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ABSTRACT

Shot noise processes with a decaying power law im-
pulse response function are ideally suited for modeling the
network self-interference in an ad hoc network where the
nodes are distributed in a plane according to a Poisson
point process. A stochastic impulse response function can
be used to model different random parameters like channel
fluctuation, variable transmission power of the nodes etc.
However, for a decaying power law, all the moments of the
interference diverge. In this paper, we extend the 2D shot
noise model to represent a modified power law that is not
only more realistic but also allows for finite moments for the
interference. For this model, we present performance curves
for the AWGN channel with and without variable transmis-
sion power at the nodes as well as for the fading channel.
Then, we impose a guard zone around each receiver node
in the network, modify the shot noise model to this channel
access scheme and demonstrate the improvement in per-
node throughput that a guard zone is capable of providing.

I. INTRODUCTION

Ad hoc networks are characterized by a distributed set
of nodes that compete for common network resources
potentially interfering with every other transmitter in the
network. Due to the lack of infrastructure, implementing
power control algorithms remains a challenge and an active
area of research and motivates the need to come up with
exact models for the network self-interference in order to
determine the capacity of the system. In order to do this,
the most commonly adopted path loss model in literature
is that the signal strength falls off as a decaying power law
of the distance of transmission. For this model, when the
nodes are distributed in R

2 according to a Poisson point
process (PPP), the exact distribution of the interference
is analytically tractable only for a path loss exponent of
4 for the AWGN [1] and Rayleigh fading channels [2].
Other authors like [3] and the references therein simply
use the characteristic function of the interference to model

the system performance without attempting to determine the
exact distribution for path loss exponents other than 4.

For practical channels, therefore, it is of great interest
to determine under what conditions the interference power
converges to a Gaussian in distribution. The moments of
the interference are excellent indicators in this regard [4].
However, when there is no power control, interferers close
to a receiver contribute a lot more interference power than
those further away, thus, violating the conditions for the
central limit theorem [5]. Further, interferers arbitrarily
close to a receiver can cause infinite interference in the
decaying power law model and this causes all the moments
of the interference to diverge.

In this paper, we eliminate diverging moments by using
a modified power law to model the path loss so that it be-
comes physically meaningful for arbitrarily small distances
as well. We derive the moment generating function of the
interference for this modified power law by modeling the
interference to be a 2D Poisson shot noise process with a
stochastic impulse response function. Our work is similar
in spirit to [3], and we derive the outage and throughput
performances for the additive white gaussian noise (AWGN)
as well as the Rayleigh fading channel for a wide range of
path loss exponents. We also present performance results
when the nodes employ variable transmission powers with
nearest neighbor transmission. The results show that while
the modified path loss model does not differ by much from
the original decaying power law model in terms of outage
performance, it does result in finite interference moments.

Even for the modified power law, interferers close to the
receiver can easily swamp the desired signal, thus, resulting
in low per-node throughputs. A solution to this problem is
to modify the channel access scheme such that there is a
guard zone around every receiver in which no interferers
can be present. This results in significant improvements in
the system performance even for small values of the guard
zone [6][7]. We extend our shot noise model to such a
channel access scheme and present performance curves for
this model as well.
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II. SYSTEM MODEL

The system model is as follows

• Nodes are distributed in R
2 according to a homoge-

neous Poisson point process (PPP) Π of density λ.
• Nodes make independent decisions on whether to

transmit or listen, and each node is equipped with
an omni-directional antenna. In any given time slot,
a node transmits with probability α so that the set of
all transmitting nodes forms a PPP Πm of intensity
λα.

• Transmitters can all use either a constant transmission
power or choose to draw their powers from a known
distribution.

• Node mobility is not considered in this paper. Rather,
the performance results are obtained for an “average”
network configuration, i.e., by averaging over all pos-
sible network configurations.

• Each node generates information packets of fixed
length and all transmissions are assumed to be syn-
chronized slot-wise (slotted ALOHA).

