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Abstract—This paper studies power control strategies in
interference-limited wireless networks with Poisson distributed
nodes. We focus on the case where each transmitter knows its
distance to its desired receiver but does not know the topology
of the rest of the network. We study three sets of strategies:the
single-node optimal power control (SNOPC) strategy, the Nash
equilibrium power control (NEPC) strategy, and the globally opti-
mal power control (GOPC) strategy. SNOPC strategies maximize
the expected throughput of the power controllable link given
that all the other transmitters do not use power control. Under
NEPC strategies, no individual node of the network can achieve a
higher expected throughput by unilaterally deviating from these
strategies. The GOPC strategy maximizes the throughput of a
typical node in the network.

This paper shows that under mean and peak power constraints
at each transmitter, all of the three strategies are ALOHA-type
random on-off power control policies in bipolar networks. For
links of iid random distances, we show both SNOPC and NEPC
strategies are ALOHA-type random on-off policies. These results
suggest that ALOHA can be viewed not only as a MAC scheme
but also as an efficient and stable power control scheme.

I. I NTRODUCTION

In wireless networks, power control provides interference
management and trade-offs between energy and throughput
[1]. Relatively recently, benefits of random power control have
been observed in different contexts,e.g., [2], [3]. In the case
where channel state information is not completely known, ran-
domly varying the transmit power can boost the performance
of wireless communication. In particular, [4] shows that an
ALOHA-type random on-off power control policy maximizes
the expected throughput in a noise-limited wireless network.
This paper extends this result to interference-limited networks,
where concurrent transmissions limit the network throughput.

This paper concentrates on three types of strategies: 1) The
single-node optimal power control (SNOPC) strategy, where
only one node in the network uses power control; 2) Nash
equilibrium power control (NEPC) strategy and 3) Globally
optimal power control (GOPC) strategy when all the nodes in
the network use power control; The SNOPC strategy maximize
the expected throughput of the power controllable link. The
NEPC strategy ensures that no individual node of the network
can achieve a higher expected throughput by unilaterally
deviating from these strategies. The GOPC strategy maximizes
the throughput of a typical link in the network.

This paper shows that ALOHA-type random on-off power
control policies are single-node optimal and constitute Nash
equilibria. In Poisson bipolar network, all of the three strate-
gies are ALOHA-type random on-off power control policies,
and the transmit power and transmit probability can be ex-
pressed in closed-form.

II. SYSTEM MODEL

A. Network Model

The network topology is represented as a marked Poisson
point process (PPP)̂Φ = {(xi, yxi

)} ⊂ R
2 × R

2, where
Φ = {xi} is a homogeneous PPP with intensityλ and denotes
the location of the transmitters, and the marksyx denote the
location of a dedicated receiver of transmitterx. The link
distanceRx , ‖x − yx‖ is iid with distributionfR.

We consider the following SIR model, where a transmission
attempt fromz to yz is considered successful iff

SIRz ,
Sz

Iz
> θ,

whereSz = Pzhz‖z − yz‖−α, Iz =
∑

x∈Φ\{z} Pxhxz‖x −
yz‖−α, Px is the transmit power at nodex ∈ Φ, α > 2 is
the path-loss exponent,θ is the SIR threshold,hz andhxz are
(power) fading coefficients from the desired transmitter and the
interfererx to z respectively. We focus on the iid Rayleigh
fading case, thus bothhz and (hxz) are iid exponentially
distributed with unit mean. In the following, we useI for
Iz for simplicity.

B. Game-Theoretic Formulation

The players in the game are all the transmitters in the
networkx ∈ Φ. Each of the players can select a strategysx

from a common set of stationary strategiesS. Here,S is the
set of distributions with (at most) unit mean and with support
(at most) [0, Pmax], wherePmax > 1 (otherwise, the mean
power constraint would always be loose).

The strategy each node chooses is based on its knowledge
about the network. In particular, we consider the case where
the transmitters knows the network density, the distance toits
desired receiver, and the distribution of the link distances in
the network. In other words, ifIx is the information available
at nodex, we haveIx = {λ, Rx, fR}.



