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Abstract—Secrecy graphs model the connectivity of wireless
networks under secrecy constraints. Directed edges in the graph
are present whenever a node can talk to another node securely
in the presence of eavesdroppers. In the case of infinite networks,
a critical parameter is the maximum density of eavesdroppers
that can be accommodated while still guaranteeing an infinite
component in the network, i.e., thepercolation threshold. We focus
on the case where the location of the nodes and the eavesdroppers
are given by Poisson point processes, with and without power
constraints. We present bounds for different types of percolation,
including in-, out- and undirected percolation.

I. I NTRODUCTION

To assess the impact of secrecy constraints in wireless
networks, we have recently introduced a random geometric
graph, the so-calledsecrecy graph, that represents the network
or communication graph including only links over which
secure communication is possible [5]. We assume that a
transmitter can choose the rate such that it can communicate
to any receiver that is closer than any of the eavesdroppers.
If a power constraint is imposed, the maximum edge length
is upper bounded by some valueρ < ∞. A natural topic
for investigation is the maximum eavesdropper density at
which infinite components cease to exist. If they do exist,
end-to-end secure communication at a nonzero rate is likely
to be possible. Since the resulting graph is directed, there
are different types of components, including in-, out-, and
undirected components. In each case, the percolation threshold
(in terms of the density of eavesdroppers) is different.

II. M ODEL

Our model is as follows. LetP and P ′ be independent
Poisson processes, of intensities 1 andλ respectively, inR

d.
The cased = 2 provides a good example. We will call the
points of P black pointsand the points ofP ′ red points.
Now define a directed graph, thedirected secrecy graph~Gsec,
on vertex setP , by sending a directed edge fromx ∈ P to
y ∈ P if there is no point ofP ′ in the open ballD(x, ‖x−y‖)
centered atx with radius‖x−y‖. If there is a power constraint,
all edges longer than some maximum valueρ < ∞ are
removed.
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The motivation for this construction is thatx ∈ P can
send a message toy ∈ P without being overheard by an
eavesdropper fromP ′. For more details, see [5], where the
model was originally defined.

Our main aim in this paper is to study the critical value(s) of
λ for various types of percolation in~Gsec in the plane (precise
definitions will be given later), first without power constraint
(Section III) and second with power constraint (Section IV).

III. PERCOLATION WITHOUT POWER CONSTRAINT

For a model of an infinite undirected random graph,per-
colation is said to occur if an infinite component occurs with
positive probability. (In fact, this probability is almostalways
1 by Kolmogorov’s 0-1 law—see Theorem 1.) Since~Gsec is
a directed graph, there are several things we could mean by
“component”, which lead to several definitions of percolation.
Following [1], we distinguish five distinct events. First, write
Gsec for the undirected graph obtained from~Gsec by removing
the orientations of the edges and replacing any resulting double
edges by single edges, andG′

sec for the undirected graph
obtained from ~Gsec by including only those edgesxy for
which both ~xy ∈ ~Gsec and ~yx ∈ ~Gsec. We write U for the
event thatGsec has an infinite component,O for the event
that ~Gsec has an infinite out-component,I for the the event
that ~Gsec has an infinite in-component,S for the event that
~Gsec has an infinite strongly connected subgraph, andB for
the event thatG′

sec has an infinite component. Here, an out
(resp. in)-component is a subgraph with a spanning subtree
whose edges are all directed away from (resp. towards) a root
vertex, and a strongly connected subgraph is one where there
are directed paths fromx to y for all x andy in the subgraph.
As noted in [1], we have the following implications:

B ⇒ S ⇒ (I and O), (I or O) ⇒ U. (1)

Let X denote any ofU,O, I,S or B, and let pX(λ, d) =
P(X).

Theorem 1. For all values ofλ andd, and all choices ofX,
pX(λ, d) is either 0 or 1.

Proof: The Poisson process is ergodic, and so the prob-
ability of any translation invariant event, such as percolation,
is automatically 0 or 1.



A complete proof from first principles is given in [14],
where the uniqueness of the infinite cluster also has been
established.

