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Abstract—We consider a cellular network where base stations evaluate their Palm expectations. Due to ergodicity, these
are randomly deployed according to a Poisson point process are equal to the spatial averages of the corresponding local

and new jobs arrive in time and space according to a Poisson payrics evaluated over an infinite number of BSs for any BS
space-time point process, and are assigned to base stations

according to different assignment schemes with/without bge PrOCess realization. _
station cooperation. We derive “macroscopic” spatial aveages Our model is motivated by a reasonable real-world scenario:

of local base station performance metrics, such as traffic Bd, a cellular network with irregular BS deployment, high user
utilization factor, and delay, under different models on the density, and relatively sparse (in time) activity per user,

service time distribution which include dependence on digince. ., rasnonding to tweets, e-mails, website browsing, etc. A
Moreover, we determine and derive properties of the traffic

capacity of the network, defined as the maximum spatio-tempral ~ SiMilar model was very recently employed in [10] to derive
job density under a given constraint on the percentage of uriable  the typical user throughput in a network where each arriving
base stations. The proposed model provides a baseline fordéh job is assigned to its closest BS and it is served with a
study of irregular cellular networks with bursty spatio-temporal  pjt rate which depends on the channel conditions and the
data traffic. total number of jobs currently served by the BS. The STPPP
traffic model has also been employed in the past in order to
study code-division multiple-access regular cellulammeks:
QoS provisioning, load sharing/balancing and cell dimef] considered time-sharing between active users and etkriv
sioning in cellular networks are problems that have beehe total throughput with/without admission control for @llc
studied extensively in the last twenty years, under varioys isolation, as well as for an infinite linear and hexagonal
assumptions and operating scenarios [1]-[5]. In order feconetwork; [9] also considered an hexagonal network and user-
with the ever increasing traffic demand, cellular networtes atraffic modelled as a spatial birth-death process, and eeriv
becoming increasingly unstructured, with almost “randonthe blocking probability for the typical arriving job giveam
base-station (BS) deployment and the emergence of fenlgocaldmission control scheme which is based on the feasibifity o
[6] and heterogeneous cellular networks [7]. This particulthe power allocation problem.
evolution has relatively recently spurred new researcham h  To close this section, we state some conventions on notation
to model and study such irregular cellular networks usinghich are used throughout the paper. I8¢ (x) and Fx (z)
stochastic geometric techniques [8]. So far, the focus @é¢h denote the cumulative distribution function (cdf) and the
efforts has been on static networks and purely physicallay@&mplementary cdf (ccdf) of the random variable (r.x)
metrics such as coverage and rate, taking into account the Fx(z) = P(X < z) and Fx(z) = P(X > z), and
randomness in the positions of users and BSs. The impact/Qf(:) denote the corresponding probability density function
dynamic traffic on performance and traffic management issq@af)_ Let y(a,z) andT'(a), a > 0 andz > 0, denote the
such as load balancing, which, as mentioned previouslye hagwer incomplete gamma and gamma functions, respectively
been considered in legacy-networks, and are also importfxm, p. 899];W_y(x), = € [~1/e,0) the lower branch of
for the useroverall QoS experience, remain unexplored.  the Lambert function [12]. We writg (1) = Q(h(1)), where
The intention of the present paper is to make a step in thjsy, : Rt — R*, if there existe, I’ > 0 such that, for all > 1,

direction, by considering a cellular network where BSs agl) > ch(l). We write g(I) ~ h(l), whereg,h : R — R, if
randomly deployed and user data traffic varies randomly bath,, . g()/h(l) = 1.

in time and space. In particular, we propose a semi-dynamic
model [9] where the BS locations are drawn according to a
Poisson point process (PPP); for a given realization of this
process, which corresponds to a particular (random) n&twor The base stations (BSs) form a homogeneous Poisson point
deployment, new jobs “arrive” in space and time according fwocess (PPP¥ = {X;}, X; € R%, of intensity o (with

a space-time PPP (STPPP), informally referred t®aisson units 1/m?). New jobs arrive in time and space according to
rain, and are assigned to BSs for service according to differemhomogeneous STPRP= {(Z;,T})}, (Z;,T;) € R¢xR, of
assignment schemes, whose performance is the topic of stitgnsity A (with units 1/(m? - s)). Throughout the paper, we

of the paper. We define local performance metrics for théentify BSs and jobs by their corresponding locations,,e.g
typical BS, namely the traffic load, utilization factor, thewe refer to the BS aX; as “X;” and to the job which arrives
probability that its queue is stable, and the mean delay, aad Z;, T;) as “(Z;,T;)". We assume tha® is staticover time,