The pay-off of nodex ∈ Φ is its own expected throughput
(success probability) averaged over all the randomness in the
rest of the network,i.e., πx(sx) = ps|Ix

(sx) = P(Sx

Ix
> θ |

Ix, sx(Ix)). The single-node optimal power control (SNOPC)
strategy of nodex maximizesπx(·) if all the other transmitters
in the network transmit with unit power (no power control).
If all the transmitters in the network use power control, we
say that a strategy set{sx(Ix), x ∈ Φ} is a Nash equilibrium
and sx(Ix) is the Nash equilibrium power control (NEPC)
strategy if none of the transmitters is willing to unilaterally
deviate from its current strategy as that cannot increase its
pay-off (expected throughput).

In addition to the game-theoretic framework above, we
study the global impact of SNOPC and NEPC by evalu-
ating the spatially averaged throughput, (or, simply spatial
throughput), defined as the throughput (success probability)
of a typical node in the network, which can be expressed as

ps = E
!x[πx(sx)],

where E
!x is the expectation with respect to the reduced

Palm measure. In the case of a PPP, by Slivnyak’s theorem,
E

!x = E, i.e., having a node at locationx does not change the
distribution of the point process [5].

A strategy set{sx(Ix), x ∈ Φ} is said to be the globally
optimal power control (GOPC) strategy if it maximizes the
spatial throughput of the network.

III. SNOPCAND NEPC STRATEGIES FORGENERAL L INK

DISTANCES

This section derives the SNOPC and NEPC strategies for
generalfR. We start with the SNOPC strategy and then study
the Nash equilibrium. First, we introduce two lemmas:

Lemma 1. If the interferers are distributed as a homogeneous
Poisson point process Φ with intensity λ and the transmit
power at each transmitter is drawn iid from the same distri-
bution fP , the interference observed at any receiver yz with
z ∈ Φ has the Laplace transform

LI(s) = exp(−λcdE[P δ]E[hδ]Γ(1 − δ)sδ),

where δ = 2/α.

Proof: First, by Slivnyak’s theorem, LI(s) =

E[
∏

x∈Φ e−sPxhx‖x‖−α

], where Px is the transmit power
at x. Then, sincePx, ∀x ∈ Φ, is iid, Pxhx can be considered
as a new fading coefficient̃hy. The proof is then completed
by the Laplace transform of the interference distribution for
arbitrary iid fading with finiteδ-th moment [6, Sec. 3.2].

Lemma 2. Given a link of length R = r, if there exists x0 > 0
such that xLI(θr

αx) is monotonically increasing for x < x0

and monotonically decreasing for x > x0, the power control
strategy that maximizes the throughput at node x is random
on-off power control with transmit power γ and transmit
probability γ−1 where γ = max{1, min{Pmax, x

−1
0 }}.

Proof: For interference-limited Rayleigh fading networks,
the success probability of a transmission at powerP is

LI(s) |s= θrα

P
. Thus, the success probability of any power

control strategy characterized by the pdffP of the random
variableP is

ps = EP

[

LI(s) |s= θrα

P

]

=

∫ ∞

0

LI

(

θrα

x

)

fP (x)dx. (1)

It is easy to show thatLI(x) is a valid ccdf,i.e., LI(0) = 1,
limx→∞ LI(x) = 0, andLI(x) is monotonically decreasing
on [0,∞). So, instead, we can consider an interferenceless link
of distancer with another fading random variablẽh whose
ccdf is F̄h̃(x) = LI(x). The success probability is

p̃s = P(P h̃r−α > θ) = EP

[

F̄h̃

(

θrα

P

)]

=

∫ ∞

0

LI

(

θrα

x

)

fP (x)dx.

(2)

Comparing (1) and (2), we see that finding the SNOPC
strategy that maximizesps and finding the one for̃ps are
two identical problems. The latter problem has already been
solved in [4]. In particular, Theorem 2 in [4] shows that if
there exists such ax0 as in the statement of the lemma,
subject to the constraintsE[P ] ≤ 1 and P ≤ Pmax, p̃s is
maximized whenfP (x) = (1 − γ−1)δ(x) + γ−1δ(x − γ),
whereγ = max{1, min{Pmax, x

−1
0 }}.

