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Abstract—We motivate the need for a metric to characterize off (put to sleep). This process should not drastically reduce
the regularity of node placement in sensor networks. Practical the coverage of the network. After a certain period, the active
metrics are proposed and evaluated for different stationary point node set is switched off and a new, preferably disjoint, subset
process models. of nodes is selected for the purpose of energy balancing. To

l. INTRODUCTION achieve maximum coverage, it is desirable for each subset
to be as regular as possible. How does one assess the reg-

Sensor networks constitute a class of emerging networkigrity? Thus it is important to understand and characterize
that are radically distributed systems which can be deploygsk regularity of the network in terms of node locations. Also,
anywhere and anytime, and where all the networking functiog#/en different arrangement of points, it is desirable to assign a
are embedded in the terminals or nodes themselves. Qegularity metric to each arrangement which can be calculated
of the key parameter in these networks is the placementpractice, i.e., if the points are given numerically.

(location) of the sensors. Generally, the sensor nodes hav@/jost research focuses on completely random or completely
limited power resources and limited mobility. The boungegular networks. The reality will always lie in between. So
on the maximum transmit power places a constraint on tifere is a need to investigate point process models that are
sensor's communication range. In practice one would waméither completely random nor completely regular and assess
to maximize coverage, connectivity (between nodes), and titir properties. In literature, there are qualitative comparisons
lifetime of the network. In a static or limited mobility scenarioand discussions of the regularity of a point process but regu-
the initial placement of the sensors decides the subsequiiity has not yet been quantified mathematically rigorously. In
fate and usability of the network. If the nodes are placed this paper we try to define regularity and propose some simple
a uniformly random manner, the network graph may not hfetrics which can be used in practice. The rest of the paper
connected or the transmissions may interfere too much with organized as follows: Sectiod introduces the definition
each other, thus making the network inefficient. On the othef regularity. Section3 deals with metrics of regularity. In
hand, it may not be practical and feasible to place the nodgé&ctior4, some point processes are introduced and the metrics

in a completely regular manner. of regularity are evaluated for these processes.
Coverage is another important consideration in sensor net-
works. For a given sensing radius, the coverage is maximized Il. REGULARITY

if the nodes are maximally separated. All nodes being max-A point process orR? is a random variable taking values
imally away from each other in a bounded region impliem a measure spad@l, \'], whereN is the set of all locally
a regular arrangement. Hence one can argue that regulafiijte and simple sequencesof points of R?, and N is the
maximizes coverage. In a plane, the most regular arrangememtrespondingr algebra.¢ can be considered as a random
of points is the hexagonal packing with a packing density gkt of discrete points or as a counting measure on bounded
90% (i.e. a coverage probability of 0.9 with coverage radiusets [3]. Wheny is interpreted as a counting measu¢B)
equal to half the nearest neighbor distance). denotes the number of points in a bounded Borel Bet
Transmission of information requires the presence of A point process is called stationary or homogeneous if its
network path between the two communicating nodes. If tlolaracteristics are invariant under translation. For a stationary
distance between any two nodes in the path is much largepcess and a bounded 98t E(¢(B)) = A\Vg, whereVg
than the average hop length, one of these nodes has to spdembtes the Lebesgue measure ofBeind E(-) denotes the
significantly more power to maintain a desired signal-to-noigxpectation operator) is called the intensity of the point
ratio. This leads to early draining of the battery and subsequgmbcess¢. The intensity of a stationary point process is
failure of the path. So an important parameter in nearesjuivalent to its density.
neighbor routing is the variance of the distance betweenRegularity for a point process may be defined as the
nearest neighbors. In a network with regular arrangementddgree of self-similarity in the environment that every point
nodes, this variance is zero, so every node may use the saneounters. This definition holds true only for a deterministic
transmit power. arrangement of points but not if the number of points changes
In sensor networks, one of the important goals is to maia every realization. For example, consider a point process
imize network lifetime. To achieve this, commonly a subsethere each realization is an equilateral triangle mesh with the
of the nodes is selected as sentries and others are switcleedjth of the side being random. In this situation, each point



would encounter a similar environment in a single realizatiothat the noise figure denotes the regularity of a network.
but the process is not very regular. Also the properties Bffunction and the J-function: For a stationary process of
the process tend to change with the scale of observation. Kuensity A\, K (r) [3, p. 120-121] can be defined as
example, a cluster process can be made of clusters of regular

points arranged in a Poisson distribution, or Poisson clusters AK(r) = /¢(B0(r))P(‘)(d¢) 2
arranged in a regular manner. This is more complicated in the
case of non-stationary processes. where P§(Y) denotes the reduced Palm distribution and is

