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Abstract—Assume that the transmitters in a random wireless
network are distributed according to a Poisson Point Process
(PPP) and that the receiver is interested in the signal transmitted
by its kth nearest transmitter where k ∈ T and T denotes the set
of desired transmitters. Excluding the desired transmitter(s) is
equivalent to puncturing the points corresponding to the desired
transmitters from the PPP which results in the field of interferers.
In this paper, by assuming that the field of interferers keeps its
Poisson property, we approximate the cumulants of interference.
We show that to find the cumulants, the joint statistics of
internodal distances in the PPP are required which we find in
closed form. Simulation results show that the obtained analytical
derivations provide very good approximation to the interference
statistics.

I. INTRODUCTION

Assume that the nodes in a wireless network are distributed
according to a Poisson Point Process (PPP). This is a reason-
able assumption when the movements of nodes in a mobile
network are uncorrelated or when the nodes are deployed
randomly (for example, in a wireless sensor network). The
field of transmitters in this scenario will remain a PPP when
ALOHA MAC protocol is used in the network [1] or can be
closely approximated by a PPP when other MAC protocols
like CSMA is used [2]. Let us denote this PPP as Φ. Assume
that the receiver is interested in the signal transmitted by its
kth nearest transmitter where k ∈ T and T shows the set of
desired transmitters. By excluding one or few of the nodes
as the desired transmitter(s), and since the locations of the
desired transmitter(s) are random, the field of interferers will
be a randomly punctured version of Φ. Examples for the case
of multiple desired transmitters include when these desired
nodes are engaged in cooperative transmission and/or relaying
to the receiver or when the receiver is equipped with a multi-
user detector and wishes to detect the signals transmitted by
all of these desired nodes.

A. Related Work and Motivation

The majority of works for interference modeling in random
wireless networks assume that the interferers are distributed
according to a PPP and isolate the desired transmitter from
the point process. The desired transmitter is assumed to have
a deterministic distance to the receiver and to be separate from
the PPP (e.g., [3]-[5]). The aggregate interference originated

from a Poisson field of interferers can be modeled as a
random sum over the PPP. Closed form results exist for the
characteristic function of such random sums defined over a
PPP (see [6] for example). Therefore, by taking advantage of
the tractability of Poisson processes, closed form results can
be obtained for interference statistics.
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Fig. 1: Random region encompassing the interferers. The
guard zone is a disc with radius D around the receiver.

In a more realistic scenario, the desired transmitter (or
transmitters) also belongs to the point process that models
the field of concurrent transmitters. In fact, with a PPP
assumption for the spatial distribution of wireless nodes, the
field of concurrent transmitters will remain a PPP with an
ALOHA MAC scheme or can be closely approximated as
PPP using CSMA (see [1] and [2]). By excluding the desired
transmitter(s), the interference is coming from a randomly
punctured PPP.

We consider a region with random boundaries which encom-
passes all of the interferers. By conditioning on the boundaries
of this region, we approximate the conditional characteris-
tic function of interference with the simplifying assumption
that the nodes’ distribution in the region keeps its Poisson
property and Campbell’s theorem can be applied to find the



characteristic function of interference. Subsequently, we find
the conditional cumulants and use the law of total cumulance
(see [7]) to find the cumulants. We show that this requires the
joint statistics of the distances between the transmitters and
the receiver which we obtain in closed form and use them to
obtain the cumulants.

II. SYSTEM MODEL

We assume that a PPP with density µ models the locations
of the nodes in a wireless network, and we focus on the
interference at the receiver. With an ALOHA MAC protocol,
the field of concurrent transmitters will be a PPP with smaller
density λ = pµ where p is the the transmission attempt
probability of ALOHA [1]. Let us index the receiver as node
0 and the ith closest transmitter to the receiver as node i.
Without loss of generality, we can assume that the receiver is
located at the origin. Also, assume that there is a guard zone
around the receiver which is a disc with radius D and the
receiver at its center (See Fig. 1). No node can transmit if it is
located inside the guard zone. The guard zone is necessary to
avoid excessively high interference power, generated by very
close neighbors, at the receiver. In practice, nodes can identify
whether their distance to the receiver is smaller than D by
measuring the power level of the control packets sent by the
receiver [8]. We denote the distance of node i to the receiver
as Ri and the set of desired transmitters for the receiver as T.

We exclude the guard zone as well as the annular regions
with inner and outer radii of Rk−1 and Rk+1 for any k ∈ T
from the 2-D Euclidean space. The resulting region, denoted
by S, contains all of the interferers (See Fig. 1). Assuming that
all of the interferers transmit with the same power level and
using a power-law path loss model, the normalized aggregate
interference power can be written as

I =
∑
i∈S

hiR
−α
i . (1)

where α is the path loss exponent, hi denotes the fading on
the channel from node i to the receiver and we assume that
{hi} are i.i.d.