Corollary 1. If the Laplace transform of the interference I
has the form LI(s) = exp(−asδ), where δ = 2/α and a >
0, the throughput-maximizing power control strategy at any
transmitter z ∈ Φ with Rz = r is a random on-off power
control strategy with transmit power γ and transmit probability
γ−1, where γ = max{1, min{Pmax, (aδ)1/δθrα}}.

Corollary 1 is proved by simply verifying that the Laplace
transform of the interference distribution satisfies the condi-
tions in Lemma 2.

Proposition 1. If only one node z ∈ Φ with Rz = r
uses power control and all other nodes Φ\{z} transmit
at unit power, the SNOPC strategy of z is an ALOHA-
type random on-off power control strategy with trans-
mit power γ and transmit probability γ−1, where γ =

max{1, min{Pmax,
(

λ π2δ2

sin(πδ)

)1/δ

θrα}}.

Proof: The proposition follows directly from Lemma 1
(P ≡ 1) and Corollary 1.

Moreover, since the transmit power at each nodex ∈ Φ is
a (stochastic) function of the link distancesRx = r, where
theRx are spatially iid, Lemma 1 shows that the interference
always has a Laplace transform of the formexp(−asδ),
regardless of what kind of power control strategy is applied
at each node. Then, the proposition below follows.

Proposition 2. ALOHA-type random on-off power control is
the unique NEPC strategy in a wireless network where the
transmitters are distributed as a homogeneous Poisson point
process Φ and Ix = {λ, Rx, fR}, for all x ∈ Φ.

Proof: The fact that ALOHA-type random on-off power
control at each node is a Nash equilibrium can be deduced



directly from Lemma 1 and Corollary 1. In particular, we can
write E[P δ] in terms of the throughput-maximizing random
on-off strategy at each link, which yields

E[P δ] = ER[P δ
R] = ER[γ−1

R γδ
R]

= E

[

min
{

1, max{P δ−1
max ,

(

λE[P δ]C(δ)
)1− 1

δ (θRα)δ−1}
}]

,

(3)

whereC(δ) = π2δ2

sin(πδ) . Note that the RHS of (3) is a mono-
tonically decreasing function ofE[P δ] (since1 − 1/δ < 0),
and whenE[P δ] = 0, its value isP δ−1

max > 0. Thus, there is
a uniqueE[P δ] > 0 satisfying (3). Once this value is found,
the optimal power control strategy atx is simply an ALOHA
policy with transmit powerγ and transmit probabilityγ−1,

whereγ = max{1, min{Pmax,
(

λE[P δ] π2δ2

sin(πδ)

)1/δ

θrα
x}}.

Moreover, Lemma 1 also says that no matter what kind of
power control policy is applied in the rest of the network, the
interference distribution observed at an arbitrary receiver has
a Laplace transform of the formLI(s) = exp(−asδ). Thus,
Corollary 1 also indicates the uniqueness.

IV. POWER CONTROL IN BIPOLAR NETWORKS

As a special case of the networks discussed in previous
sections, in (standard)bipolar networks, the link distances are
a known and constantr, i.e., fR(x) = δ(x−r) [7]. This section
focuses on this type of network and shows that, in bipolar
networks1, the NEPC strategy derived in Section III can be
further expressed in closed-form, and the GOPC strategy can
be derived.

A. The NEPC Strategy

For generalfR, finding the NEPC strategy involves solving
E[P δ] from (3), which has to be done numerically. However,
in Poisson bipolar networks [7], closed-form expressions for
the NEPC strategy can be obtained as follows.

Corollary 2. If all the link distances are r, the NEPC
strategy is an ALOHA-type random on-off policy with trans-
mit power γ and transmit probability γ−1 where γ =
max{1, min{Pmax, λ

π2δ2

sin(πδ)θ
δr2}}.

Proof: For Rayleigh fading,h is exponentially distributed
with mean1, and thusE[hδ] = Γ(1+ δ). Then, when the link
distances are the same, (3) becomes

E[P δ] =
(

max
{

1, min
{

Pmax,
(

λC(δ)E[P δ ]
)1/δ

θrα
}})δ−1

,

whereC(δ) = π2δ2

sin(πδ) . Solving this equation forE[P δ] and

applying toγ = max{1, min{Pmax, (λE[P δ] π2δ2

sin(πδ) )
1/δθrα}}

yields the desired result.
Corollary 2 says that in any case, an ALOHA-type random

on-off policy is the NEPC policy in a Poisson bipolar net-
work. For ALOHA-type random on-off strategies with transmit

1Following the most common use of this term in the literature,we refer
bipolar networks always to the networks where the links are all of the same
deterministic length.

powerγ and transmit probabilityγ−1, we define the following
regimes to facilitate our illustration.

