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Abstract—We consider a cellular network where base stations
are randomly deployed according to a Poisson point process
and new jobs arrive in time and space according to a Poisson
space-time point process, and are assigned to base stations
according to different assignment schemes with/without base
station cooperation. We derive “macroscopic” spatial averages
of local base station performance metrics, such as traffic load,
utilization factor, and delay, under different models on the
service time distribution which include dependence on distance.
Moreover, we determine and derive properties of the traffic
capacity of the network, defined as the maximum spatio-temporal
job density under a given constraint on the percentage of unstable
base stations. The proposed model provides a baseline for the
study of irregular cellular networks with bursty spatio-te mporal
data traffic.

I. I NTRODUCTION

QoS provisioning, load sharing/balancing and cell dimen-
sioning in cellular networks are problems that have been
studied extensively in the last twenty years, under various
assumptions and operating scenarios [1]–[5]. In order to cope
with the ever increasing traffic demand, cellular networks are
becoming increasingly unstructured, with almost “random”
base-station (BS) deployment and the emergence of femtocells
[6] and heterogeneous cellular networks [7]. This particular
evolution has relatively recently spurred new research on how
to model and study such irregular cellular networks using
stochastic geometric techniques [8]. So far, the focus of these
efforts has been on static networks and purely physical layer
metrics such as coverage and rate, taking into account the
randomness in the positions of users and BSs. The impact of
dynamic traffic on performance and traffic management issues
such as load balancing, which, as mentioned previously, have
been considered in legacy-networks, and are also important
for the useroverall QoS experience, remain unexplored.

The intention of the present paper is to make a step in this
direction, by considering a cellular network where BSs are
randomly deployed and user data traffic varies randomly both
in time and space. In particular, we propose a semi-dynamic
model [9] where the BS locations are drawn according to a
Poisson point process (PPP); for a given realization of this
process, which corresponds to a particular (random) network
deployment, new jobs “arrive” in space and time according to
a space-time PPP (STPPP), informally referred to asPoisson
rain, and are assigned to BSs for service according to different
assignment schemes, whose performance is the topic of study
of the paper. We define local performance metrics for the
typical BS, namely the traffic load, utilization factor, the
probability that its queue is stable, and the mean delay, and

evaluate their Palm expectations. Due to ergodicity, these
are equal to the spatial averages of the corresponding local
metrics, evaluated over an infinite number of BSs for any BS
process realization.

Our model is motivated by a reasonable real-world scenario:
a cellular network with irregular BS deployment, high user
density, and relatively sparse (in time) activity per user,
corresponding to tweets, e-mails, website browsing, etc. A
similar model was very recently employed in [10] to derive
the typical user throughput in a network where each arriving
job is assigned to its closest BS and it is served with a
bit rate which depends on the channel conditions and the
total number of jobs currently served by the BS. The STPPP
traffic model has also been employed in the past in order to
study code-division multiple-access regular cellular networks:
[3] considered time-sharing between active users and derived
the total throughput with/without admission control for a cell
in isolation, as well as for an infinite linear and hexagonal
network; [9] also considered an hexagonal network and user-
traffic modelled as a spatial birth-death process, and derived
the blocking probability for the typical arriving job givenan
admission control scheme which is based on the feasibility of
the power allocation problem.

To close this section, we state some conventions on notation
which are used throughout the paper. LetFX(x) and F̄X(x)
denote the cumulative distribution function (cdf) and the
complementary cdf (ccdf) of the random variable (r.v.)X ,
i.e., FX(x) = P(X ≤ x) and F̄X(x) = P(X > x), and
fX(x) denote the corresponding probability density function
(pdf). Let γ(a, x) and Γ(a), a > 0 and x ≥ 0, denote the
lower incomplete gamma and gamma functions, respectively
[11, p. 899];W−1(x), x ∈ [−1/e, 0) the lower branch of
the Lambert function [12]. We writeg(l) = Ω(h(l)), where
g, h : R+ → R

+, if there existc, l′ > 0 such that, for alll > l′,
g(l) > ch(l). We write g(l) ∼ h(l), whereg, h : R → R, if
liml→∞ g(l)/h(l) = 1.

II. SYSTEM MODEL

The base stations (BSs) form a homogeneous Poisson point
process (PPP)Φ = {Xi}, Xi ∈ R

d, of intensity σ (with
units 1/md). New jobs arrive in time and space according to
a homogeneous STPPPΨ = {(Zj , Tj)}, (Zj , Tj) ∈ R

d×R, of
intensityλ (with units 1/(md · s)). Throughout the paper, we
identify BSs and jobs by their corresponding locations, e.g.,
we refer to the BS atXi as “Xi” and to the job which arrives
at (Zj, Tj) as “(Zj , Tj)”. We assume thatΦ is staticover time,



whereas jobs arrive and leave the system after service, in the
manner described below.

