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Abstract— Secrecy graphs model the connectivity of wireless The motivation for this construction is that € P can
networks under secrecy constraints. Directed edges in the@h send a message tp € P without being overheard by an

are present whenever a node can talk to another node securely eavesdropper fromP’. For more details, see [5], where the
in the presence of eavesdroppers. In the case of infinite nebnks, - e ’ '
model was originally defined.

a critical parameter is the maximum density of eavesdroppes
that can be accommodated while still guaranteeing an infing Our main aim in this paper is to study the critical value(s)
component in the network, i.e., thepercolation threshold. We focus  of A for various types of percolation id7s.. in the plane
on the case where the location of the nodes and the eavesdra@mp  (precise definitions will be given later). We will also make
g!re given by Poisson point processes. We present bounds forg, e comments about the situation in higher dimensions.
ifferent types of percolation, including in-, out- and undirected . R
percolation. Let us remark that the indegree and outdegree distributions
in Gsc have been obtained in [12] and [5] respectively. We
|. INTRODUCTION summarize the results below.

To assess the impact of secrecy constraints in wirelessTheorem 1:The outdegree distribution i@ s iS geometric
networks, we have recently introduced a random geometvitth mean1/), and the indegree distributioh has moment
graph, the so-callesecrecy graphthat represents the networkgenerating function
or communication graph including only links over which
secure communication is possible [5]. E(et!) = E(eV4( ~ D/,

We assume that a transmitter can choose the rate such that
it can communicate to any receiver that is closer than any \§hereVy is the random variable representing the volume of a
the eavesdroppers. This way, the secrecy constraint atass! randomly chosen cell in a Voronoi tessellation associati¢d w
into a simple geometric constraint for secrecy. Naturalgep & unit intensity Poisson process kY. Equivalently, if fu(t)
for investigation include the degree distributions and tHé the probability density function ofy, then
threshold at which infinite components cease to exist. Since 1
the resulting graph is directed, there are different types o P(I=k)= E/ fa(t)e Mt A" dt.
components, including in-, out-, and undirected compahent ’

] ) : Proof: Fix a vertexz € P. Label the points ofP U
o covnaonore) o atorome o ovd (nterms OTREIBENSD: \ (1) — {y,,s....} in order of increasing distance from

In this paper, we give an overview of the progress made n Now - has outdegree if and only if thek nearest points
’ . . to = belong toP and ’. The probability of
the last three years on the percolation thresholds for syecrgl’ Wk gtop Yrt1 € P P y

graphs, introduce new methods, and present improved bouH#§ is (1%) 5. Consequently, the outdegree distribution

for the case where nodes and eavesdroppers form independegeometric with mear /.

Poisson point processes. For the indegree distribution, we again fix € P, and

temporarily rescale the model so tfRaandP’ have intensities

1/X and 1 respectively. This does not affect either degree
Our model is as follows. Le? and P’ be independent distribution. The vertex: has indegreé: if and only if there

Poisson processes, of intensities 1 antespectively, inR”.  are exactlyk points of P in the Voronoi cellC' defined by

The cased = 2 provides a good example. We will call thep’ {1} containingz. If C' has volumeV/, then
points of P black pointsand the points of’ red points Now

Il. MODEL

define a directed graph, ttdirected secrecy graplirse., on P(CNP=k)= %e‘v/’\(V/)\)’“.

vertex setP, by sending a directed edge frame Ptoy € P

if there is no point of P’ in the open ballD(z, |z — y||) The result follows. [
centered atr with radius ||z — y||. Note that it makes no Unfortunately, f4(¢) is only known whend = 1, when

difference whether we consider open or closed balls singg,(t) = 4te~2!. Consequently, the indegree distribution in
with probability 1, there are no two points & U P’ at the Gge. remains unknown foel > 2. However, its mean is of
same distance from any point &f. coursel/\ in all dimensions.



IIl. PERCOLATION in G1, the directed graph obtained frorﬁSCC by removing
all vertices ofP inside B(O, K. ) and all edges incident with
ﬁhem. But, with probabilityl — ¢, taken over the restriction
of PUP to RY\ B(O, K), this does not depend on points