Definition 1. A random on-off power control strategy is said
to be in its peak-power-limited regime if the transmit power
is Pmax.

Definition 2. A random on-off power control strategy is said
to be in its bandwidth-limited regime if the transmit power is
1.

B. The GOPC Strategy

The NEPC strategy characterized by Corollary 2 is a stable
in the sense that no selfish user is motivated to deviate
from this strategy. However, in general, the NEPC strategy is
suboptimal in terms of the spatial throughput of the network.
In this subsection, we show that a GOPC strategy which
maximizes the spatial throughput can also be derived based
on the same framework, and this GOPC strategy is also a
ALOHA type random on-off power control policy.

Definition 3. For a link of length r, a power control policy
P (r) is δ-optimal under interference I iff it maximizes the
success probability under the constraint E[P δ] ≤ 1 and P ≤
Pmax.

Similarly, we say a power control policy isδ-NEPC iff
{sx, x ∈ Φ} constitutes a Nash equilibrium, and a power
control policy isδ-GOPC iff the throughput of a typical link in
the network is maximized, both under the constraintE[P δ

x ] ≤ 1
and Px ≤ Pmax for all x ∈ Φ. Then, we have the following
lemma:

Lemma 3. Given a link of length R = r, if there exists
x0 > 0 such that xLI(θr

αx1/δ) is monotonically increasing
for x < x0 and monotonically decreasing for x > x0,
the δ-optimal power control strategy is random on-off policy
with transmit power γ1/δ and transmit probability γ−1 where
γ = max{1, min{P δ

max, x
−1
0 }}.

Proof: The success probability of the link of lengthr can
be written as

ps = EP

[

LI(s)|s= θrα

P

]

= EP

[

LĨ(s)|s= θlα

P δ

]

, (4)

where lα = θδ−1r2 and LĨ(s) , LI(s
1/δ) for all s ≥ 0.

Thus, ps can be interpreted as the success probability of a
transmission over a link of lengthl when the transmit power
P δ is applied and the interference is̃I. Moreover, the peak
power constraint is equivalent toP δ ≤ P δ

max. Combining
Lemma 2 with the fact thatxLĨ(θl

αx) = xLI(θr
αx1/δ)

completes the proof.
Since Lemma 1 shows that the interference in Poisson

networks always has the Laplace transformexp(−axδ) for
some constanta, Lemma 3 naturally leads to the following
corollary.

Corollary 3. An ALOHA-type random on-off power control
policy is the unique δ-NEPC strategy in Poisson networks.



The idea of the proof is analogous to that of Proposi-
tion 2, and thus is omitted in this paper. It is easy to verify
that at the equilibrium, the transmit power at each link of
length r is γ1/δ and the transmit probability isγ−1, where
γ = max{1, min{λ π2δ

sin(πδ)θ
δr2, P δ

max}}.

Lemma 4. Without the peak power constraint, i.e., Pmax =
∞, the δ-NEPC strategy is the δ-GOPC strategy in Poisson
bipolar networks.

Proof: First, since all the link distances are the same,
the information available at each transmitterIx, x ∈ Φ
are the same, which results in the fact thatδ-GOPC strategy
must have all the nodes in the network use the same power
control strategy. We denote such a power control strategy by
random variableP and the spatial throughput achieved by such
strategy byps(P ).

Second, if we fixE[P δ] = 1, the spatial throughput is
maximized by theδ-NEPC strategy. BecauseE[P δ] is fixed
to be 1, the interference distribution is fixed with Laplace
transformexp(−λ π2δ

sin(πδ)s
δ). By definition, theδ-NEPC strat-

egy maximizes the expected throughput at each link under
this interference distribution and thus maximizes the spatial
throughput.