As the inner and outer radii of annular regions are random
variables, S has random boundaries. Depending on the indices
of the desired transmitters, the annular regions may overlap.
For example, for T = {4, 5}, the regions: {R3 ≤ r ≤ R5}
and {R4 ≤ r ≤ R6} overlap and the excluded region, which is
the union of these annuli, is {R3 ≤ r ≤ R6}. Considering this
possible overlap, the excluded region consists of M disjoint
annuli where M is less than or equal to the number of desired
transmitters. We denote the inner and outer radii of kth annulus
as Rk,l and Rk,u. The boundaries of region S are therefore
B =

⋃M
k=1{Rk,l, Rk,u}. For example, for T = {4, 5}, we

have M = 1 and B = {R3, R6} or for T = {4, 7}, {R3 ≤
r ≤ R5} and {R6 ≤ r ≤ R8} are excluded, M = 2 and
B = {R3, R5, R6, R8}.

III. INTERFERENCE STATISTICS

The interference defined in (1) is a random sum over the
punctured PPP which is distributed in the region S. The num-

ber of points in S is therefore Poisson minus a deterministic
number (i.e., the number of desired transmitters)1. Since there
is no known result for finding statistics of random sums over
non-Poisson point processes, we define a random variable Î as
an approximation for the interference assuming that the dis-
tribution of nodes inside S preserves its Poisson property and
Campbell’s theorem can be applied to obtain the characteristic
function. Conditioning on B and using Campbell’s Theorem
[6], the conditional characteristic function of Î can be written
as

ΨÎ|B(ω) = E{ejωÎ |B} =

exp

(
2πλ

∫
h

∫
Υ

[
exp(jωhr−α)− 1

]
rdrfh(h)dh

)
(2)

where Υ = [D,∞)−⋃Mk=1(Rk,l, Rk,u) and fh(h) is the pdf
of the fading. The conditional cumulants of Î can be obtained
from (2) as2

κn(Î|B) =
1

jn

[
∂n ln ΨÎ|B(ω)

∂ωn

]
ω=0

=

2πλE{hn}
∫

Υ

r1−nα dr =
2πλE{hn}
nα− 2

Yn (3)

where Yn = D2−nα +
∑M
i=1(R2−nα

i,u − R2−nα
i,l ). Cumulants

of Î can be obtained from law of total cumulance. Using the
corollary in [7], κn(Î) is found as

κn(Î) =
∑ n!

µ1!µ2! · · ·
1

(p1!)µ1(p2!)µ2 · · ·
× κ{κp1(Î|B)︸ ︷︷ ︸

µ1 times

, κp2(Î|B)︸ ︷︷ ︸
µ2 times

, · · · } (4)

where the summation extends over all partitions of n such that
p1µ1 + p2µ2 + · · · = n.

The expected value of Î (i.e., κ1(Î)) can be found as

E{Î} = E{E{Î|B}} =
2πλE{h}
α− 2

E{Y1} (5)

where E{Y1} =
(
D2−α +

∑M
i=1E{R2−α

i,u } − E{R2−α
i,l }

)
. In

[9], the pdf of Ri is found to be generalized gamma, and
E{Rβi } is found in [9, 10] in closed form:

E{Rβi } =
1

(λπ)β/2
Γ(i+ β/2)

Γ(i)
(6)

where β can be any real number such that i+ β/2 > 0.

For the variance of Î , the law of total cumulance in (4)

1This is unlike the case that the boundaries are deterministic and the number
of points in both excluded and non-excluded regions are Poisson [6].

2The integral in (3) converges for 2−nα < 0 which holds if α > 2. This
condition is always hold except for free space propagation model for which
α = 2.



degenerates to the law of total variance:

var{Î} = E
{

var{Î|B}
}

+ var
{
E{Î|B}

}
=

2πλE{h2}
2α− 2

E{Y2}+

(
2πλE{h}
α− 2

)2

var{Y1} (7)

where

E{Y2} =
2πλE{h2}

2α− 2

×
(
D2−2α +

M∑
i=1

(E{R2−2α
i,u } − E{R2−2α

i,l })
)

(8)

and

var{Y1} =

(
2πλE{h}
α− 2

)2

var

{
M∑
i=1

(R2−α
i,l −R2−α

i,u )

}
(9)

As can be concluded from (7) and (9), to find the variance of Î ,
the joint statistics of Ri and Rj , i 6= j, will be required. The
Joint statistics will also be required to find higher cumulants
of Î .