A homogeneous Poisson point process (PPP) is takendasined asP}(Y) = P(¢\ {0} € Y|0), for Y € N. Under
a standard of reference against which other point procesggs assumption of CSR iR?, K (r) = 7r2. Under regularity,
are measured. It is also denoted as Complete Spatial Randgm-) tends to be less than-2, whereas under clusteririg(r)
(CSR) process because it achieves the maximum entropy f@fids to be greater tham-2. This metric faces two major
a given mean number of points in a bounded set [2]. If thenits: it is only pertinent for homogeneous point processes
location of the points are not independent but depend on th&d it does not allow the weighting of points, i.&/(r) does
location of their neighbors, then the process can be modelgst take marks of the points into consideration. A normalized

as a local interaction process. If in a process the points repgétric equivalent tak (1) is L(r) which is defined as
each other, the process is called inhibition process, and if they

attract each other locally, they give rise to clustering. In an K(r)
attract : fise 10 clus L(r) = . ®)
inhibition process, points tend to maintain a minimum nearest P

neighbor distance, thus making the points look more orderly. e |ated function is the J-function [4]. It is defined as follows
Inhibition processes are also called regular processes.
1-— Fd(T)
1. M ETRICS OFREGULARITY J(r) = (4)

T 1— H(r)’
In this section, we define metrics which quantify the _ _ «(7) _ o
regularity of the process. Most of these metrics can be founere Fu(r) is the nearest neighbor cumulative distribution
in the literature, but were used for different purposes. Aldgnction, andH,(r) is the first contact distribution [3]. For

most of these metrics can be calculated in practice if the no@lePoisson process/(r) = 1, since Fy(r) = Hi(r) =
locations are given. exp(—Arr?); values J(r) > 1 indicate repulsion, for clus-

tered patterns the/-values tend to be less thah Also,

Variance of Nearest Neighbor Distance (NND) One K(r),L(r),J(r) denote the cumulative effect of the process
of the metrics that can be used to characterize regularityUstil distancer. The following theorem by Stoyan [8] relates
the variance of the nearest neighbor distribution [3] [6]. kariance and K-function.
indicates the difference in the environment each point sees. Iffheorem 3.1:Let ¢; and ¢, be two random measures or
the variance is high, the NND of a point may deviate greatgpint processes with the same intensity and reduced second
from the mean, which indicates irregularity. On the othéirder measure&; and K. Then
hand, if the variance of NND is small, then the transmission T r
power required to transmit to the nearest neighbor is almost / ki(z)de < / ke(z)dz, 7> 0
equal for all nodes. Also this can be extended to the variance N Voarw B)) < Vgr(¢ (B))
of the Nth NND. In a lattice structure, we observe that the ! = 2
variances of allNth NND are zero. for any bounded Borel séB.

But does NND give us a clear indication of the regularity et C(¢) denote the coverage of the processy discs of
of the network? In a cluster process the variance of NND adius R.
relatively small due to clustering, but the process may appeanemma 3.2:C(¢) > N21?R*/E(¢(Bo(R))?) = Uy
irregular. For example, consider a cluster process in which both proof: Let B be a bounded Borel set.
the parent process and clusters are Poisson. This indicates that
the variance of NND may not be used to compare clustering E(¢(B)) E(¢(B)I{¢(B) > 0})
and non-clustering processes. The variance of NND is zero E(¢(B))?> < E(¢(B)*)P(¢(B) > 0)
for deterministic lattice processes, becomes large for Poisson ) ) )
processes and then reduces in clustering processes. Also thg |astinequality follows from the Cauchy-Schwartz inequal-
variance of NND is not normalized with respect to intensityly: 12King B = Bo(R), we get the desired result. =
Note that the differential entropy of NND scales with the© if #1 and ¢, are two point process of intensity and
variance, hence differential entropy and NND variance afé! r) < Ks(r). Using theorem 3.1 and lemma 3.2 we can
equivalent metrics. infer the foIIowmg:C’_(gin)_ > Uy, r andC(¢2) > Uy, g, and
Noise Figure The noise figure [7] of a random variabteis Usi1.& = Us, r- This implies that coverage gh maybe better
defined as follows: than¢,. Many estimators [3] exist for efficient calculation of
K(r). This along with the properties mentioned above makes
= (1) K(r) a good metric for regularity.

