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Abstract— We motivate the need for a metric to characterize
the regularity of node placement in sensor networks. Practical
metrics are proposed and evaluated for different stationary point
process models.

I. I NTRODUCTION

Sensor networks constitute a class of emerging networks
that are radically distributed systems which can be deployed
anywhere and anytime, and where all the networking functions
are embedded in the terminals or nodes themselves. One
of the key parameter in these networks is the placement
(location) of the sensors. Generally, the sensor nodes have
limited power resources and limited mobility. The bound
on the maximum transmit power places a constraint on the
sensor’s communication range. In practice one would want
to maximize coverage, connectivity (between nodes), and the
lifetime of the network. In a static or limited mobility scenario,
the initial placement of the sensors decides the subsequent
fate and usability of the network. If the nodes are placed in
a uniformly random manner, the network graph may not be
connected or the transmissions may interfere too much with
each other, thus making the network inefficient. On the other
hand, it may not be practical and feasible to place the nodes
in a completely regular manner.

Coverage is another important consideration in sensor net-
works. For a given sensing radius, the coverage is maximized
if the nodes are maximally separated. All nodes being max-
imally away from each other in a bounded region implies
a regular arrangement. Hence one can argue that regularity
maximizes coverage. In a plane, the most regular arrangement
of points is the hexagonal packing with a packing density of
90% (i.e. a coverage probability of 0.9 with coverage radius
equal to half the nearest neighbor distance).

Transmission of information requires the presence of a
network path between the two communicating nodes. If the
distance between any two nodes in the path is much larger
than the average hop length, one of these nodes has to spend
significantly more power to maintain a desired signal-to-noise
ratio. This leads to early draining of the battery and subsequent
failure of the path. So an important parameter in nearest
neighbor routing is the variance of the distance between
nearest neighbors. In a network with regular arrangement of
nodes, this variance is zero, so every node may use the same
transmit power.

In sensor networks, one of the important goals is to max-
imize network lifetime. To achieve this, commonly a subset
of the nodes is selected as sentries and others are switched

off (put to sleep). This process should not drastically reduce
the coverage of the network. After a certain period, the active
node set is switched off and a new, preferably disjoint, subset
of nodes is selected for the purpose of energy balancing. To
achieve maximum coverage, it is desirable for each subset
to be as regular as possible. How does one assess the reg-
ularity? Thus it is important to understand and characterize
the regularity of the network in terms of node locations. Also,
given different arrangement of points, it is desirable to assign a
regularity metric to each arrangement which can be calculated
in practice, i.e., if the points are given numerically.

Most research focuses on completely random or completely
regular networks. The reality will always lie in between. So
there is a need to investigate point process models that are
neither completely random nor completely regular and assess
their properties. In literature, there are qualitative comparisons
and discussions of the regularity of a point process but regu-
larity has not yet been quantified mathematically rigorously. In
this paper we try to define regularity and propose some simple
metrics which can be used in practice. The rest of the paper
is organized as follows: Section2 introduces the definition
of regularity. Section3 deals with metrics of regularity. In
Section4, some point processes are introduced and the metrics
of regularity are evaluated for these processes.

II. REGULARITY

A point process onRd is a random variable taking values
in a measure space[N,N ], whereN is the set of all locally
finite and simple sequencesφ of points ofRd, andN is the
correspondingσ algebra.φ can be considered as a random
set of discrete points or as a counting measure on bounded
sets [3]. Whenφ is interpreted as a counting measure,φ(B)
denotes the number of points in a bounded Borel setB.
A point process is called stationary or homogeneous if its
characteristics are invariant under translation. For a stationary
process and a bounded setB, E(φ(B)) = λVB, whereVB

denotes the Lebesgue measure of setB andE(·) denotes the
expectation operator.λ is called the intensity of the point
processφ. The intensity of a stationary point process is
equivalent to its density.

Regularity for a point process may be defined as the
degree of self-similarity in the environment that every point
encounters. This definition holds true only for a deterministic
arrangement of points but not if the number of points changes
in every realization. For example, consider a point process
where each realization is an equilateral triangle mesh with the
length of the side being random. In this situation, each point



would encounter a similar environment in a single realization,
but the process is not very regular. Also the properties of
the process tend to change with the scale of observation. For
example, a cluster process can be made of clusters of regular
points arranged in a Poisson distribution, or Poisson clusters
arranged in a regular manner. This is more complicated in the
case of non-stationary processes.