A. Joint Statistics of distances in PPP

It is known that if nodes are distributed according to a
two-dimensional Poisson point process with density λ, the
squared ordered distances from the receiver have the same
distribution as the arrival times of a one-dimensional PPP with
density λπ (see [11] and [12]). Consequently, for any set of
indices {l1, l2, · · · , ln} where l1 < l2 · · · < ln, the joint pdf
fR2

l1
,R2

l2
,···R2

ln
(x1, x2, · · · , xn) can be found as follows:

fR2
l1
,R2

l2
,···R2

ln
(x1, x2, · · · , xn) =

fR2
l1
,R2

l2
−R2

l1
,··· ,R2

ln
−R2

ln−1
(x1, x2 − x1, · · · , xn − xn−1) =

(λπ)ln

Γ(l1)Γ(l2 − l1) · · ·Γ(ln − ln−1)
× (10)

xl1−1
1 (x2 − x1)l2−l1−1 · · · (xn − xn−1)ln−ln−1−1×
e−λπxn

which is found using R2
l1

and R2
li
− R2

li−1
, i > 2 are

independent Erlang random variables with rate parameter λπ
and shape parameters l1 and li− li−1 respectively3. Using this
joint pdf, we find E

{
Rβl1R

β
l2
· · ·Rβln

}
.

Proposition 1. We have

E
{
Rβl1R

β
l2
· · ·Rβln

}
=

∫ ∞
0

∫ xn

0

· · ·
∫ x2

0

x
β/2
1 x

β/2
2 · · ·xβ/2n

× fR2
l1
,R2

l2
,···R2

ln
(x1, x2, · · · , xn)dx1 · · · dxn =

1

(λπ)nβ/2

n−1∏
k=1

Γ(lk + kβ/2)

Γ(lk + (k − 1)β/2)
(11)

3In a one-dimensional Poisson process with density λπ, the inter-arrival
times are i.i.d exponential random variables with mean 1

λπ
and sums of inter-

arrival times are Erlang distributed.

Proof: We let A = (λπ)ln

Γ(l1)Γ(l2−l1)···Γ(ln−ln−1) . We then
have

E
{
Rβl1R

β
l2
· · ·Rβln

}
=

A

∫ ∞
0

∫ xn

0

· · ·
∫ x2

0

x
β/2
1 xl1−1

1 (x2 − x1)l2−l1−1 · · ·

× xβ/2n−1(xn − xn−1)ln−ln−1−1xβ/2n e−λπxndx1 · · · dxn−1dxn

We first find∫ x2

0

x
β/2
1 xl1−1

1 (x2 − x1)l2−l1−1dx1 = x
l2+β/2−1
2 B(l1 + β/2, l2 − l1)

where B(.) is the beta function. Using induction,∫ xn

0

· · ·
∫ x2

0

x
β/2
1 xl1−1

1 (x2 − x1)l2−l1−1 · · ·

× xβ/2n−1(xn − xn−1)ln−ln−1−1dx1 · · · dxn−1 =

B(l1 + β/2, l2 − l1) · · · ×B(ln−1 + (n− 1)β/2, ln − ln−1)

× xln+(n−1)β/2−1
n

and

E
{
Rβl1R

β
l2
· · ·Rβln

}
= AB(l1 + β/2, l2 − l1)B(l2 + β, l3 − l2) · · ·

×B(ln−1 + (n− 1)β/2, ln − ln−1)

∫ ∞
0

xln+nβ/2−1
n e−λπxndxn

Noting that∫ ∞
0

xln+nβ/2−1
n e−λπxndxn =

Γ(ln + nβ/2)

(λπ)ln+nβ/2
,

and using the equality B(x, y) = Γ(x)Γ(y)
Γ(x+y) , the result in (11)

is found after simplification.

B. Single Desired Transmitter Scenario

Let us consider the case of a single desired transmitter, i.e.,
T = {i} for some i. In this case: Yn = D2−nα + R2−nα

i+1 −
R2−nα
i−1 . The mean interference can be found from (5) as

E{Î} =
2πλE{h}
α− 2

(
D2−α + E{R2−α

i+1 } − E{R2−α
i−1 }

)
(12)

and E{R2−α
i+1 } and E{R2−α

i−1 } are known from (6). The vari-
ance of the interference can be found as:

var{Î} =
2πλE{h2}

2α− 2
E{Y2}+

(
2πλE{h}
α− 2

)2

var{Y1}
(13)

where

E{Y2} = D2−2α + E{R2−2α
i+1 } − E{R2−2α

i−1 }
and

var{Y1} = var{D2−α +R2−α
i+1 −R2−α

i−1 }
= var{R2−α

i+1 }+ var{R2−α
i−1 } − 2cov{R2−α

i−1 , R
2−α
i+1 }.