Since, for a fixed instance ofP , adding points toP ′ can
only remove edges from~Gsec, the probabilitypX(λ, d) is
non-increasing inλ. Define thecritical intensityλX,d by the
formula

λX,d = inf{λ : pX(λ, d) = 0} = sup{λ : pX(λ, d) = 1}
and write (just for this paper)λX = λX,2. We reiterate that
increasingλ decreasesthe probability of percolation, in our
formulation of the model. From (1), we have

λB ≤ λS ≤ min{λI, λO}, max{λI, λO} ≤ λU. (2)

Our first aim is to provide bounds onλX. While doing
this, we survey various methods that have been used for other
continuum percolation models. They are from [4], and [10],
on percolation in the Gilbert disc model, and from [1] and [6],
on percolation in thek-nearest neighbour model.

A. Branching processes ([4], [6], [10])

For both the Gilbert disc model and thek-nearest neighbour
model (the “traditional models”), the basic method is as fol-
lows. We start with a vertexx of P , grow the cluster containing
x in “generations”, and compare the growing cluster to a
branching process. For the most natural way of doing this
(details below), the branching process has more points than
the cluster, so, in all dimensions, if the branching processdies
out, so will the cluster. We can now use classical results which
tell us when certain branching processes die out. Consequently,
in all dimensions, branching processes give lower bounds for
thresholds in the traditional models, i.e., they show that for
certain parameters, percolationdoes notoccur.

In the following, we will describe the method for the Gilbert
disc model, although it is almost the same as for thek-nearest
neighbour model. Assume that the originO is a point ofP .
First pick the points ofP within distancer of O – these are
the first generation. The second generation are the points of
P which are each within distancer of some first generation
point, but are not in the first generation themselves (i.e., they
are not within distancer of O). The third generation are the
points of P not belonging to the first two generations, but
which are each within distancer of some second generation
point, and so on. The associated branching process is obtained
by setting each offspring size distribution to bePo(πr2), so
that we are essentially growing the same cluster containingO,
but ignoring the fact that the various discs we have scanned for
points actually overlap. In [4], Gilbert argues that ifπr2 ≤ 1,
the branching process dies out with probability 1, so that the
critical area for percolation is at least 1. Whenπr2 > 1, it
is possible to calculate (numerically) the probability that the
branching process dies out, so this gives an upper bound on
the probability thatO belongs to an infinite component.

This method can be used to give an upper bound of
λO ≤ 1 for the secrecy graph model. In fact, for oriented
out-percolation, we have the following result:

Proposition 2. The probabilityθO(λ) that O belongs to an
infinite out-component in the secrecy graph satisfies

θO(λ) ≤ max{0, 1 − λ}.

Proof: See [14].
In higher dimensions, the cluster is approximated better and

better by the appropriate branching process, at least for the
Gilbert andk-nearest neighbour models. This is because the
distances from a pointp ∈ P to its two nearest neighbours in
P converge in distribution to a (common) deterministic limit,
and because the overlap between the balls centered at a parent
and at its child gets smaller and smaller, asd → ∞. There
is a slight complication in that the error (between the model
and a branching process) is only asymptotically negligibleover
finitely many generations. Therefore, in both [6] and [10], ori-
ented lattice percolation is brought in to establish asymptotic
thresholds for percolation. The results are that in sufficiently
high dimension,k = 2 gives percolation for thek-nearest
neighbour model, and that the critical volume in the Gilbert
model tends to 1 asd → ∞.

For the secrecy graph, we have

Theorem 3. If λ ≥ 1, then, for alld, θO,d(λ) = 0. If λ < 1,
thenθO,d(λ) → 1 − λ as d → ∞.

The first part of the theorem follows from the above proposi-
tion. The proof of the second part, where we assumeλ < 1,
is lengthy and can also be found in [14].

Although the branching method seems to be tailored for
oriented out-percolation, it also gives bounds via (2).

B. Lattice percolation ([4], [6], [12], [13])

Two variants of the basic method, applied to the Gilbert
model, are described in Gilbert’s original paper [4]. For both
variants, fix a connection radiusr. First, if we consider the
square lattice with bonds of lengthr/2, and make the state
of a bond e open iff there is at least one point ofP in
the square whosediagonal is e, then bond percolation in the
lattice implies percolation in the Gilbert model. Second, if we
consider the hexagonal lattice where the hexagons have side
length r/