A homogeneous Poisson point process (PPP) is taken as
a standard of reference against which other point processes
are measured. It is also denoted as Complete Spatial Random
(CSR) process because it achieves the maximum entropy for
a given mean number of points in a bounded set [2]. If the
location of the points are not independent but depend on the
location of their neighbors, then the process can be modeled
as a local interaction process. If in a process the points repel
each other, the process is called inhibition process, and if they
attract each other locally, they give rise to clustering. In an
inhibition process, points tend to maintain a minimum nearest
neighbor distance, thus making the points look more orderly.
Inhibition processes are also called regular processes.

III. M ETRICS OFREGULARITY

In this section, we define metrics which quantify the
regularity of the process. Most of these metrics can be found
in the literature, but were used for different purposes. Also
most of these metrics can be calculated in practice if the node
locations are given.

Variance of Nearest Neighbor Distance (NND): One
of the metrics that can be used to characterize regularity is
the variance of the nearest neighbor distribution [3] [6]. It
indicates the difference in the environment each point sees. If
the variance is high, the NND of a point may deviate greatly
from the mean, which indicates irregularity. On the other
hand, if the variance of NND is small, then the transmission
power required to transmit to the nearest neighbor is almost
equal for all nodes. Also this can be extended to the variance
of the N th NND. In a lattice structure, we observe that the
variances of allN th NND are zero.

But does NND give us a clear indication of the regularity
of the network? In a cluster process the variance of NND is
relatively small due to clustering, but the process may appear
irregular. For example, consider a cluster process in which both
the parent process and clusters are Poisson. This indicates that
the variance of NND may not be used to compare clustering
and non-clustering processes. The variance of NND is zero
for deterministic lattice processes, becomes large for Poisson
processes and then reduces in clustering processes. Also the
variance of NND is not normalized with respect to intensity.
Note that the differential entropy of NND scales with the
variance, hence differential entropy and NND variance are
equivalent metrics.
Noise Figure: The noise figure [7] of a random variablex is
defined as follows:

Nf =
var(x2)
E2(x2)

(1)

wherevar(a) denotes the variance of the random variablea.
Denotingx as the nearest neighbor distance, one can observe

that the noise figure denotes the regularity of a network.
K-function and the J-function : For a stationary process of
intensityλ, K(r) [3, p. 120-121] can be defined as

λK(r) =
∫

φ(B0(r))P !
0(dφ) (2)

where P !
0(Y ) denotes the reduced Palm distribution and is

defined asP !
0(Y ) = P (φ \ {0} ∈ Y |0), for Y ∈ N . Under

the assumption of CSR inR2, K(r) = πr2. Under regularity,
K(r) tends to be less thanπr2, whereas under clusteringK(r)
tends to be greater thanπr2. This metric faces two major
limits: it is only pertinent for homogeneous point processes
and it does not allow the weighting of points, i.e.,K(r) does
not take marks of the points into consideration. A normalized
metric equivalent toK(r) is L(r) which is defined as

L(r) =

√
K(r)

π
. (3)

A related function is the J-function [4]. It is defined as follows

J(r) =
1− Fd(r)
1−Hs(r)

, (4)

where Fd(r) is the nearest neighbor cumulative distribution
function, andHs(r) is the first contact distribution [3]. For
a Poisson process,J(r) = 1, since Fd(r) = Hs(r) =
exp(−λπr2); valuesJ(r) > 1 indicate repulsion, for clus-
tered patterns theJ-values tend to be less than1. Also,
K(r), L(r), J(r) denote the cumulative effect of the process
until distancer. The following theorem by Stoyan [8] relates
variance and K-function.

Theorem 3.1:Let φ1 and φ2 be two random measures or
point processes with the same intensity and reduced second
order measuresK1 andK2. Then

∫ r

0

k1(x)dx ≤
∫ r

0

k2(x)dx, r ≥ 0

=⇒ var(φ1(B)) ≤ var(φ2(B))

for any bounded Borel setB.
Let C(φ) denote the coverage of the processφ by discs of
radiusR.

Lemma 3.2:C(φ) ≥ λ2π2R4/E(φ(B0(R))2) = Uφ,R

Proof: Let B be a bounded Borel set.