Finally, if we usePγ to denote the transmit power under
the δ-NEPC strategy, we must haveps(P ) ≤ ps(Pγ) for all
P with E[P δ] ∈ R

+. This can be proved by contradiction:
Assume there exists̃P such thatps(P̃ ) > ps(Pγ) andE[P̃ δ] =
W ∈ R

+. We can construct another power control policy
with transmit powerP̂ = P̃ /W 1/δ. Obviously, E[P̂ ] = 1
but ps(P̂ ) = ps(P̃ ) > ps(Pγ), which contradicts the fact that
the δ-NEPC strategy maximizes the spatial throughput when
E[P δ] = 1.

A direct consequence of Lemma 4 is the GOPC strategy in
the following proposition.

Proposition 3. In the bipolar networks where R ≡ r, the
GOPC strategy is ALOHA-type random on-off policy with
transmit power kγ1/δ and transmit probability γ−1, where k ≤
min{Pmaxγ

−1/δ, γ1−1/δ} and γ = max{1, λ π2δ
sin(πδ)θ

δr2}.

Proof: As is shown in the proof if Lemma 4, it is
straightforward to show that no power control strategy can
achieve a higher spatial throughput than the spatial throughput
achieved by theδ-NEPC strategy. Then, the proof can be
completed by verify that the strategy stated above achieves
this maximum spatial throughput while satisfying the mean
and peak power constraints.

Not surprisingly, the GOPC strategy characterized by Propo-
sition 3 matches the ALOHA scheme derived in [7] which
maximizes the spatial throughput in Poisson bipolar networks.
However, there are two major differences between Proposi-
tion 3 and the results in [7]. First, the ALOHA scheme in
[7] only specifies the transmit probability while the GOPC
strategy also specifies the range of the transmit power since
mean and peak power constraints are considered. Second,
[7] finds its ALOHA scheme by optimizing the transmit
probability, i.e., its optimality is among all ALOHA policies.

However, Proposition 3 shows such an ALOHA scheme is
optimal among all random power control strategies.

V. COMPARISON OFPOWER CONTROL STRATEGIES

A. Bipolar Networks

In Rayleigh fading network, the throughput (success prob-
ability) of a transmission can be expressed in terms of the
Laplace transform of the interference distribution. In partic-
ular, if no power control is applied and all the transmitters
transmit with unit power, the throughput of a typical link is
given by [6]

ps(r) = exp

(

−λπsδ πδ

sin(πδ)

)∣

∣

∣

∣

s=θrα

.

Similarly, when the SNOPC strategy described in Proposi-
tion 1 is applied at a single link of lengthr, the throughput
can be expressed asps(r) =























exp
(

−λπ(θrα)δ πδ
sin(πδ)

)

, r ≤ R1

exp(−1/δ)
θrα

(

sin(πδ)
λπ2δ2

)1/δ

, R1 < r ≤ R2

P−1
max exp

(

−λπ
(

θrα

Pmax

)δ
πδ

sin(πδ)

)

, r > R2,

(5)

whereR1 = θ−1/α
√

sin(πδ)
λπ2δ2 andR2 =

(

Pmax

θ

)1/α
√

sin(πδ)
λπ2δ2 .

In bipolar networks, the NEPC strategy is described in
Corollary 2, and the expected throughput at each link can be
calculated analogously as

ps(r) = γ−1 exp

(

−λγ−1 π2δ

sin(πδ)
θδr2

)

,

whereγ = max{1, min{Pmax, λπr2 πδ2

sin(πδ)θ
δ}}.

As indicated by Proposition 3, the GOPC strategy is not
unique. In fact, the optimality of GOPC strategies only de-
pends on the properly chosen transmit probability, and the
absolute transmit power does not matter as long as the mean
and peak power constraints are satisfied. However, in order to
make a fair comparison with the NEPC strategy, we always
choose the maximum transmit power for the GOPC strategy,
i.e., k = min{Pmaxγ

−1/δ, γ1−1/δ}. Let PNEPC and pNEPC be
the transmit power and transmit probability of the NEPC strat-
egy respectively, andPGOPC andpGOPC be the transmit power
and transmit probability of the GOPC strategy respectively.
It can be shown that, for the same parameters, we always
havePGOPC≥ PNEPC andpGOPC≤ pNEPC. In other words, the
GOPC strategy achieves higher spatial throughput by forcing
each transmitter to back off on their transmit probability.