Each BS is a server. GivenΦ, jobs are assigned to BSs inde-
pendently, according to a time-constant, translation-invariant,
and randomized policy. LetB(Zj ,Tj) denote the BS to which
(Zj , Tj) is assigned. GivenΦ, the job arrival process at every
BS is Poisson. The traffic load atτXi

, i.e., the mean number
of jobs that are assigned toXi per unit of time, is

τXi
=

1

∆t
E








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)
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= λ

∫

z∈Rd

P
(

B(z,t) = Xi | Φ
)

dz, (1)

where the second equation follows by applying Campbell’s
formula to the PPPΨ, and the probability within the integral
is computed with respect to the randomized assignment policy.

The jobs assigned to a particular BS are placed in a first-
in, first-out queue (where order is determined by the time
index), and each job departs from the queue upon completion
of its service. For everyXi, we assume that the service times
of the jobs assigned toXi are independent and identically
distributed random variables with well-defined meanSXi

and
second momentS2

Xi
. We define the utilization factor atXi,

ρXi
, as

ρXi
= τXi

SXi
, (2)

whereSXi
is the mean service time of the jobs assigned to

Xi. If ρXi
< 1, Xi is stable, in the sense that its queue does

not grow unbounded over time [13]. From the P-K formula
for the M/G/1 queue [13, eq. (5.62)], the mean delay atXi,
DXi

, is

DXi
= SXi

+
τXi

S2
Xi

2 (1− ρXi
)
. (3)

The metrics τXi
, SXi

and ρXi
are local in that they

correspond to a particular BS ofΦ. We denote asτ , S and
ρ, the spatial averagesof the traffic load, mean service time,
and utilization factor, evaluated over an infinite number ofBSs
for any realization ofΦ. Due to ergodicity ofΦ, these can
be evaluated as the Palm expectations [14] of the respective
metrics of the “typical” BS located at the origin (X0 = 0),
i.e.,

τ = E
0 [τ0] , (4)

S = E
0
[

S0

]

, (5)

and
ρ = E

0 [ρ0] . (6)

In addition, we define the probability that the typical BS is
stable

P = E
0 [I (ρ0 < 1)] , (7)

which is equal to the fraction of stable BSs for any realization
of Φ, and

Dβ = E
0 [D0I (ρ0 < β)] , (8)

i.e., the spatial average of the local delays, evaluated over the
set of BSs whose utilization factor is less thanβ ∈ [0, 1].1

Finally, for a given job assigment policy, service-time distri-
bution andσ, we define the networktraffic capacity, λǫ, as
the maximumλ such that the constraintP > 1−ǫ is satisfied.

The model described in this section may be extended or
modified in various ways, e.g., each BS may not have a buffer
but consist of more than one servers, in which case a job
assigned to a particular BS may be blocked if all the servers
of that BS are occupied. Moreover, BSs may form different
PPPs, offering different degrees of service as in heterogeneous
cellular networks. In the remainder of the paper, we focus on
the cased = 1, i.e., we assume that BSs and jobs are placed
on the real line. The (definitely interesting and practically
relevant) extension of the analysis tod = 2 is left for future
work. Without loss of generality, we assume thatXi < Xi+1

for all i ∈ Z. The objective of the following sections is to
derive (some of) the macroscopic metrics defined in (4)-(8) and
to study their properties, under various scenarios of interest.

III. A NALYSIS: NO BS COOPERATION

Consider the simple scheme where each job is assigned to
its closest BS, i.e.,

B(Zj ,Tj) = arg min
X∈Φ

{|Zj −X |}. (9)

Denote asVXi
the Voronoi cell ofXi. From (1), we have

τ0 = λ|V0| = λL0,

whereL0 = |V0| is the length of the typical Voronoi cell. It
is easy to show that, forl > 0,

F̄L0
(l) = e−2σl(1 + 2σl), (10)

fL0
(l) = 4σ2le−2σl. (11)

andE[L0] = 1/σ. From the definition in (4), we thus have
that

τ = λ/σ. (12)

A. Identical service-time distribution

Let the distribution of the service times be identical across
BSs. Let SXi

= 1/µ and S2
Xi

= 1/ν2, whereµ, ν > 0.
Examples include the case of constant service time1/µ,
and exponentially distributed with mean1/µ (in which case
1/ν2 = 2/µ2).