• The interference model assumes that each transmitting
node could potentially interfere with any receiving
node. For transmission over a distance r, the power
law decay is given by r−η, where η is the path loss
exponent.

• The total interference seen at a typical receiver node
is I =

∑n
i=1 Ii, where the summation is over all

transmitting nodes and n → ∞ for infinite networks.
In order to keep E [I] finite, it is necessary (but not
sufficient) that the path loss exponent η > 2 (Maclaurin
and Cauchy criterion) [8].

• An outage occurs when the signal-to-interference ra-
tio (SIR) γ is less than a certain threshold Θ, i.e.,
O = P (γ < Θ). The background noise power, σ2

n, is
assumed to be much smaller than the network self-
interference and is ignored in the outage analysis. In
the Rayleigh fading case, noise and interference can be
treated independently [9], so the noise analysis simply
yields an additional factor in the reception probability.

• The per-node throughput is defined to be the overall
probability with which a transmitting node a success-
fully transfers a packet to a receiving node b. For a
network with uniform traffic across all links, the per-
node throughput will be the same for all the nodes
(boundary effects do not exist if the nodes are assumed
to be distributed over the surface of a sphere). The per-
node throughput is defined as ζ = α(1 − α)(1 − O),
where α is the probability that a transmits to b and
(1 − α) is the probability that b does not choose to
transmit in the same time slot.

III. SHOT NOISE BACKGROUND

Shot noise results when a memoryless linear filter is
excited by a train of impulses derived from a homogeneous
PPP with arrival rate µ [10]. The impulse response of the
filter, f(t), can assume different shapes like a triangle,
rectangle, decaying exponential, decaying power law etc.
More generally, the impulse shapes can be stochastic and
may be randomly chosen from a family of shapes, f(k, t),
with a random variable k. In this paper, we consider the
stochastic impulse response model since specialization to
the deterministic case is trivial. The shot noise amplitude
is given by

I(t) =
∑

j

f (kj , t− tj) . (1)

The arrival times {tj} are Poisson with rate µ and {kj} are
iid random variables drawn from a common distribution
and independent of {tj}. All impulse functions f(k, t) are
assumed to be integrable over −∞ < t < ∞ so that the
series in (1) converges. As the driving rate µ increases,
under some weak conditions, the amplitude distribution of
shot noise approaches a Gaussian distribution. This is true
of most impulse response functions. However, when the
impulse response is a decaying power law, the amplitude
distribution does not tend to a Gaussian for any value of
µ [5]. In this paper, we are interested only in the decaying
power law shot noise process.

The moment generating function of I(t), Φ(s) =
E
[
e−sI(t)

]
, can be obtained as follows. Let the kj’s be

drawn from a discrete set K1,K2, · · · with probabilities
p1, p2, · · ·. The shot noise process can then be written as
the sum of independent shot noise processes, i.e., I(t) =
I1(t) + I2(t) + · · ·, where Ii(t) is the sum of deterministic
impulse responses with a Poisson arrival and a constant
parameter Ki, i.e.,

Ii(t) =
∑

j

f(Ki, t− tj) (2)

Since the Ii are independent,

Φ(s) = E

[
e−s(I1(t)+I2(t)+···)

]
= Φ1(s)Φ2(s) · · · . (3)

For a deterministic impulse response, it is a well-known
result [11] that

Φi(s) = exp
{
−µpi

∫ ∞

−∞
(1 − exp [−sf(Ki, t)]) dt

}
(4)

After evaluating every Φi(s) using (4), Φ(s) is given by

Φ(s) = exp
{
−µ
∫ ∞

−∞
Ek (1 − exp [−sf(k, t)]) dt

}
, (5)
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where Ek [·] is expectation w.r.t k. Though k is assumed to
be drawn from a discrete distribution, the above expression
can be extended to continuous distributions using limiting
arguments so that (5) is true in general.