I. INTRODUCTION

Il. SYSTEM MODEL



whereas jobs arrive and leave the system after servicegin tte., the spatial average of the local delays, evaluated ttne
manner described below. set of BSs whose utilization factor is less thane [0, 1].2
Each BS is a server. Giveh, jobs are assigned to BSs indeFinally, for a given job assigment policy, service-timetdis
pendently, according to a time-constant, translatiomdiant, bution ando, we define the networkraffic capacity A, as
and randomized policy. LeB 2, ;) denote the BS to which the maximum\ such that the constrait > 1 — e is satisfied.
(Z;,Tj) is assigned. Give, the job arrival process at every The model described in this section may be extended or
BS is Poisson. The traffic load ak,, i.e., the mean number modified in various ways, e.g., each BS may not have a buffer
of jobs that are assigned t8; per unit of time, is but consist of more than one servers, in which case a job
assigned to a particular BS may be blocked if all the servers
of that BS are occupied. Moreover, BSs may form different

X, = éE Z I (B(Z%Tj) = Xl-) ® PPPs, offering different degregs of service as in heterm@en
(Z;,T;)ev cellular networks. In the remainder of the paper, we focus on
T;€(t,t+At) the casal = 1, i.e., we assume that BSs and jobs are placed
B . on the real line. The (definitely interesting and practicall
- )‘/ZGRd BBy = Xi ] 2) dz, (1) relevant) extension of the analysis do= 2 is left for future

. . work. Without loss of generality, we assume thét < X,
where the second equation follows by applying Campbellfgr all i € Z. The objective of the following sections is to

_formula to the_PPFiIJ, and the probabilit_y within _the imegral.derive (some of) the macroscopic metrics defined in (4)+(8) a
is computed with respect to the randomized asmgnmentypohg study their properties, under various scenarios of éster
The jobs assigned to a particular BS are placed in a firs?— '

in, first-out queue (where order is determined by the time 1. ANALYSIS: NO BS COOPERATION
index), and each job departs from the queue upon completion ) , . i
of its service. For every;, we assume that the service times COnSider the simple scheme where each job is assigned to

of the jobs assigned td; are independent and identicallyitS closest BS, i.e.,

distributed rand@vanables_ with welljc_ieflr)ed meag and Bz, 1;) = arg min{| Z; — X|}. 9)
second moment’, . We define the utilization factor aX;, Xed
Px;» @S Denote asVx, the Voronoi cell ofX;. From (1), we have

PX; = TXiS—Xia (2)
_ 70 = AVo| = ALo,
where Sy, is the mean service time of the jobs assigned to _ _ .
X;. If px, <1, X; is stable in the sense that its queue doe¥here Ly = |Vy] is the length of the typical Voronoi cell. It

not grow unbounded over time [13]. From the P-K formulé €asy to show that, far> 0,

for the M/G/1 queue [13, eg. (5.62)], the mean delayXat = 9%
Dy is queue [13, eq. (5.62)] WX Fr, (1) = e~27U(1 + 201), (10)
T ST — 27,20l
Dx, = Sx, + 2(1Xm_ X; 1 3) fro(l) =40%le™=7". (11)
L P andE[Ly] = 1/o. From the definition in (4), we thus have
The metricsTyx,, Sx, and px, are local in that they that
correspond to a particular BS di. We denote as, S and T=2\o. (12)

p, the spatial average®f the traffic load, mean service time, _ o S
and utilization factor, evaluated over an infinite numbeBgg A. ldentical service-time distribution

for any realization of®. Due to ergodicity of®, these can Let the distribution of the service times be identical asros

be evaluated as the Palm expectations [14] of the respec®®s. LetSy, = 1/u and S% = 1/v2, wherep,v > 0.
metrics of the “typical” BS located at the originXy = 0), Examples include the case of constant service tityig,
e, and exponentially distributed with medr/x (in which case
T =E[ro], 4) 1/v*=2/p).
_ From (6),
5 —E" [Sq]. ©) © )
and o
p=TE"[pg]. (6) Moreover, from (7),
In addition, we define the probability that the typical BS is P=E[l(Ly < u/\)
stable >
=1—Fr, (u/\) (14)
P=E"[T(py <1)], (7) (10) Lo !
= 1—(1+2/p)e?r, (15)

which is equal to the fraction of stable BSs for any realmati

of &, and 1“D5“ is used here to denote the typical delay, with a slight atnfsthe

Dg = E® [Dol (po < B)], (8) notation employed in (3).



