for two reasons. First, Gaussian processes have several appealing properties, e.g.,

any stationary Gaussian process can be completely specified by its mean and covariance, and

the superposition of independent Gaussian processes is still Gaussian. Thus, unlike the case

of Markovian processes, analyzing a queue with a large number of Gaussian input processes is

no more difficult than for a single Gaussian input. Second, and more importantly, in a high-

speed network, the input flow is always an aggregation of multiple applications. According to

the Central Limit Theorem, even though the individual application cannot be characterized

by a Gaussian process, the aggregated traffic to the multiplexer can be effectively modeled

as a Gaussian process.

Under some mild assumptions (such as the stationarity and ergodicity of the net amount

of fluid input, denoted by γn = λn−µ where λn and µ represent the fluid input rate and the

service rate, respectively), the supremum distribution of Xn :=
∑n

m=1 γ−m is equal to the

steady-state queue length distribution, i.e.,

P(Q > x) = P(sup
n≥0

Xn > x) (2.3)
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This relation converts the estimation of the queue length distribution to that of the accumu-

lated net fluid input. For Gaussian processes, after scaling and shifting Xn, this conversion

simplifies the analysis procedure. Based on extreme value theorem for Gaussian processes, [7]

derived two bounds. The first is of a single exponential form

P(Q > x) ∼ Ce−ηx (2.4)

and results in an accurate upper bound to the asymptotic constant C. However, Eqn.(2.4)

captures only the leading (fastest decaying) term in log P(Q > x) and thus suffers from the

limitation inherent in all single-exponential based approximation for P(Q > x), i.e., when the

tail probability converges slowly, a single exponential approximation may fail to accurately

approximate P(Q > x) even for fairly large values of x. Motivated by this problem, other

asymptotic bounds were developed which exploit the variance of the Gaussian process.

Ψ

(
√

x

〈σ2
x〉

)

≤ P(Q > x) ≤ exp

[

−

(

x

2〈σ2
x〉

)]

∼ exp

{

−

[(

2
κ

S

)(

x +
κD

S

)]}

. (2.5)

This method, unlike LDP which is for general traffic and thus would suffer from a loss of

accuracy, is specified for Gaussian random processes, hence a tight bound is obtained.

3 Introduction to the Large Deviations Principle (LDP)

Large Deviation theory [1,14] is a modern branch of probability, concerned with estimating

the probabilities of rare events. This makes it well-suited to study high-performance com-

munications networks, in which dropping a packet (cell loss) should be a rare event. More

precisely, large deviations theory is concerned with limiting regimes. In queueing problems,

it is very rare to solve all equations exactly to obtain the performance measures of interest,

so instead we seek limiting results. Normally, large deviations estimates are governed by the

principle of the largest term, which means that if a rare event occurs, it is overwhelmingly

likely that it occurs in just one way. If we can calculate which is the most likely way, we

know the typical behavior of the system. That is one of the two important factors we are

interested when analyzing the system.

Large deviations theory has been widely studied, and much work has been done on LD in

queueing theory. These approaches differ by the limiting regime we look at. There are three

possibilities [1], many sources, large buffer, and moderate deviations.

1. many sources: here the total input flow is the aggregate of many independent input

flows. This sort of scaling is well-suited to modern telecommunication networks, e.g.,

the Internet, where a router may have thousands of inputs. So the Lth queue can

be thought of as multiplexing together L different flows, with its resources growing

in proportion, i.e., it has service rate LC and buffer size LB. When there are many

input flows or when the sources exhibit long-range dependence, the observation has

prompted some of the work on the many sources asymptotic.
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2. large buffer: in which buffer size of a router increases but the number of flows stays

fixed. So the Lth queue can be regarded as having a single input and fixed service

C, but increasing buffer size LB. For Markov modulated fluid sources and for many

others, the probability of loss decays exponentially in buffer size, so a good way to

reduce loss is to make the buffers larger. And it is natural to study the large buffer

asymptotic.