E(2?) Node degree of disk graph A disk graph of radiug- for a
wherevar(a) denotes the variance of the random variable point process is the graph formed by connecting two points
Denotingz as the nearest neighbor distance, one can obsemg <€ ¢, if and only if = € By(r), where B,(r) is a ball

N var(z?)



of radiusr centered ay. Let D,(r) denote the node degree T

of nodex in a disk graph of radiug. For a homogeneous oo
PPP,E(D,(r)) = Arr?. For any regular lattice process it is 007}
a staircase function of. For an equilateral triangle lattice, \
it jumps by 6 for r increasing by the mean NND. For any 008y ‘ N
regular latticevar(D,(r)) = 0, and for a Poisson process
var(D,(r)) = Amr?. var(D,(r)) indicates the irregularity of
the point process with regard to the number of points in a
bounded set.

Variance of NND
o o
o o
B (5]
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IV. RESULTS

A. Some point process models

The Baddeley Construction[1] is a construction of a point roz2 3 4 s s T8 s
process with the same second order characteristics as the PPP.
One of th_e key properties of PPP E(¢(B>) = V&r(gﬁ(B)) Fig. 1. Variance of NND for the generalized Baddeley process and
where B is a bounded Borel set. A Baddeley process ismogeneous PPR = 1
constructed as follows.

« Divide the plane by randomly throwing a square grid. Lo
« Let N denote the number of points in a square grid. rer ‘ ‘ ‘ ‘ ‘ ‘ g
P(N=0)=1-p1 —py P(N =1) = p;; P(N = 14t : : 7
b) = py, Wherep; = (b—2)/(b—1);pp, = 1/(b*> —b) and
b is an integer greater than one. tar : /
Baddeley dealt with the special case iof= 10 which we 1t

generalized to any. It is shown in [1] thatE(¢(B)) =
var(B) = nVg. Also k(r) = mr?. So one cannot distinguish
between a homogeneous PPP and Baddeley by observing 6!
only second order properties. In addition to these well known
processes, we also use Matern hard core processes [3], and %[
the Neyman-Scott cluster processes [3]. We have come up | /
with other interesting point processes, defined below. /
Quantized Poisson processeagsult from quantizing homoge- o _ _
neous PPP in one dimension. If the area under consideration r

is a square of length. and one starts with initial intensity

of AL, the resulting process on each line is also Poisson [5] Fig. 2. L-function:L(r)
with average density of. The quantized process is not a

homogeneous process.

Hole-0, Hole-1 processeare obtained by thinning a homo-B. Simulation and Results

geneous PPP of intensity,. The processes are generated as

Sosf

Poisson

| o Mattem, A =1.17, h=0.3
Hole-0, )xp:3, R=0.6,u=0.97
Hole-1, )\p=3,R=0.6, p=0.36

““ —+— Baddeley, b=10

| | —é— Lattice, var=0.3

——H— Lattice, var=0

Quantized Poisson
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follows. Although the homogeneous PPP is a model for CSR, it does
) ] ) not achieve either maximum or minimum for most of the above
» Start with a homogeneous PRIP of intensity \,,. metrics. For example, the variance of NND which decides

» Generate another homogeneous RBR intensity . < he Jink lifetime is not maximum for a stationary Poisson

Ap- o process. The Baddeley process which has the same second
« For eachr € ¢, remove all the points i, Nb(z, R).  order properties as that of PPP has a larger variance for NND
« All the removed points 06, form the hole-0 process andsor some values of the parameteas shown in Fig. 1. So on

the remaining points form the hole-1 process. an average Baddeley network would have a lower lifetime for
The intensity of the hole-1 process is givenyxp(—umR?). b > 3 (and vice-versa fob < 3).
The intensity of the hole-0 process is given byl — In Fig. 2, L(r) is plotted for the above processes. A square
exp(—umR?)). of size 15 x 15 was used for the purpose of simulation.