and, from (3) and (8), we find that

20 B le=2l/p
“5i ),

v2p? J, 1-1
which is defined for3 € [0, 1). Finally, lettingP = 1 — ¢ and
solving over)\ yields

1
Dy = —
I

(1428/p)e2h/lr
I

i, (16)

201

Ae = _1+W_1(—6/€)'

(17)

We note that\. scales linearly inou. Regarding the depen-
dence of\. on ¢, we note that, from the definition of the

Lambert function,
W_1(z) = log(—x) — log (—W_1(x));

therefore, fore — 0, W_1(—¢/e) ~ log(e/e). From (17), this
implies that

200
log(1/e)’

e—0:

e~

(18)

We now turn our attention to finite networks and the ques-

tion of asymptotic network stability. Consider the redtdn
of ® to the segment—1/2,1/2), &, = ® N (-1/2,1/2), and
define

_ Xxea, IAVX N (=1/2,1/2)] < p)

P, ,
: @]

B. Distance-dependent service-time
Consider the case where the service timéof, T;) is

, (21)

wherey > 0. If we think of a job as a file of unit size which
has to be downloaded by a user locate& atat time7};, and
atratelog(1+u|Z;— Bz, 1,)| %), then the service time given
by (21) corresponds to the download time under a “low-rate”
regime.

The average traffic load is given by (12). Since the jobs
assigned to the typical BS are uniformly distributed in i&d,c
we have that

| [e%

1“71|ZJ’ = Bz, 1))

-1 X1/2

2

S=E"| 1 _—
X1 —-X_

|z]* dz]

X_1/2

8 2,,—1 +oo
_ o~ [ / ya+le—20'y dy
(a+1D)(a+2) Jy

' (a+1) 2
N (20)  a+2’

X1/2
/\u_l/
X_1/2
_Ap'T(a+1)
(6%
1+ -

(20)"
o ( 2) ’
Egs. (22)-(23) are derived by taking the expectation oveg

(22)
and

p=E°

|2|* dz]

g

s

(23)

i.e., the fraction of BSs inb; which are stable. Due to theand X;, which are iid random variables wittl'y, (z) =

ergodicity of ®,

. T ZXecblH()‘lVX ﬂ(—l/2,1/2)| <M)
lim P, = lim .
l—o0 l—o0 ol

Based on the last equation, we defifig¢ as asymptotically
stable if lim;,(1 — P)ol = 0. By the definition of P
in (7), it holds thatlim; ... P, = P, where P is given in
(15). Therefore, asymptotic stability can only be achieifed
P scales appropriately with. We have the following result
which is stated without proof.

Proposition 1 Assume that\ and o are fixed, andu is a
function ofl. If lim;_,(1 — P;){ = 0 then

(1) = Q2 (logl). (19)
Moreover, ifu(l) ~ logl, then
. _J0, A<20
Jim (1= Pl = {oo, A> 20 (20)

Egs. (19)-(20) state that a logarithmic scaling of the servi
rate is necessary for asymptotic stability, as well as safiic
provided thatr < 2.

Fx_,(z) = e °% z > 0. Note that, fora = 0, we
obtainS = p~! andp = A\/(ou), which are the results for
the distance-independent scenario considered in thequ®vi
subsection. In Fig. 15 is plotted vs.« for variouso. If o is
sufficiently large £ 0.5 m~1), there is a value ofv which
minimizes S. This is an artefact of (21), which decreases
exponentially ina if [Z; — Bz, r,)| < 1. Note that the
distance of the typical job from its closest BS 451 with
probability 1 —e=°. Foro < 0.5 m~1, S is increasing ino.

The following proposition gives an exact expression and
upper/lower bounds orr.