3. moderate deviations: in which the impacts of the mean arrival rate and burstiness

are treated differently. Usually, the central limit theorem looks at the limiting behavior

of L
1

2 (XL−µ) and produces estimates based on the normal distribution and involving

only the mean and covariance; while large deviations, on the other hand, look at the

limiting behavior of (XL−µ) and produces estimates involving the entire distribution,

but they depend only on the most likely path. Moderate deviations lies between large

deviations theory and the central limit theorem. It looks at the limiting behavior of

L
γ
2 (XL − µ) for 0 < γ < 1, and produces estimates involving only the mean and

covariance and depending only on the most likely path.

In order to estimate the quantities of interest, we first need to find a sample path LDP in

a space appropriate for queueing applications. This will be done in four steps.

1. The first step is to find an LDP for the finite truncation of the process. Think of a

sequence of processes XL, define the logarithmic moment generating function ΛL
t (θ)

for θ ∈ R
t by

ΛL
t (θ) =

1

L
log E exp(Lθ ·XL(0, t]) (3.6)

Assume that for each t and θ, the limiting moment generating function Λt(θ) =

limL→∞ΛL
t (θ) exists and is an essentially smooth, lower semicontinuous function. Then

for any fixed t, the sequence XL(0, t] satisfies an LDP with good rate function

Λ∗
t (x(0, t]) = sup

θ∈Rt

θ · x(0, t]−Λt(θ) (3.7)

2. The next step is to extend the LDP to the entire process, i.e., from X(0, t] to X(0,∞].

This can be done by taking projective limits.

3. The third step is to strengthen the LDP to a more appropriate topology such that

the queueing functions of interest are continuous with respect to the projective limit

topology.

4. Finally, restrict the LDP by incorporating a notion of stability, i.e., the limiting moment

generating function Λt corresponds to a stationary process.
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Then, the process XL is bounded from both above and below by:

lim inf
L→∞

1

L
log P(XL ∈ B) ≥ − inf

x∈B
(3.8)

lim sup
L→∞

1

L
log P(XL ∈ B) ≥ − inf

x∈B̄
(3.9)

where B and B̄ represent a closed and an open set, respectively.

4 Asymptotic behavior of GPS by using LDP

GPS is a work-conserving scheduling discipline, defined in terms of fluid sources where source

traffic is treated as infinitely divisible fluid (hence an ideal model). One of its important

features is its ability to provide isolation among different classes, while, at the same time,

allowing bandwidth sharing among classes. Consider n (n ≥ 2) sessions sharing a GPS

server with rate c, each session with its own queue. Associated with each session are share

parameters {φi}
n
i=1 which determine the guaranteed rate of each session

gi =
φi

∑n

j=1 φj

c

The actually received service by each session is given by

ri =
φi

∑

j∈B(t) φj

c (4.10)

where B(t) ⊆ {1, 2, . . . , n} represents the set of all backlogged sessions at time t. Eqn. (4.10)

shows that the unused bandwidth by sessions which are not backlogged will be shared by all

backlogged sessions in proportion to their share weights. This is an ideal fairness. On the

other hand, however, the received service of one session is related to not only its own input

traffic pattern and queue length distribution, but also the inputs and queues of other sessions.

This correlation makes the performance analysis, particularly stochastic analysis of the GPS

system intractable. In [20], we have shown that by the queueing analysis method, even for the

simple two on-off sources with exponentially distributed on and off periods, the performance

bounds are not tight enough, and the computation is quite complex. If extended to multiple-

queue and non-Markov input traffic, the analysis would be prohibitively complicated. As a

result, LDP, which can be applied to many input patterns, is considered. In [1], under the

large buffer asymptotic, the large deviations approximation of the queue length amounts to

log P(Q = β) ≈ −β2(1−H)I(1), for large β (4.11)

where I(·) is a good rate function associated with Q(·). When H = 1
2
, the decay is ex-

ponential in β: many other sources including MMFSs share this exponential decay. While

when H > 1
2
, the source has long-range dependence and the decay is less than exponential.
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In the LRD case, increasing the buffer size does not give as much of a reduction in loss

probability, and thus the many sources asymptotic is taken into account to approximate the

tail distribution. In other words, using LDP in different limiting regimes, we can obtain an

estimate for most classes of traffic.