√
13, and make the state of a hexagon open iff it

contains a point ofP , then face percolation in the hexagonal
lattice implies percolation in the Gilbert model. Using thefact
that the critical probabilities for both bond percolation in the
square lattice and face percolation in the hexagonal lattice are
equal to1/2, one thus obtains upper bounds on the critical
areaπr2

c of about17.4 and10.9, respectively.
Häggström and Meester [6] used this method to show that,

for fixed d, percolation occurs in thek-nearest neighbour
model for sufficiently largek. Pinto and Win [12] (see [13]
for more details) applied it to show that percolation occursin
all versions of the secrecy graph model whenλ is sufficiently
small. For the latter application, one needs to usedependent
percolation, which means that the bounds are rather weak.
Their method can be used to derive a bound which is two
orders of magnitude away from the likely truth.
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Fig. 1. The rolling ball method

So while lattice percolation has generally been used to show
that percolationdoes occurin these models, it can also be used
to show that percolationdoes not occurin the secrecy graph
if λ is sufficiently large.

C. The rolling ball method ([1])

This is a method designed to show that percolationdoes
occur for certain parameter ranges in various models. It was
applied in [1] to prove upper bounds for critical values ofk
in the k-nearest neighbour model.

The method involves comparison with 1-independent per-
colation and carries through almost entirely for the secrecy
graph. We will only need to modify some of the equations
from [1]: however, for completeness, we include a full account
of the method here. First, we state precisely what we mean
by a 1-independent percolation model.

Definition 4. A bond percolation model onZ2 is said to be
1-independent if, wheneverE1 and E2 are sets of edges at
graph distance at least 1 from each other (i.e., if no edge of
E1 is incident to any edge ofE2), the state of the edges in
E1 is independent of the state of the edges inE2.

We will use the following theorem, proved in [2].

Theorem 5. If every edge in a 1-independent bond percolation
model onZ

2 is open with probability at least 0.8639, then,
almost surely, there is an infinite open component. Moreover,
if B is a bounded region of the plane, there is, almost surely,
a cycle of open edges surroundingB.

We will use the first part of the theorem for our lower
bounds, and the second part for our upper bounds.

For simplicity, let us first consider the case ofB-percolation.
Later, we will indicate the modifications necessary for the
other types.

Consider the rectangular region consisting of two adjacent
squaresS, T shown in Figure 1. BothS and T have side
length 2r + 2s, wherer and s are to be chosen later. Also,
T may be to the right, left, above or belowS, in which case
Figure 1 should be rotated accordingly. We define thebasic
good eventEB,S,T to be the event that every black pointu in
the central discK of S is joined to at least one black point in
the central discM of T by a path inG′

sec, regardless of the

state of the Poisson processes outsideS ∪ T , and moreover
that K contains at least one black point.

Now consider the following percolation model onZ
2. Each

vertex (i, j) ∈ Z
2 corresponds to a square[Ri, R(i + 1)] ×

[Rj, R(j + 1)] in R
2, whereR = 2r + 2s, and an edge is

open between adjacent vertices (corresponding to squaresS
and T ) if both the corresponding basic good eventsEB,S,T

andEB,T,S hold. Note that this is a 1-independent model on
Z

2, and that percolation in this model implies percolation in
the original one. Since, by Theorem 5, the critical probability
for any 1-independent model is at most 0.8639, if we can show
that, for somer, s, λ,

P(EB,S,T ) ≥ 0.93195

it will follow that

P(EB,S,T ∩ EB,T,S) ≥ 0.8639

by symmetry, and hence we will have shown thatλB ≥ λ.
To bound the probability that a basic good event fails, we

proceed as follows. LetK, L andM be as in Figure 1. (L is
the region between the two discsK andM .) DefineE′

B,S,T

to be the event that for every black pointv ∈ K ∪L, there is
a black pointu such that i)uv ∈ E(G′

sec) ii) ‖u−v‖ ≤ s and
iii) u ∈ Dv, whereDv is the disc of radiusr insideK∪L∪M
with v on its K-side boundary (the middle disc in Figure 1).
If we let FS be the event that there is at least one black point
in K, then we have (see [1] for background)

E′
B,S,T ∩ FS ⊂ EB,S,T

and so
EC

B,S,T ⊂ (E′
B,S,T )C ∪ FC

S

so that, sinceP((E′
B,S,T )C) is bounded by the expected

number of pointsv such that i), ii) or iii) fail,

P(EC
B,S,T ) ≤ e−πr2

+ 2r(2r + 2s)pB,r,s

wherepB,r,s is the probability that i), ii) or iii) fail for some
fixed v.