A decaying power law impulse response function is given
by f(k, t) = kt−η. For t varying between A and B,
the moment generating function, after simplification using
integration by parts, is given by [5]

Φ(s) = exp
{
−µ
∫ B

A
Ek

[
1 − exp

(−skt−η
)]
dt

}
= exp

{
µAEk

[
1 − exp

(−skA−η
)]

− µBEk

[
1 − exp

(−skB−η
)]

+ µEk

[
(sk)1/η Γ

(
1 − 1/η, skA−η

)]
−µEk

[
(sk)1/η Γ

(
1 − 1/η, skB−η

)]}
,(6)

where Γ(a, x) =
∫∞
x ta−1e−tdt is the incomplete Gamma

function. For the special case when A = 0 and B = ∞, (6)
reduces to

Φ(s) = exp
(
−µEk

[
k1/η

]
Γ (1 − 1/η) s1/η

)
. (7)

This completes the description of the 1D shot noise process.
Extending the moment generating function in (6) to a 2D
PPP is straightforward and the derivation is given in Ap-
pendix A. Intuitively, this can be understood as projecting
a 2D homogeneous PPP on to a 1D process in r, the
distance of a transmitting node from the origin. This new
process, however, is not homogeneous and the intensity
of the transmitting nodes increases linearly as λαr. Upon
using this projection in (6) and assuming uniform angle
distribution for the node location, we get back the exponent
derived in the appendix to within a constant.

The following section adapts this 2D shot noise process
to model the interference in a random ad hoc network,
which is then used to derive outage and throughput bounds.

IV. INTERFERENCE MODELING

The distribution of the point process in R
2 is unaffected

by the addition of a transmitter node at the origin (by
Slivnyak’s Theorem [4]). Given this transmitter node, we
consider a receiver at unit distance from this transmitter1,
shift the origin to this receiver node, and develop the
interference model around this “typical” receiver node. This
conditional distribution is sometimes referred to as the Palm
distribution and since the network is homogeneous, the

1Even if the transmitter-receiver distance is not unity, all distances in
the network can be normalized by this distance so that the desired link
always has unit distance.

interference measure at the origin is representative of the
interference seen by all other receiver nodes in the network.

The magnitude of interference seen by the receiver at
the origin can be likened to the amplitude of the shot noise
process described in Section III. Let ri be the distance of
the ith interferer to the origin. The path loss model is the
decaying power law impulse response so that f(ki, ri) =
ki/r

η
i . The driving rate of the arrival process is modeled by

the intensity of the transmitting nodes, i.e., µ = λα. The
total interference seen at the origin is given by

I =
∑
i∈Π

Bif(ki, ri) =
∑

i∈Πm

ki/r
η
i , (8)

where {Bi} constitute a set of iid Bernoulli random vari-
ables such that P (Bi = 1) = 1 − P (Bi = 0) = α. For a
AWGN channel, ki is a constant. For a block Rayleigh
fading channel, ki is drawn from an exponential distribution
with unit mean and remains constant over one transmission
slot. There is also the possibility of the transmitters em-
ploying variable transmission powers, in which case ki is
drawn from a known distribution for the transmit power.
For all these different transmission models, we present the
exact distribution of I for the special case of η = 4 in the
following subsection and demonstrate the idea of equivalent
shot noise processes.

A. Decaying power law, A = 0, B = ∞
The moment generating function for the decaying power

law model f(k, r) = k/rη, 0 ≤ r < ∞ is obtained by
evaluating (28) in the limit A = 0 and B = ∞ to be

Φ(s) = exp
(
−πλαEk

[
k2/η

]
s2/ηΓ (1 − 2/η)

)
. (9)

Owing to the singularity at r = 0, however, the mean and
variance of the interference obtained from this moment
generating function diverge. Nevertheless, this form for
Φ(s) allows for some interesting observations. Notice that
the moment generating function is of the form Φ(s) =
exp