However, GOPC is unstable in the sense that any selfish
link can apply another power control strategy and thus obtain
a performance far better than anyone else. It is not difficultto
see (by slight variation to Proposition 1) that the best response
of any individual link in a bipolar network applying this GOPC
strategy is an ALOHA policy with transmit powerγBR and
transmit probabilityγ−1

BR , where the subscript BR stands for
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Fig. 1: Comparison of throughput in bipolar networks using 1)
constant power transmission (no power control) 2) the SNOPC
strategy (at a single link) 3) the NEPC strategy 4) the GOPC strategy
5) the best response to the GOPC strategy. Here,λ = 1, Pmax = 2,
α = 4, θ = 5. At the RHS of the two vertical lines, the transmit
power of the GOPC/NEPC strategy hits the peak power limit.

best response andγBR = max{1, PGOPCδ
δ}

= max

{

1, min

{

Pmax,

(

λpGOPCP
δ
GOPC

π2δ2

sin(πδ)

)1/δ

θrα

}}

.

Here,γ−1
BR ≥ pGOPC, and the equality holds only whenγ−1

BR =
pGOPC = 1, i.e., both strategies operate in the bandwidth-
limited regime.

Fig. 1 compares the throughput/spatial throughput of 5
strategies: constant-power transmission (no power control), the
SNOPC strategy when the rest of the network does not use
power control, the NEPC strategy, the GOPC strategy, and
the best response to the GOPC strategy in Poisson bipolar
networks. We can see from the figure that the NEPC policy
has a better performance than constant power transmission.
As expected, outside the bandwidth-limited regime of both
GOPC and NEPC, NEPC has a spatial throughput strictly
smaller than GOPC. However, the performance gain of GOPC
over NEPC mostly comes from forcing each transmitter in the
network to reduce its mean transmit power and thus manage
the interference,i.e., for large r, pGOPCPGOPC < 1. Fig. 1
shows that in such cases, if any node cheats by using another
power control strategy, in particular, the best response to
GOPC, its expected throughput gain is significant. Such gain
can be a strong incentive for individual links to cheat.

Another interesting observation of Fig. 1 is that by allowing
all the transmitters in the network selfishly use power control,
the spatial throughput of the network can be improved. In
particular, the comparison of SNOPC and NEPC shows that
the throughput gain of a smart user is larger when all the other
users are also smart. This result is somewhat surprising, since
it is natural to conjecture that a smart user should be able to
take more advantage of others if they are all dumb. The root
of this counter-intuitive phenomenon lies in the special form

of the Nash-equilibrium,i.e., each node transmits with (the
same) powerγ ≥ 1 and probabilityγ−1. At this equilibrium,
the interferenceIγ observed at any receiver has the Laplace
transformLIγ

(s) = exp(−λπγδ−1 πδ
sin(πδ)s

δ), which is larger
than the Laplace transform of the interference without power
controlLI(s) = exp(−λπ πδ

sin(πδ)s
δ) for all s > 0. Due to the

relation between success probability and Laplace transform,
this implies that any power control strategy achieves a higher
expected throughput when the network operates at a certain
the Nash equilibrium than when all other nodes transmit with
constant power. Moreover, the NEPC strategy, by definition,
maximizes the (individual) throughput at the Nash equilibrium,
and thus the spatial throughput of NEPC is always higher than
what SNOPC can achieve in a network without power control.

The fact thatLIγ
(s) > LI(s), ∀s > 0 suggests that by

selfishly choosing its power control strategy, each node is
essentiallyreducing its interference to other nodes. Therefore,
the spatial throughput of NEPC is always larger than the
throughput of SNOPC when no power control is applied in
the rest of the network.

B. Variable Link Distances

When the link distances are not a known constant but iid
subject to some distributionfR, the NEPC strategy hinges
on solving for E[P δ] in (3). A closed-form solution is not
available, but a numerical solution is easy to obtain. Given
E[P δ], the spatial throughput can be calculated by taking the
expectation over the distribution ofR and can be expressed
in terms of the incomplete gamma function.

Unlike the bipolar case where the GOPC strategy can be
derived by a similar approach to the one we used to find
SNOPC and NEPC strategies, the GOPC strategy in variable
link distance case is difficult to find and depends on thefR.
Moreover, since GOPC can easily circumvent the peak power
constraint by uniformly reducing the transmit power at every
node, in some cases, a GOPC strategy may not exist,i.e., the
spatial throughput of the network can always be increased by
uniformly driving the transmit power at each node to zero.