To boundpB,r,s, we consider the probability that the vertex
u closest tov inside Dv fails one of i), ii) or iii) (or does
not exist). Suppose someu ∈ Dv does exist, and writet =
‖u − v‖, A = B(v, t), B = B(v, t) ∩ Dv and C = B(u, t).
Let pB(u) be the probability thatu is the closest point tov
insideDv, but thatuv 6∈ G′

sec. Then

pB(u) = (1 − e−λ|A∪C|)e−|B| (3)

and also

pB,r,s ≤ e−|Dv∩B(v,s)| +

∫

u∈Dv∩B(v,s)

pB(u) du

so that

P(EC
B,S,T ) ≤ e−πr2

+ 2r(2r + 2s)

(

e−|Dv∩B(v,s)|+

∫

u∈Dv∩B(v,s)

(1 − e−λ|A∪C|)e−|B| du

)

(4)



X λ r s p

U 0.002 1.659 3.15 0.0669
O 0.0008 1.658 3.15 0.0677
B 0.0005 1.657 3.15 0.0680

TABLE I
UPPER BOUNDS ONp = minr,s P(EC

X,S,T ) (VALUES OF p ROUNDED UP.)

and the right hand side can be minimized over allr and s,
with λ fixed. The result is shown in Table 1, in rowB.

The calculation for the casesU andO is exactly analogous,
using the graphsGsec and ~Gsec respectively. The analogues
of (3) are

pU(u) = (1 − e−λ|A| − e−λ|C| + e−λ|A∪C|)e−|B| (5)

and
pO(u) = (1 − e−λ|A|)e−|B| (6)

respectively, and the natural analogue of (4) applies. The
results of the optimization are shown in Table 1.

As proved in [1], the bound forλO in fact applies toλS

andλI as well. In conclusion, we have proved the following
theorem.

Theorem 6. λU ≥ 0.002, λO ≥ 0.0008, λI ≥ 0.0008, λS ≥
0.0008 and λB ≥ 0.0005.

D. High confidence results ([1])

This method gives both upper and lower bounds for perco-
lation thresholds in thek-nearest neighbour model. It involves
computing a certain high dimensional integral using Monte
Carlo methods, and so is not fully rigorous. The approach
carries over essentially completely for the secrecy graph.

The lower bound method (corresponding to the upper bound
method for thek-nearest neighbour model) may be summa-
rized as follows. Given a trial value ofλ, which we wish to
show is a lower bound on one of the percolation thresholds
λU, λO or λB, we choose trial values ofr and s. Then we
generate a random instance ofP ∪ P ′ insideS ∪ T and test
for the following conditions: i) for more than half of the black
points v ∈ K, there are paths (inGsec, ~Gsec or G′

sec for the
casesX = U,O,B) to more than half the black points in
M , regardless of the state ofP ∪ P ′ outsideS ∪ T ; ii) for
more than half of the black pointsv ∈ M , there are paths
to more than half the black points inK, regardless of the
state ofP ∪ P ′ outsideS ∪ T . As before, it is clear that
this is a 1-independent model on the bonds joining adjacent
squares, and that percolation in this model implies percolation
in the original one. Consequently, if these conditions hold
with probability at least 0.8639, then percolation occurs.The
condition that the path should be independent of the process
outsideS ∪ T is simply obtained by ignoring any edges of
uv ∈ E(~Gsec(S∪T )) where‖u−v‖ > dist(u, ∂(S∪T )), since
only edgesuv with ‖u−v‖ ≤ dist(u, ∂(S∪T )) are guaranteed
to exist in ~Gsec. ∂A denotes the boundary ofA ⊂ R

2.
The probability that conditions i) and ii) are satisfied can

be expressed as a complicated multiple integral, whose value
we would like to be greater than 0.8639, for somer and s.

Fig. 2. Forbidden path for upper bound method

This is the integral we estimate using Monte Carlo methods.
Using a computer program we generated many instances, and
counted the proportion of times these conditions held. From
these we calculated the confidence level, i.e., the probability
p that these results (or better) could be obtained, if the true
value of the integral was less than 0.8639. In all casesp was
less than10−25: the detailed results appear in Table 2. It turns
out that the method for theX = O case actually applies to
the casesX = S andX = I as well, and the results obtained
are as follows.

Theorem 7. With high confidence,λB ≥ 0.09, λO ≥
0.11, λI ≥ 0.11, λS ≥ 0.11 and λU ≥ 0.20.