[−(cs)2/η
]
, where c is a constant so that for all vales of

λα, the interference is a one-sided Lévy-stable random vari-
able with asymmetry of dimension D = 2/η [12]. Similar
to a Gaussian distribution, a Lévy-stable distribution has the
property that the sum of two Lévy-stable random variables
is another Lévy-stable random variable whose distribution
is of the same form as the individual random variables.
Therefore, even when the intensity of the interferers is infi-
nite, i.e., λα→ ∞, the form of the interference distribution
remains the same. However, the conditions for the central
limit theorem are violated as long as 0 < D < 1 and
the interference never converges to a Gaussian distribution
for practical path loss models with η ≥ 2. Ideally, for the
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interference to be strictly Gaussian in the limit λα→ ∞, a
necessary condition is that η = 0, i.e., there is no path loss.
In such a network, all interferers would contribute evenly
and the interference converges to a Gaussian distribution in
the limit. The moments of the interference are an indication
of how quickly the distribution tends a Gaussian and this
motivates the modified path loss model presented in the next
subsection. Before that, we present the exact distributions of
the interference for the special case of η = 4 for 3 different
transmission models.

1) Deterministic channel: Here, k is a constant and
without loss of generality can be taken to be 1.
The moment generating function becomes Φ(s) =
exp

(−πλαs2/ηΓ (1 − 2/η)
)

and for the special case of
η = 4, the distribution of the interference obtained through
the inverse Fourier transform, attains the well-known form
[1]

fI(x) =
π

2
λαx−3/2 exp

(
−π3λ

2α2

4x

)
(10)

2) Rayleigh block fading channel: k is an exponential
random variable with unit mean so that Ek

[
k2/η

]
=

Γ (1 + 2/η). Substituting this back into (9) and evaluating
the distribution for η = 4 yields

fI(x) =
λα

4

(π
x

)3/2
exp

(
−π4λ

2α2

16x

)
(11)

Once again, this is the exact same distribution derived in
[2].

3) Deterministic channel, variable transmission powers:
So far, we have assumed that all transmitters transmit
at the same power level which is to say that they all
have receivers at the same link distance. A more practical
model is one where each transmitter adopts nearest neighbor
transmission. Here, ki represents the variable transmission
power of the ith interferer.

When the transmitting nodes are distributed according to
a PPP of intensity λα, the distance to the nearest neighbor,
d, is Rayleigh distributed with mean 1

2
√

λ(1−α)
[13], i.e.,

fD(x) = 2πλ (1 − α) xe−πλ(1−α)x2
. (12)

The path loss from the transmitter to its receiver is dη and,
hence, the transmitter needs to adjust its power proportional
to dη in order to reach its receiver with the same expected
power during all time slots2. For η = 4, the transmission

2If it is assumed that every transmitter knows the distance to its
receiver exactly so that it can adjust its power accordingly, the point
process model is no longer valid since we are conditioning on all receiver
locations. Instead we assume that every transmitter randomly draws its
power according to fK(k) with no knowledge about the location of its
receiver

power for every transmitting node is a random variable with
distribution corresponding to k = d4 so that

fK(x) =
πλ (1 − α)

2
x−1/2e−πλ(1−α)x1/2

(13)

For this distribution of k, we have Ek

[
k1/2

]
= 1

πλ(1−α) .
Substituting this back in (9), we determine the distribution
of the interference to be

fI(x) =
α

2

(
1

(1 − α) x

)3/2

exp
(
−π α2

4 (1 − α)2 x

)
(14)

The interference distributions given by (10), (11) and (14)
correspond to random variables that are related to each other
through just a scaling factor. This demonstrates that as long
as the distribution of k is known, the stochastic transmission
model can be replaced by an equivalent deterministic model
k0/r

η such that k2/η
0 = Ek

[
k2/η

]
, where k0 is constant. The

interference values obtained for the different transmission
models would then differ only by the ratio of their cor-
responding k0 values. This result is a specialization of a
more general equivalence result presented in Appendix B
and holds only for A = 0 and B = ∞.