E(φ(B)) = E(φ(B)I{φ(B) > 0})
E(φ(B))2 ≤ E(φ(B)2)P (φ(B) > 0)

The last inequality follows from the Cauchy-Schwartz inequal-
ity. Taking B = B0(R), we get the desired result.
So if φ1 and φ2 are two point process of intensityλ and
K1(r) ≤ K2(r). Using theorem 3.1 and lemma 3.2 we can
infer the following.C(φ1) ≥ Uφ1,R andC(φ2) ≥ Uφ2,R, and
Uφ1,R ≥ Uφ2,R. This implies that coverage ofφ1 maybe better
thanφ2. Many estimators [3] exist for efficient calculation of
K(r). This along with the properties mentioned above makes
K(r) a good metric for regularity.
Node degree of disk graph: A disk graph of radiusr for a
point processφ is the graph formed by connecting two points
x, y ∈ φ, if and only if x ∈ By(r), whereBy(r) is a ball



of radiusr centered aty. Let Dx(r) denote the node degree
of node x in a disk graph of radiusr. For a homogeneous
PPP,E(Dx(r)) = λπr2. For any regular lattice process it is
a staircase function ofr. For an equilateral triangle lattice,
it jumps by 6 for r increasing by the mean NND. For any
regular latticevar(Dx(r)) = 0, and for a Poisson process
var(Dx(r)) = λπr2. var(Dx(r)) indicates the irregularity of
the point process with regard to the number of points in a
bounded set.

IV. RESULTS

A. Some point process models

The Baddeley Construction[1] is a construction of a point
process with the same second order characteristics as the PPP.
One of the key properties of PPP isE(φ(B)) = var(φ(B))
where B is a bounded Borel set. A Baddeley process is
constructed as follows.

• Divide the plane by randomly throwing a square grid.
• Let N denote the number of points in a square grid.

P (N = 0) = 1 − p1 − pb; P (N = 1) = p1; P (N =
b) = pb, wherep1 = (b−2)/(b−1); pb = 1/(b2− b) and
b is an integer greater than one.

Baddeley dealt with the special case ofb = 10 which we
generalized to anyb. It is shown in [1] thatE(φ(B)) =
var(B) = πVB. Also k(r) = πr2. So one cannot distinguish
between a homogeneous PPP and Baddeley by observing
only second order properties. In addition to these well known
processes, we also use Matern hard core processes [3], and
the Neyman-Scott cluster processes [3]. We have come up
with other interesting point processes, defined below.
Quantized Poisson processesresult from quantizing homoge-
neous PPP in one dimension. If the area under consideration
is a square of lengthL and one starts with initial intensity
of λL, the resulting process on each line is also Poisson [5]
with average density ofλ. The quantized process is not a
homogeneous process.
Hole-0, Hole-1 processesare obtained by thinning a homo-
geneous PPP of intensityλp. The processes are generated as
follows.

• Start with a homogeneous PPPφ1 of intensityλp.
• Generate another homogeneous PPPφ2 of intensityµ <

λp.
• For eachx ∈ φ2 remove all the points inφ1 ∩ b(x,R).
• All the removed points ofφ1 form the hole-0 process and

the remaining points form the hole-1 process.

The intensity of the hole-1 process is given byλ exp(−µπR2).
The intensity of the hole-0 process is given byλ(1 −
exp(−µπR2)).
Lattice processesare obtained by addingd dimensional
Gaussians with zero mean to the points of an integer lattice.
The resulting process is stationary and is characterized by the
variance of the Gaussian distribution. This may be a good
model for the node placement of sensor networks if the nodes
are regularly spaced with limited accuracy. Lattice processes
are not homogeneous processes.
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Fig. 1. Variance of NND for the generalized Baddeley process and
homogeneous PPP,λ = 1
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B. Simulation and Results

Although the homogeneous PPP is a model for CSR, it does
not achieve either maximum or minimum for most of the above
metrics. For example, the variance of NND which decides
the link lifetime is not maximum for a stationary Poisson
process. The Baddeley process which has the same second
order properties as that of PPP has a larger variance for NND
for some values of the parameterb as shown in Fig. 1. So on
an average Baddeley network would have a lower lifetime for
b > 3 (and vice-versa forb ≤ 3).