Proposition 2 If the service time ofZ;, T;) € ¥ is given by
(21), then

e [ (ime ETE
0
where
c =920 T/ (a+Dp _ oy M, (25)
A p
Moreover,
P>1-e“(1+c¢) (26)
and o
P<1l—e©—ce 2, (27)



3 which is proportional tar**!. Moreover,

10
2% a+1
0: Ay~ H|—— . 30
€ — N M(a+ )<10g(1/6)) ( )
10° . .
Note that (30) is (18) multiplied bya + 1)(20/log(1/€))*.
The factor (20/log(1/€))* represents the performance loss
) increasings due to the increase of the service time with distance acaegrdi
“ 10 to (21).
Finally, in a similar manner to Proposition 1, we can show
that, if (1) ~ (logl)*** and
0
10 A < (a+1)(20)F,
then a finite-sized network is asymptotically stabld as cc.
10" ; ‘ ‘
0 1 2 3 4 IV. ANALYSIS: BS COOPERATION
(0%

In this section, we turn our attention to a scenario where
Figure 1. S (22) vs.a for o = 0.125,0.25,0.5, 1 andp = 1. The behavior the decision where to assign each job involves multiple BSs;
for o =0.5,1 is an artefact of the path-loss model. in practice, this implies that cooperation between the BSs
involved is possible (e.g., the hand-off of a job Wk, to
the right-neighborX, ;). We focus on the case of identi-
cal service-time distribution; the case of distance-ddpah
service time can also be handled in a manner similar to
Section 1lI-B.

Consider the typical jol§Z,, T;) and assume, without loss
of generality, that BS) is the one closest to it. Consider a
scheme wheréZ,,T)) is either kept atd with probability
q(Lo), or handed over to any of thg left, or k.. right, closest
neighbors of0, with probability (1 — ¢(Lo))/ (ki + k), where
q:R* —[0,1]. Then

11

ki

70 = Aq(Lo)Lo + /ﬁ% > (1—q(Lm) L, (31)

m#0

where {L,,} are the lengths of the corresponding Voronoi
o cells, and
Figure 2. P (24) vs.a for o = 0.1 and A/ = 103,10~ 2. The bounds P=P(r0 < p/A). (32)

(26) and (27) are also plotted for comparison. . .
A simple strategy is to lek; = k. = k and ¢(L,,) =

1/(2k + 1) for all m. Eq. (31) immediately gives
Proof: From (7),

k
A
X, /2 T = %——HE Z Lm = )\/0’7 (33)
P=E%|I /\u‘l/ |z]*dz < 1], (28) m=—k
X-1/2 hencer, andp, are the same as in (12) and (13). In addition,

from which (24) follows by taking the expectation ovar, (32) IS written as
and X _;. The bounds are derived by noting that the function 1 k
y+ °H/cotT —yatl is concave in0, c. | P="P <— Z L, < M/A) )
As can be seen by comparing (26)-(27) with (15), the bounds 2k+1 m=
are tight fora = 0. In Fig. 2, (24), (26) and (27) are plotted
vs. a for A/ =1073,102.

Letting (26) equal tal — ¢, and solving over\, we obtain

the following lower bound on the traffic capacity Proposition 3 Under uniform traffic sharing,
2k+1
A k41

o a+1 o P _ 2I€+1
da=uar) () @ Py [ e (2 ) a6

(34)

This probability is computed in the following proposition.
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Proposition 4 can be intuitively explained by (34). Letting>
oo, the traffic load ofevery BS becomesz \/o; thus the
network is stable with probability one jf < 1. Proposition 4
also reveals that, ip is precisely one, the fraction of stable
BSs for any realization of tends tol/2 ask — oco.

V. CONCLUSIONS

We have proposed a baseline model for the analysis of irreg-
ular cellular networks with bursty space/time traffic, dstisg
of PPP distributed BSs, STPPP distributed job arrivals difad
ferent job-to-BS assignment schemes. For a linear netwagk,
have derived spatial averages of the BS traffic load, utibra
factor, and mean delay, as well as the fraction of BSs with
stable queues. Based on the latter metric, we proposed and
evaluated a new network metric, thmffic capacity defined
as the maximum supportable spatio-temporal job densith su
that a constraint on the fraction of unstable BSs is satisfied
The extension of the analysis to two dimensions, other traffi
assignment schemes, service-time models, and heterageneo
networks, as well as the comparison of the results with real
network data, are all interesting topics for future study.