From (6),

ρ =
λ

σµ
. (13)

Moreover, from (7),

P = E [I (L0 < µ/λ)]

= 1− F̄L0
(µ/λ) (14)

(10)
= 1− (1 + 2/ρ) e−2/ρ, (15)

1“Dβ ” is used here to denote the typical delay, with a slight abuseof the
notation employed in (3).



and, from (3) and (8), we find that

Dβ =
1

µ
− (1 + 2β/ρ) e−2β/ρ

µ
+

2µ

ν2ρ2

∫ β

0

le−2l/ρ

1− l
dl, (16)

which is defined forβ ∈ [0, 1). Finally, lettingP = 1− ǫ and
solving overλ yields

λǫ = − 2σµ

1 +W−1(−ǫ/e)
. (17)

We note thatλǫ scales linearly inσµ. Regarding the depen-
dence ofλǫ on ǫ, we note that, from the definition of the
Lambert function,

W−1(x) = log(−x)− log (−W−1(x)) ;

therefore, forǫ → 0, W−1(−ǫ/e) ∼ log(ǫ/e). From (17), this
implies that

ǫ → 0 : λǫ ∼
2σµ

log(1/ǫ)
. (18)

We now turn our attention to finite networks and the ques-
tion of asymptotic network stability. Consider the restriction
of Φ to the segment(−l/2, l/2), Φl = Φ ∩ (−l/2, l/2), and
define

Pl =

∑

X∈Φl
I (λ|VX ∩ (−l/2, l/2)| < µ)

|Φl|
,

i.e., the fraction of BSs inΦl which are stable. Due to the
ergodicity ofΦ,

lim
l→∞

Pl = lim
l→∞

∑

X∈Φl
I (λ|VX ∩ (−l/2, l/2)| < µ)

σl
.

Based on the last equation, we defineΦl as asymptotically
stable, if liml→∞(1 − Pl)σl = 0. By the definition ofP
in (7), it holds thatliml→∞ Pl = P , whereP is given in
(15). Therefore, asymptotic stability can only be achievedif
P scales appropriately withl. We have the following result
which is stated without proof.

Proposition 1 Assume thatλ and σ are fixed, andµ is a
function ofl. If liml→∞(1− Pl)l = 0 then

µ(l) = Ω (log l) . (19)

Moreover, ifµ(l) ∼ log l, then

lim
l→∞

(1 − Pl)l =

{

0, λ < 2σ

∞, λ ≥ 2σ
. (20)

Eqs. (19)-(20) state that a logarithmic scaling of the service
rate is necessary for asymptotic stability, as well as sufficient
provided thatτ < 2.

B. Distance-dependent service-time

Consider the case where the service time of(Zj, Tj) is

µ−1|Zj −B(Zj ,Tj)|α, (21)

whereµ > 0. If we think of a job as a file of unit size which
has to be downloaded by a user located atZj , at timeTj , and
at ratelog(1+µ|Zj−B(Zj,Tj)|−α), then the service time given
by (21) corresponds to the download time under a “low-rate”
regime.

The average traffic loadτ is given by (12). Since the jobs
assigned to the typical BS are uniformly distributed in its cell,
we have that

S = E
0

[

2µ−1

X1 −X−1

∫ X1/2

X
−1/2

|z|α dz

]

=
8σ2µ−1

(α+ 1)(α+ 2)

∫ +∞

0

yα+1e−2σy dy

=
µ−1Γ(α+ 1)

(2σ)α
2

α+ 2
, (22)

and

ρ = E
0

[

λµ−1

∫ X1/2

X
−1/2

|z|α dz

]

=
λ

σ

µ−1Γ(α+ 1)

(2σ)α

=
λS

σ

(

1 +
α

2

)

. (23)

Eqs. (22)-(23) are derived by taking the expectation overX−1

and X1, which are iid random variables with̄FX1
(x) =

F̄X
−1
(x) = e−σx, x ≥ 0. Note that, forα = 0, we

obtainS = µ−1 and ρ = λ/(σµ), which are the results for
the distance-independent scenario considered in the previous
subsection. In Fig. 1,S is plotted vs.α for variousσ. If σ is
sufficiently large (' 0.5 m−1), there is a value ofα which
minimizes S. This is an artefact of (21), which decreases
exponentially inα if |Zj − B(Zj ,Tj)| < 1. Note that the
distance of the typical job from its closest BS is< 1 with
probability1− e−σ. For σ / 0.5 m−1, S is increasing inα.

The following proposition gives an exact expression and
upper/lower bounds onP .

Proposition 2 If the service time of(Zj , Tj) ∈ Ψ is given by
(21), then

P =

∫ c

0

e−y
(

1− e−
α+1
√

cα+1−yα+1
)

dy, (24)

where

c = 2σ
α+1

√

(α+ 1)µ

λ
= α+1

√

2Γ(α+ 2)

ρ
. (25)

Moreover,
P ≥ 1− e−c(1 + c) (26)

and
P ≤ 1− e−c − ce−c2

α
α+1

. (27)
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Figure 2. P (24) vs.α for σ = 0.1 andλ/µ = 10
−3, 10−2. The bounds

(26) and (27) are also plotted for comparison.