We can find E{Y2}, var{R2−α
i−1 } and var{R2−α

i+1 } from (6) and
cov{R2−α

i−1 , R
2−α
i+1 } can be found from (11) and (6).

Higher order cumulants of Î can similarly be found by



application of law of total cumulance and using (4). To find
these cumulants, the joint statistics of Ri−1 and Ri+1 will be
required which can be found from (11).

C. Multiple Desired Transmitters Scenario

For multiple desired transmitters, the excluded region con-
sists of M disjoint annuli where M is less than or equal to the
number of transmitters. For the case of a single annulus, say
(R1,l ≤ r ≤ R1,u), the mean and variance of the interference
can be found using the results in previous subsection with R1,l

and R1,u replaced by Ri−1 and Ri+1. For multiple annuli, we
consider an example and find the mean and variance of the
interference.

Let us consider T = {4, 7}. In this case, the excluded
region is (R3, R5) ∪ (R6, R8). The mean and variance of the
interference can be found as

E{Î} =
2πλE{h}
α− 2

×(
D2−α + E{R2−α

5 } − E{R2−α
3 }+ E{R2−α

8 } − E{R2−α
6 }

)
(14)

and

var{Î} =
2πλE{h2}

2α− 2
E{Y2}+

(
2πλE{h}
α− 2

)2

var{Y1}
(15)

where

E{Y2} = E{D2−2α +R2−2α
5 −R2−2α

3 +R2−2α
8 −R2−2α

6 }
and

var{Y1} = var{R2−α
5 −R2−α

3 +R2−α
8 −R2−α

6 }
which can be obtained using (6) and (11).

IV. NUMERICAL RESULTS

We consider a receiver located at the origin and a PPP with
density λ = 0.1 which models the locations of the desired
transmitter(s) and the interferers. A guard zone with radius
D = 1 is considered around the receiver, and no node inside
the zone is allowed to transmit. We consider Rayleigh fading
and model h as an exponential random variable with parameter
14. Using this model, we have E{hn} = n!. We generate a
new realization of PPP at each step of simulation, exclude
the desired transmitter(s) along with the nodes with distances
closer than D to the receiver from the point process and
measure the interference at the receiver. Interference statistics
are then found empirically and compared with the analytical
derivations.

In Fig. 2, we show analytical and simulation results for
E{Rβ3Rβ6} for different values of β. We have considered other
combinations of distances as well and the result found in (11)
match with the simulation.

In Figures 3 and 4, assuming that there is a single desired
transmitter (T = {5}, i.e. the 5th closest neighbor to the

4h (the power gain) is the square of a Rayleigh random variable and
exponentially distributed.
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Fig. 2: Analytical and Simulation results for E{Rβ3Rβ6}
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Fig. 3: Analytical and simulation results for mean of interfer-
ence vs. path loss exponent for T = {5}

receiver), we show the analytical results for E{Î} and var{Î}
(using (12) and (13)) along with the simulation results for
mean and variance of interference. The results indicate that
obtained approximation for interference statistics match very
well with the simulation results.

In Figures 5 and 6, simulation results for the mean and
the variance of interference are compared with the analytical
approximation results assuming T = {4, 7}, i.e. for two
desired transmitters. Results indicate that the interference
statistics are very well approximated for both single as well
as multiple desired transmitters scenarios.

V. CONCLUSIONS

In random wireless network, in which the desired transmit-
ter(s) as well as the interferers all belong to the same Poisson
point process (PPP), the field of interferers is a randomly
punctured version of the PPP. For example, multiple nodes
may cooperatively transmit to the receiver or the receiver may
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Simulation

Fig. 4: Analytical and simulation results for variance of
interference vs. path loss exponent for T = {5}
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Fig. 5: Analytical and simulation results for mean of interfer-
ence vs. path loss exponent for T = {4, 7}

be equipped with multiuser detector and wishes to detect the
signals transmitted by multiple desired transmitters. Consid-
ering a region with random boundaries which encompasses
all of the interferers, we first approximate the characteristic
function of the interference assuming that nodes’ distribution
in this region preserves the Poisson property. We then obtain
the conditional characteristic function and cumulants of the
approximated interference. The law of total cumulance is then
invoked to obtain the cumulants. Joint statistics of internodal
distances in the PPP will be required for this purpose which we
find in closed form. The approximated interference statistics
are shown to match very well with the simulation results.
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