B. Modified power law

The decaying power law model is a good way to model
path loss when the transmitter or interferer is far away from
the receiver, but the model becomes physically meaningless
for very small distances since the receiver can never receive
more than the transmitted power. To avoid this scenario,
some authors adopt a path loss model of the form (1 +
r)−η. Equivalently, we use the following modified power
law decay

f(k, r) =
{
k, r < 1
kr−η, r ≥ 1. (15)

The advantage of using this model is that it eliminates the
singularity at r = 0 present in the original power law and
provides a finite mean and variance for the total interfer-
ence. This can be seen by modeling the total interference
caused by all the transmitters at the origin to be the sum
of 2 terms I1 and I2, where I1 is the total interference
caused by all transmitters within a distance of 1 from the
origin and I2 is is the total interference power due to all
transmitters at distances greater than 1. Since the nodes
are distributed according to a PPP, I1 and I2 are indepen-
dent. The moment generating function for I1 can easily
be obtained as Φ1(s) = exp

(−πλαEk

[
1 − e−sk

])
. The

corresponding function for I2 is obtained by substituting
A = 1 and B = ∞ in (28),

Φ2(s) = exp
{
πλα

[
Ek

(
1 − e−sk

)
−
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s2/η
Ek

(
k2/η

)
Γ (1 − 2/η) +

s2/η
Ek

(
k2/ηΓ (1 − 2/η, sk)

)]}
(16)

Let k be a unit mean exponential random variable. For a
PPP, the mean and variance of I1 are given by µ1 = πλα
and σ2

1 = 2πλα. The corresponding values for I2 are
obtained as µ2 = − d

ds lnΦ2(s)|s=0 = 2πλα
η−2 and σ2

2 =
d2

ds2 lnΦ2(s)|s=0 = 2πλα
η−1 . Since I1 and I2 are independent,

µI = µ1 + µ2 =
πλαη

η − 2

σ2
I = σ2

1 + σ2
2 =

2πλαη
η − 1

. (17)

Thus, the modified path loss model results in finite first and
second order moments which, together with other higher
order moments, can be used to analyze convergence to a
Gaussian in distribution [4]. Further, as Section VI shows,
the outage performance for the modified path loss model is
given in terms of Φ(s) = Φ1(s)Φ2(s).

In the following subsection, we will adapt this finite
interference model to include a guard zone around every
receiver in the network.

C. Guard zone in ad hoc networks

Often, the interferers that are really close to the origin
are strong enough to completely swamp the desired signal.
This leads to undesirably high outage probabilities. One
way to ovecome this problem is to modify the channel
access scheme by imposing a guard zone of radius d0

around every receiver node. In other words, every receiver
has an exclusion zone of radius d0 around it within which no
interferers are allowed to transmit. As we will see in Section
VI, this results in an improved outage and throughput
performance. In this paper, we will only consider d0 ≥ 1 so
that the path loss model is always given by the power law
kr−η. Φ(s) is obtained by substituting A = d0 and B = ∞
in (28),

Φ(s) = exp
{
πλα

[
d2

0Ek

(
1 − e−skd−η

0

)
−

s2/η
Ek

(
k2/η

)
Γ (1 − 2/η) +

s2/η
Ek

(
k2/ηΓ

(
1 − 2/η, skd−η

0

))]}
(18)

Since there are no interferers within d0, the mean and
variance are directly obtained from Φ(s) to be µI =
2πλαd2−η

0
η−2 and σ2

I = 2πλαd2−2η
0

η−1 for the Rayleigh fading
channel. Note that fading doubles the variance compared
to a AWGN channel while the mean interference remains
unaltered.

V. PERFORMANCE ANALYSIS

In this section, we will use the interference model
developed earlier to determine the outage and throughput
performances of the network. The link distance between the
transmitter and the target receiver at the origin is taken to be
1 so that irrespective of η, the received signal power is given
by k. The signal-to-interference ratio (SIR) at the origin is
then given by γ = k/I . For a given SIR threshold Θ, outage
is defined as O = P [γ < Θ]. The per-node throughput
follows from the definition in the system model.