Proof: From (7),

P = E
0

[

I

(

λµ−1

∫ X1/2

X
−1/2

|z|α dz < 1

)]

, (28)

from which (24) follows by taking the expectation overX1

andX−1. The bounds are derived by noting that the function
y + α+1

√

cα+1 − yα+1 is concave in[0, c].
As can be seen by comparing (26)-(27) with (15), the bounds
are tight forα = 0. In Fig. 2, (24), (26) and (27) are plotted
vs. α for λ/µ = 10−3, 10−2.

Letting (26) equal to1 − ǫ, and solving overλ, we obtain
the following lower bound on the traffic capacity

λǫ,l = µ(a+ 1)

(

− 2σ

1 +W−1(−ǫ/e)

)α+1

, (29)

which is proportional toσα+1. Moreover,

ǫ → 0 : λǫ,l ∼ µ(α+ 1)

(

2σ

log(1/ǫ)

)α+1

. (30)

Note that (30) is (18) multiplied by(α + 1)(2σ/ log(1/ǫ))α.
The factor (2σ/ log(1/ǫ))α represents the performance loss
due to the increase of the service time with distance according
to (21).

Finally, in a similar manner to Proposition 1, we can show
that, if µ(l) ∼ (log l)α+1 and

λ < (α + 1)(2σ)α+1,

then a finite-sized network is asymptotically stable asl → ∞.

IV. A NALYSIS: BS COOPERATION

In this section, we turn our attention to a scenario where
the decision where to assign each job involves multiple BSs;
in practice, this implies that cooperation between the BSs
involved is possible (e.g., the hand-off of a job inVXi

to
the right-neighborXi+1). We focus on the case of identi-
cal service-time distribution; the case of distance-dependent
service time can also be handled in a manner similar to
Section III-B.

Consider the typical job(Z0, T0) and assume, without loss
of generality, that BS0 is the one closest to it. Consider a
scheme where(Z0, T0) is either kept at0 with probability
q(L0), or handed over to any of thekl left, or kr right, closest
neighbors of0, with probability(1− q(L0))/(kl + kr), where
q : R+ → [0, 1]. Then

τ0 = λq(L0)L0 +
λ

kl + kr

kl
∑

m=−kr

m 6=0

(1− q(Lm))Lm, (31)

where {Lm} are the lengths of the corresponding Voronoi
cells, and

P = P (τ0 < µ/λ) . (32)

A simple strategy is to letkl = kr = k and q(Lm) =
1/(2k + 1) for all m. Eq. (31) immediately gives

τ =
λ

2k + 1
E

[

k
∑

m=−k

Lm

]

= λ/σ, (33)

henceτ , andρ, are the same as in (12) and (13). In addition,
(32) is written as

P = P

(

1

2k + 1

k
∑

m=−k

Lm < µ/λ

)

. (34)

This probability is computed in the following proposition.

Proposition 3 Under uniform traffic sharing,

P =
4

(2k − 1)!

∫
2k+1

ρ

0

le−2lγ

(

2k,
2k + 1

ρ
− l

)

dl. (35)
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Figure 3. P (35) vs.k for ρ = 0.6, 0.8, 1, 1.2, 1.6. The large-k limit of P
is determined by the value ofρ.

Proof: Writing
k
∑

m=−k

Lm =
X−k −X−k−1

2
+Xk −X−k +

Xk+1 −Xk

2

leads from (34) to (35) after some manipulations.
In Fig. 3, we plot (35) vs.k for different values ofρ. It is

seen that, for largek, P tends to1, 1/2, 0, for ρ < 1,= 1, > 1,
respectively. Indeed, using a Chernoff bounding technique, we
can formally show the following result.

Proposition 4 Under uniform traffic sharing,

lim
k→∞

P =











1, ρ < 1

1/2, ρ = 1

0, ρ > 1

(36)

Proposition 4 can be intuitively explained by (34). Lettingk →
∞, the traffic load ofevery BS becomes≈ λ/σ; thus the
network is stable with probability one ifρ < 1. Proposition 4
also reveals that, ifρ is precisely one, the fraction of stable
BSs for any realization ofΦ tends to1/2 ask → ∞.

V. CONCLUSIONS

We have proposed a baseline model for the analysis of irreg-
ular cellular networks with bursty space/time traffic, consisting
of PPP distributed BSs, STPPP distributed job arrivals, anddif-
ferent job-to-BS assignment schemes. For a linear network,we
have derived spatial averages of the BS traffic load, utilization
factor, and mean delay, as well as the fraction of BSs with
stable queues. Based on the latter metric, we proposed and
evaluated a new network metric, thetraffic capacity, defined
as the maximum supportable spatio-temporal job density, such
that a constraint on the fraction of unstable BSs is satisfied.
The extension of the analysis to two dimensions, other traffic
assignment schemes, service-time models, and heterogeneous
networks, as well as the comparison of the results with real
network data, are all interesting topics for future study.
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