Lattice processesare obtained by addingl dimensional The intensity of all processes was normalized 1to This
Gaussians with zero mean to the points of an integer lattidggure indicates that Hole-0 and Hole-1 are clustered processes
The resulting process is stationary and is characterized by thieereas lattice and Matern’s hard core processes [3] are
variance of the Gaussian distribution. This may be a gooegular. The Baddeley process coincides with the Poisson
model for the node placement of sensor networks if the node®cess as expected. Hole-0 and Hole-1 processes, which are
are regularly spaced with limited accuracy. Lattice processesmplementary processes, are both clustered. Lattice processes
are not homogeneous processes. with no noise and quantized Poisson processes are neither



guantities are given in [3]. Above, below and exact indicate
above, below and exact match with the corresponding metric
for a homogeneous PPP of the same intensity. One observes
that J(r) and\/E(D,(r)) are consistent with each other. The
variance of NND increases from clustering to Poisson and then
reduces for regular processes.

12 T T
—+— Poisson
—&— Mattern
—=&— Hole-0

*— Hole-1
—v— Baddeley, b=10
— % — Baddeley, b=2
—<+— Lattice, Var=0.3
—#*— Quantized Poisson
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V. CONCLUSION

In this paper, the need for defining and understanding the
regularity of point process in the context of sensor networks
has been motivated. Some practical metrics have been pro-
posed and evaluated for interesting processes. These metrics
only consider certain aspects of the process and are far from
defining a complete regularity metric. They are important
in understanding the regularity associated with a particular
process and help compare other point processes with Poisson
point processes with regard to their connectivity and commu-
nication properties.

When deciding about the regularity of a point process, one

Var(D(r))

i
0.8

12

Poisson | Matern Hole-0 Hole-1 ) g e
Parameters | X =1 N =117 | X, =3 N =3 should take into account both the irregularity in the number
h=0.3 R=06 | R=0.6 | of points and the position of points. So it seems reasonable to
p =097 | ©n=0.36 | combine some of the above metrics in assessing the regularity.
Var(NND) | 0.064 0.039 0.06 0.043 We rate the above process in increasing order of regularity
L(r) _ exact below above above usingvar(D,(r)) and variance of NND as regularity metrics.
Noise Figure| 1.04 0.55 2.63 2.11 ; . .
Baddeley:b = 10 < Hole-0 < Hole-1 < Quantized Poisson
VE(D.(r)) | exact below above above : .
Baddeley | Lafice Quaniized < Poisson< Baddeley:b = 2 < Matern hard coreh = 0.3
Parameters | b =10 var 0.3 =1 < Lattice: var = 0.3 < Perfect L.attlce.
Var(NND) 0.068 0.058 0.11 o The Baddeley process with = 10 has the largest
L(r) exact below variance of the node degree and also the s@hie) as
Noise Figure| 0.58 0.64 1.85 the PPP.
VE(D.(r)) | exact below « Hole-0 and Hole-1 have a high variance of the node
TABLE | degree and NND. Also they are clustered processes.

The Baddeley process with = 2 has a lower variance
of node degree than PPP.

The Matern process has lower NND variance than the lat-
tice process with noise. But the lattice process with noise
strictly above or below the Poisson process. Their position has a higher variance of node degree and higkier).
depends on the scale of observation. To obtain a single- This order reverses at= 0.6 (inhibition diameter).
parameter metric for regularity, one can use the area under théhe metric K(r) (area under the curv& (r)) is used, the
L(r) curve to decide on the regularity of the process. In Fig. Brocesses would be rated as follows.

the area under the quantized Poisson process frem0 to Hole-1< Hole-0< Quantized Poissort Poisson= Baddeley:

r = 1/2v/X (which is the average nearest neighbor distande= 2,10 < Lattice: var = 0.3 < Matern hard coreh = 0.3

of a PPP) is greater than for PPP which indicates clustering,Perfect Lattice.

REGULARITY METRICS FOR DIFFERENT POINT PROCESS

while the area under the perfect lattice is less than that of PPP
indicating regularity.

In Fig. 3, the variance of the node degree for the didkl
graph was plotted. The Baddeley process #or= 10 is
above the Poisson process whereasifor 2 is below the [2]
Poisson process. But for the Baddeley procds§y(B)) =
var(¢(B)) = Vg. This can be explained as follows. While®
calculating F(D,(r)) one conditions on the event that the4]
node whose degree is being calculated is present, i.e.,
uses the following probability in calculating expectation[ﬁ]
P(¢(Bx(r)) = Nlz € ¢) (Palm probability [3]). For the
Poisson processP(¢(B,(r)) = N|z € ¢) = P(¢(B,(r)) = [
N), which may not be true for the Baddeley process. I8
Table 1, the metrics in Section Il were evaluated for the
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