A. Rayleigh block fading channel

When k is an exponential random variable with unit mean
the probability of packet success, ps = 1 −O, is given by

ps = EI [P (k > ΘI| I)]
= EI [exp (−ΘI)]
= Φ(Θ). (19)

For A = 0, B = ∞, i.e., when there is no guard zone in
place, the probability of packet success is directly obtained
from (9) to be

ps = exp
(
−πλαΘ2/ηΓ (1 − 2/η) Γ (1 + 2/η)

)
. (20)

For the modified path loss model, we use Φ(s) given in
Section IV-B to obtain

ps = exp
{
πλα

[
−Θ2/ηΓ (1 − 2/η) Γ (1 + 2/η) +

Θ2/η
Ek

[
k2/ηΓ (1 − 2/η,Θk)

]]}
. (21)

Finally, when there is a guard zone d0 > 0 in place,
outage can only occur due to interferers beyond d0 from
the receiver and the outage probability is obtained from
(18) to be

ps = exp

{
πλα

[
d2

0

(
1 − 1

1 + Θd−η
0

)
−

Θ2/ηΓ (1 − 2/η) Γ (1 + 2/η) +

Θ2/η
Ek

[
k2/ηΓ

(
1 − 2/η,Θkd−η

0

)]]}
.(22)

The final terms in the exponential in (21) and (22) involve
expectation over an incomplete Gamma function and since
the distribution of k is known, we resort to numerical inte-
gration to obtain the throughput curves that are presented
later in this paper. However, it is possible to bound this
term using the incomplete Gamma inequality [14]∫ ∞

x
t−2/ηe−tdt � Γ (1 − 2/η)

[
1 − (1 − e−x

)1−2/η
]

< Γ (1 − 2/η) e−x, η > 2. (23)
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Alternatively, we can also use the Cauchy-Schwartz in-
equality as follows∫ ∞

x
t−2/ηe−tdt <

√∫ ∞

x
t−4/ηdt

∫ ∞

x
e−2tdt, η < 4

(24)

For higher path loss exponents, we can apply the inequality
again to obtain∫ ∞

x
t−4/ηdt <

√∫ ∞

x
t−8/ηdt, η < 8. (25)

B. Deterministic channel, variable transmit powers, η = 2

For free space propagation with nearest neighbor trans-
mission, k is an exponential random variable with mean
1/(πλ). The outage results derived in the previous subsec-
tion are directly applicable for this transmission model by
simply replacing Θ everywhere with Θ′ = Θ/ (πλ).

The following section presents outage and throughput
curves for the various path loss models that we have
considered so far.

VI. RESULTS

In this section, we present 3 sets of throughput curves.
The first set compares the per-node throughputs for 3
different transmission models when there is no guard zone
in place. The second set of curves illustrates the usefulness
of the guard zone in considerably improving the per-node
throughput in an ad hoc network. The third set explores the
impact that the modified power law has on the per-node
throughput.

We choose the system parameters to be λ = 1, Θ = 8
dB and η = 4 for all these curves. Fig. 1(a) shows that
when all nodes transmit at the same power level, fading
degrades the system performance and the maximum value
of the per-node throughput, ζmax, decreases by about 20%.
However, as our follow-up paper will show, even a 1-bit
noiseless feedback about the channel state is good enough
to exploit fading and improve the per-node throughput in
an interference limited system.

Fig. 1(a) also presents ζ values when nodes draw their
powers randomly according to (13)3. Similar to the fading
channel, this model also degrades ζmax by about 30% but
the throughput curve has a very heavy tail. This means that
the channel access scheme can be designed for a higher
value of α without affecting the per-node throughput by
much. Therefore, the intensity of nodes that can transmit
during the same time slot, λα, is higher with random
transmission powers, thereby, resulting in a higher sum
throughput in the network.