4.1 Traditional Markovian Processes

Zhang applied LDP to the study of GPS systems in [10–12]. In order to decouple an individ-

ual session from the effect of other sessions, a decomposition method is employed. The basic

idea is to decompose a one-queue GPS system shared by n sessions into a n-queue system,

each of which is associated with a service rate si in such a manner that
n

∑

i=1

si ≤ c (4.12)

By appropriately selecting the values of {si}
n
i=1 and then analyzing the single queue system,

either an upper or lower bound on P(Q > x) is available to obtain. A noticeable concept

applied in the approximation is the effective bandwidth. Assume an input process has a

limiting moment generating function ΛA(θ), its effective bandwidth αA(θ) = ΛA(θ)
θ

reflects

its impact at the queue. The range lies between the mean and peak rate of the source. It has

been proved that a resource can deliver a performance guarantee expressed in terms of loss

or delay by limiting the sources served so that their effective bandwidths sum to less than a

threshold. Similarly, we can define the effective bandwidth αD(θ) for the departure/output

process in the same way. The queue length distribution is determined by both the input and

output processes.

In a two-queue system, an explicit relation exists between the two sessions’ service rate

si, i = 1, 2:

s1(t) + s2(t) = c

αAi
(θ) + αDj

(θ) = c (i, j) ∈ {(1, 2), (2, 1)} (4.13)

Let session 1 be the one considered. Its service rate s1(t) can be bounded by restricting s2(t)

directly. [11] discusses this problem in two cases: E a2(0) < g2, and E a2(0) ≥ g2, where

E ai(0), i = 1, 2 represents the mean arrival rate.

1. Upper bound of P(Q > x) implies that session 1 receives minimum service, which in

turn implies the maximum service received by session 2.

• E a2(0) < g2: set the service rate of session 2 by s2(t) = g2 and upper bound the

actually received service by the decomposed queue length. This will minimize the

received service of session 1 S1(0, t).

• E a2(0) ≥ g2: this case is easier to analyze since the fact that session 2 is always

backlogged indicates that the available maximum service rate for session 1 is only

g1.
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2. Lower Bound: during one busy period, the total queue length is the sum of the two

individual queue lengths. So, the lower bound of queue 1 means the queue 2 reaches

its maximum.

However, when more than two sessions share a multiple GPS server, there does not exist

such an explicit relation between the service rates of different queues and the exact analysis of

the bandwidth sharing dynamics among the sessions becomes significantly more complicated.

In that case, a partial feasible partition [12], which is a generalization of the feasible ordering

proposed by Parekh and Gallager in [18, 19], was introduced. This provides an avenue to

capture the asymptotic bandwidth sharing dynamics among the sessions in the GPS system.

Based on the effective bandwidth of each session, a partial feasible set F of session 1 with

respect to θ is defined in such a manner that for F = F1 ∪ F2 . . . ∪ Fk ⊆ N1 = N\{1} =

{2, 3, . . . , n}, i ∈ F1 if and only if αi(θ) <
φi

∑

j∈N φj
c, and recursively, for 2 ≤ l ≤ k, i ∈ Fl if

and only if

αi(θ) <
φi

∑

j∈N\F l−1 φj

(c−
∑

j∈F l−1

αj(θ)) (4.14)

The sequence of disjoint subsets F1, F2, . . . , Fk is called the partial feasible partition of F . If

we further define

γF
l (θ) =

1
∑

j∈N\F l−1 φj

(c−
∑

j∈F l−1

αj(θ)) (4.15)

clearly, φiγ
F
l−1(θ) ≤ αi(θ) < φiγ

F
l (θ) for i ∈ Fl. The numbers {γF

l (θ)}k
l=1 are referred to

as the associated delimiting numbers for F . Then, in the decomposition system, assign the

service rate of each fictitious queue as follows:

sF
i (θ) = αi(θ), i ∈ F

sF
i (θ) = φiγl, i ∈ N1\F (4.16)

sF
i (θ) is called the feasible rate of session i with respect to F and θ. Zhang proved that

when the stability condition
∑n

i=1 E ai(0) < c holds, the decay rate of the queue length tail

distribution for session 1 is bounded by:

lim sup
x→∞

1

x
log P(Q1 > x) ≤ −θ∗ (4.17)

lim inf
x→∞

1

x
log P(Q1 > x) ≤ −µ∗ (4.18)

For more details of θ∗ and µ∗, refer to [12]. The problem here is that the upper and lower

bounds do not match exactly in general, except in a two-queue GPS server. That indicates

the bounds are still not tight.