The upper bound method (corresponding to the lower bound
method for thek-nearest neighbour model) is as follows. For
suitabler ands, we generate instances ofP andP ′ in S ∪T ,
and check whether, regardless of the state of the processes
outsideS ∪ T , there is no path (inGsec, ~Gsec or G′

sec for
the casesX = U,O,B) from outsideS ∪ T that crosses
the line segment joining the center ofS to the center ofT
(see Figure 2). We define a 1-independent percolation model
on Z

2 by declaring an edge open if this condition holds for
the corresponding rectangleS ∪ T . If an edge is open with
probability at least 0.8639, then, from Theorem 5, there are
open cycles surrounding any bounded region of the plane.
Consequently, if there was an infiniteX-component starting
in some such bounded region, it would have to cross an open
cycle, and in particular cross the central line segment in one
of the rectanglesS ∪T corresponding to an open edge in this
cycle. This contradicts the condition for that edge to be open,
and so percolation cannot occur if the edges are open with
probability at least 0.8639.

The results of these simulations are also shown in Table 2,
and so we have the following result.

Theorem 8. With high confidence,λB ≤ 0.13, λO ≤
0.17, λI ≤ 0.17, λS ≥ 0.17 and λU ≤ 0.27.

IV. PERCOLATION WITH POWER CONSTRAINTS

To model power constraints, we remove from all the original
types of secrecy graphs all edges with length larger than the
maximum transmission radiusρ. As it turns out, many of the



X bound value r s successes trials confidence
U lower 0.20 90 10 1480 1500 10−66

O lower 0.11 60 0 963 1000 10−25

B lower 0.09 80 0 2159 2250 10−51

U upper 0.27 110 0 4296 4600 10−51

O upper 0.17 110 0 3689 4000 10−25

B upper 0.13 125 0 6226 6750 10−45

TABLE II
RESULTS OFMONTE-CARLO SIMULATIONS. (ALL CONFIDENCES

ROUNDED UP.)

proposed techniques can also be used to derive bounds on the
case with power limit.

A. Branching processes

As in the case without power constraint, we compare the
growing cluster from a black point with a branching process to
obtain a bound onλO. Due to the overlap between the regions
scanned for neighbors in different generations, the cluster in
the secrecy graph grows more slowly than in the branching
process. Consequently, since the branching process dies out
w.p. 1 if the mean of its offspring size distribution is smaller
than 1, the cluster in the secrecy graph dies out also if the
mean out-degree is smaller than1. This argument can be made
rigorous using the same techniques as in the proof of Prop. 2
(see [14] for the details).

Proposition 9. Let N , πρ2. For N > 1,

λO ≤ 1 +
W(−Ne−N)

N
,

whereW is the principal branch of the Lambert W function.
For N ≤ 1, the critical intensity is undefined.

Proof: The mean out-degree with power constraint is [5]
K(λ) = 1

λ
(1 − e−λN ), and the upper bound forN > 1 is

the solution ofK(λ) = 1. If N < 1, the mean out-degree is
smaller than1 even if λ = 0, so the critical density is not
defined.

B. The rolling ball method

In the rolling ball method, only links with length smaller
thans are considered. Since the optimums in the derivation
of the bounds in Theorem 6 is3.15 (see Table I), these bounds
are, in fact, also valid for the power-constrained secrecy graph
with ρ = 3.15.

Corollary 10. With maximum edge lengthρ = 3.15,
λU ≥ 0.002, λO ≥ 0.0008, λI ≥ 0.0008, λS ≥ 0.0008
and λB ≥ 0.0005.

To derive bounds for smaller radiiρ, the optimization over
s andr in (4) can be constrained tos ≤ ρ.

C. High-confidence results

In the high-confidence method, power constraints are
straightforward to incorporate as well. For both lower and
upper bounds, we permit only edges shorter thanρ. The results
are shown in Fig. IV-C. For comparison, a simulated curve for
the caseO is included.
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Fig. 3. Critical probabilities with power control. The smooth curve marked
with x’s is a simulated curve for the caseO.

V. CONCLUDING REMARKS

We have presented several methods to calculate bounds on
five percolation thresholds in the Poisson secrecy graph. Due
to the dependence in the model, the rigorous bounds are still
rather loose; however, the high-confidence bounds derived are
much tighter: the gap between the bounds is at most 55%.
With power constraints, the same methods remain applicable.
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