3For ease of analysis, we assume there is no power constraint
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Fig. 1. (a) Per-node throughput for d0 = 0 (b) Per-node throughputs
for the fading channel for d0 = 0 and d0 = 1 together with 2 upper
bounds for the d0 = 1 case (c) Comparing the per-node throughputs for
the decaying power law and the modified power law for the same set of
system parameters.

Fig. 1(b) presents ζ values for the fading channel with
and without a guard zone. All nodes transmit at the same
power level and we choose a guard zone of d0 = 1. The
guard zone improves ζmax by almost 35% while simulta-
neously increasing the transmit probability that attains this
throughput. However, the effect this has on increasing the
sum throughput in the network is not immediately obvious,
since the guard zone also reduces the effective number of
nodes from which we can choose the set of transmitters.
Fig. 1(b) also illustrates the 2 upper bounds that were
developed in Section V. Finally, Fig. 1(c) shows that the
throughput curves for the decaying and modified power
laws are essentially the same and that we can use the
compact outage expressions of the former with reasonable
accuracy for the latter model also rather than use numerical
integration or bounds for the incomplete Gamma function.
Note that η = 4 is chosen only for the sake of illustration
and that performance curves can be obtained for other non-
integer and irrational path loss exponents as well.
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VII. CONCLUSION

In this paper, we have demonstrated the utility of the
2D shot noise process to model the self-interference and
perform outage and throughput analyses in a large wireless
ad hoc network, where the nodes are distributed in R

2

according to a PPP. We have analyzed both the decaying
power law path loss model as well as a modified version
that has advantage of having finite interference moments.
Further, we have used the theory of equivalent shot noise
processes to capture the stochastic nature of the transmis-
sion channel, variable transmission powers etc. We have
also adapted this shot noise model to include a guard zone
around every receiver and presented exact values as well
as bounds on the throughput and outage probabilities that
demonstrate the utility of the guard zone in improving the
performance of an ad hoc network.

APPENDIX A

For a 2-dimensional decaying power law shot noise
process, the characteristic function is given by

Φ(s) = exp [−µEk (ψ(s))] , (26)

where

ψ(s) =
∫ ∞

−∞

∫ ∞

−∞
1 − exp

[
−sk (x2 + y2

)−η/2
]
dxdy (27)

ψ(s) is derived as follows,

ψ(s)
(a)
=

∫ B

A
1 − exp

[−skr−η
]
2πrdr

(b)
= π (sk)2/η

∫ skB−η

skA−η

(
1 − e−t

)
d
(
t−2/η

)
= πB2

[
1 − e−skB−η

]
− πA2

[
1 − e−skA−η

]
+ π(sk)2/η

∫ skA−η

skB−η

t−2/ηe−tdt

= πB2
[
1 − e−skB−η

]
− πA2

[
1 − e−skA−η

]
+ π (sk)2/η Γ(1 − 2/η, skB−η)
− π (sk)2/η Γ(1 − 2/η, skA−η). (28)

(a) is obtained by switching to polar coordinates and
generalizing the limits of integration while (b) is obtained
through a change of variables and integration by parts.

APPENDIX B

Gilbert and Pollack [10] showed that the integral in (5)
remains unchanged if f(k, t), defined over a family of
values for k, is replaced an equivalent f(k0, t) as long as

Ek [L{t : f(k, t) > x}] = L{t : f(k0, t) > x}, (29)

where L{f(·) > x} represents the Lebesgue measure of the
set with values greater than x. When f(k, t) = kt−η, 0 ≤
t < ∞, Ek [L{t : f(k, t) > x}] = Ek

[
k1/η

]
x−1/η . Thus,

the ensemble of stochastic impulse responses kt−η is equiv-
alent to the deterministic impulse response k0t

−η for all
first order statistics such that k0 = Ek

[
k1/η

]η
. However,

the first-order statistics agree only as long as A = 0 and
B = ∞ and the theory of equivalence is not true otherwise.
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