4.2 Long-range dependent traffic

For LRD traffic sources, since their decay is less than exponential, we cannot continue using

the single-exponent form as shown in Eqn.(4.17) to bound their decay rate. Bertsimas and

Borst [3, 9, 13] have addressed this problem and presented their solutions in different ways.
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In [13], the problem of estimating the queue length tail distribution is converted to an

optimal control problem, and thus some standard approaches of optimal control can be used

to derive the bounds on cell loss probability. Here the ability of large deviations theory

to determine in which way the overflow is most likely to occur is utilized. Optimal state

trajectories of the control problem correspond to the most likely modes of overflow. Certainly,

from the solution of the control problem, we can obtain a detailed characterization of these

modes. We have to point out that the authors considered only the case of multiplexing two

different traffic streams. (The general case of N streams is supposed to be more complicated

by using this method since there is an exponential explosion of the number of overflow

modes.)

Under the GPS policy, there are three distinguished regions of system dynamics, depending

on which of the two queues is empty. Denote the input rates of the two sessions and the

service rate by r1(t), r2(t), s(t), respectively. In particular, we have

• Region R1: Q
1(t) > 0 and Q2(t) > 0, where according to the GPS policy

{

Q̇1 = r1(t)− φ1s(t)

Q̇2 = r2(t)− φ2s(t)

• Region R2: Q
1(t) = 0 and Q2(t) > 0, where according to the GPS policy

Q̇2 = r1(t) + r2(t)− s(t)

• Region R3: Q
1(t) > 0 and Q2(t) = 0, where according to the GPS policy

Q̇1 = r1(t) + r2(t)− s(t)

Above state trajectories {Qi} constitutes a set of GPS-DYNAMICS. The overflow modes

are two special cases of GPS-DYNAMICS. (see Eqn.(21) of [13]). Then use the available

well-developed control tools to explicitly solve that deterministic optimal control problem.

It should be noted that in the analysis procedure, the service rate is assumed to be time-

varying, which makes it straightforward to extend the result to more complicated scheduling

systems, such as a mixture of GPS and priority scheduling, in which the service rate for low

priority sessions is a stochastic process.

Differently, in [3], a similarity relation between the desired queue length under GPS policy

and that given by a constant server is derived. The main result is

P(Qi > x) ∼ P(Qγi

i > x) (4.19)

where γi is the mean service rate that source i would receive if it continuously claimed

capacity, and the condition ρi < γi < σi holds with traffic intensity ρi. The result shows that

an individual source with long-tailed traffic characteristics is effectively served at constant

rate γi. This suggests that the most likely scenario for source i to build a large queue is
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to generate a large burst, or to experience a long on-period, while the other sources show

average behavior.

This method was extended to the feedforward network case by Uitert [9]. After traversing

a node, the input process at the node 2 is exactly the output of node 1. Generally, it can

be regarded as an on/off process with on periods identical to the busy periods at node 1,

and the on rate is equal to the service rate at node 1; while the off periods correspond to

the idle periods at node 1, which are exponentially distributed. Furthermore, the on and off

periods at node 2 are independent. Applying this result to the network case, an interesting

conclusion is obtained: the workload at a particular node in the network depends on two

rates, the rate at which traffic is sent into the node and the rate at which traffic is served by

the node. In fact, the first rate is the rate at which traffic is served by the bottleneck node

on the path to the relevant node, and the other rate is the service rate for flow i. Therefore,

the long-tailed flow is only affected by the traffic characteristics of the other flows through

their average rates and is not influenced by the excessive behavior of any of the other flows.

5 Conclusion

In this paper we review several methods to estimate the cell loss probability (or called queue

length tail distribution) of the individual session under GPS policy. Due to the generalization

and mature development, LDP attracted more attention. However, for specific processes,

we prefer other methods. For example, service-curve based method for Markov processes,

Importance Sampling method for Gaussian processes, and bufferless fluid flow approximation

for heterogeneous on-off sources. Because of the complexity of bandwidth sharing mechanism

of the GPS system, the tightness of the derived bounds is still an open problem.
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