However, based on the intuition we get from the bipolar
case, we define a globally suboptimal power control (GSOPC)
strategy as follows:

Definition 4. δ-GSOPC(W ) is a ALOHA-type random on-off
power control policy. At each link of length r, the transmit
power is min{W 1/δγ1/δ, γ, Pmax} and transmit probability
γ−1, where W ∈ R

+ and γ = max{1, λ π2δ
sin(πδ)θ

δr2}.

The δ-GSOPC(W ) strategy is based on theδ-NEPC strat-
egy which has been shown closely related to the GOPC
strategy in bipolar networks (Proposition 3). If theδ-th
moment constraint is modified toE[P δ] ≤ W , it is not
difficult to see that a Nash equilibrium can be achieved by
applying a random on-off policy at each node with transmit
power W 1/δγ1/δ and transmit probabilityγ−1, whereγ =
max{1, min{λ π2δ

sin(πδ)θ
δr2, P δ

max/W}}. But, such a power
control policy violates the constraintE[P ] ≤ 1, and thus is not
a valid power control strategy. Therefore, we put a hard limit
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tributed with mean1/2

√

λr. Here, λ = 1, Pmax = 2, α = 4,
θ = 10.

on the transmit power and obtain theδ-GSOPC(W ) strategy
as defined.

Note that whenW → 0, theδ-GSOPC(W ) is equivalent to
the δ-NEPC strategy with scaled transmit power. WhenW →
∞, the δ-th moment constraint becomes dominated by the
mean power constraint. Since theδ-th moment of the transmit
power is closely related to the interference distribution,smaller
W means more fairness in terms of interference contribution
among links of different length, while largerW implies larger
throughput penalty to long links.

Fig. 2 compares the spatial throughput betweenδ-
GSOPC(W ) and NEPC strategies when the link distanceR
is Rayleigh distributed with mean1/2

√
λr, i.e., fR(x) =

2λrπx exp(−λrπx2). This distribution is interesting because
fR is the distribution of the link distances when each node of
Φ tries to connect to its nearest neighbor in an independent
homogeneous PPP of intensityλr [8].

The spatial throughput of differentδ-GSOPC(W ) shows
that a less fair strategy (largerW ) results in larger spatial
throughput. Here, the fairness is measured by the interference
contribution,i.e., E[P δ

x ], x ∈ Φ.

Fig. 2 also shows that the NEPC strategy achieves a higher
spatial throughput than constant power transmission. However,
it does not maximize the spatial throughput. In fact, its perfor-
mance can be easily beaten byδ-GSOPC(W ) strategies. The
reason of this disadvantage lies in the selfishness of the NEPC
strategy which always tries to maximizes each node’s own
throughput regardless of the interference it causes. However,
δ-GSOPC(W ) tries to maximize each node’s own throughput
under the constraint of not causing additional interference to
the network (by fixingE[P δ]).

VI. CONCLUSIONS

This paper studies (random) power control strategies in
random wireless networks where the node distribution is
governed by a Poisson point process. We show that, in terms
of throughput, a set of ALOHA-type random on-off power
control policies is single-node optimal and constitutes a Nash
equilibrium.

This framework also enables us to show that, in Poisson
bipolar networks, ALOHA-type random on-off power control
policy is globally optimal in terms of spatial throughput. While
the study of ALOHA schemes in Poisson bipolar networks
have been carried out in many contexts (e.g., [7]), to the best
of our knowledge, this paper is the first to show ALOHA-
type random on-off is the optimal power control strategy under
mean and peak power constraints.

Based on the intuition obtained in Poisson bipolar net-
works, we presented a globally suboptimal ALOHA-type
power control strategy,δ-GSOPC(W ), which achieves higher
throughput than the NEPC strategy in networks with random
link distances, and provides a trade-off between fairness and
spatial throughput.

Since in many cases, the random on-off power control
scheme is SNOPC/NEPC/GOPC, this paper provides a new
view of ALOHA as a versatile power control scheme as
opposed to as a simple but inefficient MAC scheme.
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