In Fig. 2,L(r) is plotted for the above processes. A square
of size 15 × 15 was used for the purpose of simulation.
The intensity of all processes was normalized to1. This
figure indicates that Hole-0 and Hole-1 are clustered processes
whereas lattice and Matern’s hard core processes [3] are
regular. The Baddeley process coincides with the Poisson
process as expected. Hole-0 and Hole-1 processes, which are
complementary processes, are both clustered. Lattice processes
with no noise and quantized Poisson processes are neither
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Poisson Matern Hole-0 Hole-1
Parameters λ = 1 λb = 1.175 λp = 3 λp = 3

h = 0.3 R = 0.6 R = 0.6
µ = 0.97 µ = 0.36

Var(NND) 0.064 0.039 0.06 0.043
L(r) exact below above above
Noise Figure 1.04 0.55 2.63 2.11p

E(Dx(r)) exact below above above
Baddeley Lattice Quantized

Parameters b = 10 var =0.3 λ = 1
Var(NND) 0.068 0.058 0.11
L(r) exact below
Noise Figure 0.58 0.64 1.85p

E(Dx(r)) exact below

TABLE I

REGULARITY METRICS FOR DIFFERENT POINT PROCESS

strictly above or below the Poisson process. Their position
depends on the scale of observation. To obtain a single-
parameter metric for regularity, one can use the area under the
L(r) curve to decide on the regularity of the process. In Fig. 2,
the area under the quantized Poisson process fromr = 0 to
r = 1/2

√
λ (which is the average nearest neighbor distance

of a PPP) is greater than for PPP which indicates clustering,
while the area under the perfect lattice is less than that of PPP
indicating regularity.

In Fig. 3, the variance of the node degree for the disk
graph was plotted. The Baddeley process forb = 10 is
above the Poisson process whereas forb = 2 is below the
Poisson process. But for the Baddeley process,E(φ(B)) =
var(φ(B)) = VB. This can be explained as follows. While
calculating E(Dx(r)) one conditions on the event that the
node whose degree is being calculated is present, i.e., one
uses the following probability in calculating expectation:
P (φ(Bx(r)) = N |x ∈ φ) (Palm probability [3]). For the
Poisson process,P (φ(Bx(r)) = N |x ∈ φ) = P (φ(Bx(r)) =
N), which may not be true for the Baddeley process. In
Table I, the metrics in Section III were evaluated for the
above processes. The estimators used for calculating these

quantities are given in [3]. Above, below and exact indicate
above, below and exact match with the corresponding metric
for a homogeneous PPP of the same intensity. One observes
thatJ(r) and

√
E(Dx(r)) are consistent with each other. The

variance of NND increases from clustering to Poisson and then
reduces for regular processes.

V. CONCLUSION

In this paper, the need for defining and understanding the
regularity of point process in the context of sensor networks
has been motivated. Some practical metrics have been pro-
posed and evaluated for interesting processes. These metrics
only consider certain aspects of the process and are far from
defining a complete regularity metric. They are important
in understanding the regularity associated with a particular
process and help compare other point processes with Poisson
point processes with regard to their connectivity and commu-
nication properties.

When deciding about the regularity of a point process, one
should take into account both the irregularity in the number
of points and the position of points. So it seems reasonable to
combine some of the above metrics in assessing the regularity.
We rate the above process in increasing order of regularity
usingvar(Dx(r)) and variance of NND as regularity metrics.
Baddeley:b = 10 < Hole-0 < Hole-1 < Quantized Poisson
< Poisson< Baddeley:b = 2 < Matern hard core:h = 0.3
< Lattice: var = 0.3 < Perfect Lattice.
• The Baddeley process withb = 10 has the largest

variance of the node degree and also the sameK(r) as
the PPP.

• Hole-0 and Hole-1 have a high variance of the node
degree and NND. Also they are clustered processes.

• The Baddeley process withb = 2 has a lower variance
of node degree than PPP.

• The Matern process has lower NND variance than the lat-
tice process with noise. But the lattice process with noise
has a higher variance of node degree and higherK(r).
This order reverses atr = 0.6 (inhibition diameter).

If the metric K(r) (area under the curveK(r)) is used, the
processes would be rated as follows.
Hole-1< Hole-0< Quantized Poisson< Poisson= Baddeley:
b = 2, 10 < Lattice: var = 0.3 < Matern hard core:h = 0.3
< Perfect Lattice.
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