For a model of an infinite undirected random grapkr-
colationis said to occur if an infinite component occurs wit

ositive probability. (In fact, this probability is almoalways = " ~ " /. ) _
E by Kollomogorov)’/s (O-l law — sge belowy) Siné, isya within distanceK of the origin. Since this holds for adl > 0,
directed graph, there are several things we could mean ?gis’ up tg a se(; of propabilityhz.ergz eq#gl t? an evgr_1t that
“component”, which lead to several definitions of percaati c es not elpen. on plomts within distankeof the origin.
Following [2], we distinguish five distinct events. Firstrite osqsequ?ntyEf_S 3 t_a' event. qdi _ , u
Gsec for the undirected graph obtained frai.. by removing | Ince, for a (;xe '?Staﬂce dt; a Irlig bp_l(_)lnts toPd can
the orientations of the edges and replacing any resultindgléo only remove edges r(.mGSCC’ t__e proba |_|typx(/\, ) is
edges by single edges, ar@,. for the undirected graph non-increasing iM\. Define thecritical intensity Ax 4 by the
obtained froméscg by including only those edgesy for formula
which bothzy € Giec a.ndlyfx € Ggec. We write U for the Ax.a = inf{\ : px (A, d) = 0} = sup{\: px(\,d) = 1}
event thatG,.. has an infinite componen® for the event

—

that G... has an infinite out-componerit,for the the event @nd write (just for this papenx = Ax,». We reiterate that
that Gi,.. has an infinite in-componen§ for the event that mcreasmg/\ decreaseshe probability of percolation, in our
Geec has an infinite strongly connected subgraph, &ntbr formulation of the model. From (1), we have

the event that.. has an infinite component. Here, an out )\, < \g < min{\;, \o}, max{i, Ao} < u. (2)
(resp. in)-component is a subgraph with a spanning subtree

whose edges are all directed away from (resp. towards) a rooPur first aim is to provide bounds oix. While doing
vertex, and a strongly connected subgraph is one where théli§, we survey various methods that have been used for other
are directed paths from to y for all z andy in the subgraph. continuum percolation models. All of these are from [4], [8]

As noted in [2], we have the following implications: and [11], on percolation in the Gilbert disc model, and fr@h [
and [7], on percolation in thé-nearest neighbour model.

B = S = (I and O), (Ior O)=U. 1) .
A. Branching processes ([4], [7], [8], [11])

Let X denote any ofU,O,L S or B, and letpx (A, d) = For both the Gilbert disc model and thenearest neighbour
P(X). _ model (the “traditional models”), the basic method is as fol
Theorem 2:For all values ofA andd, and all choices of |ows, We start with a vertex of P, grow the cluster containing
X, px (A, d) is either O or 1. = in “generations”, and compare the growing cluster to a

Proof: Let E be the event thatis.. has an infiniteX- pranching process. For the most natural way of doing this
component. By Kolmogorov's 0-1 law, it is enough to showgetails below), the branching process has more points than
that I is a tail event, meaning that, for all > 0, £ depends the cluster, so, in all dimensions, if the branching prockes
only on vertices at distance greater thanfrom the origin out, so will the cluster. We can now use classical resultewhi
O. Fix K > 0. Then, for anys > 0, there is ak. > K tg|| us when certain branching processes die out. Consélguen
such that the probability that there exists a vertex at d&#a jn || dimensions, branching processes give lower bounds fo
at leastK. from O that is not prohibited by?’ from sending thresholds in the traditional models, i.e., they show tiuat f
a directed edge to some vertex withi of the origin is less certain parameters, percolatidoes notoccur.

thane. This is because one can calculate the expected numbef, the following, we will describe the method for the Gilbert
of black vertices at distance at leadt from O whose nearest gjsc model, although it is almost the same as forithesarest

red point is at distance more thgjn|| — K as neighbour model. Assume that the origihis a point of P.
au(r—K) @ d1 First pick the points ofP within distancer of O — these are
/L e Realr =) g pd=1 gy the first generation. The second generation are the points of

‘P which are each within distance of some first generation
whereS, = 27%/2/T(d/2) andag = 7%/? /T(1+d/2) are the point, but are not in the first generation themselves (itey t
surface area and volume respectively of a uh@timensional are not within distance of O). The third generation are the
ball. The integrand above is a polynomial times a (supeppints of P not belonging to the first two generations, but
exponentially decreasing function, so the integral cogesr which are each within distance of some second generation
Hence the integral can be made less thdiy suitable choice point, and so on. The associated branching process is eltain
of L. Note that this probability is taken over the restriction ofy setting each offspring size distribution to Pe(nr?), so
PUP toRY\ DO, K). that we are essentially growing the same cluster contaifing
Now, for each choice ofX, X-percolation is unaffected but ignoring the fact that the various discs we have scanoed f
by the removal of a finite number of vertices. Also, wittpoints actually overlap. In [4], Gilbert argues thatrif?> < 1,
probability 1, there are only finitely many vertices withirthe branching process dies out with probability 1, so that th
distanceK. of the origin. Consequently, up to probability zeraritical area for percolation is at least 1. When? > 1, it
events,E is also the event that there is an infinite componeig possible to calculate (numerically) the probabilityttiize



branching process dies out, so this gives an upper boundeonhiigh dimension,k = 2 gives percolation for thé:-nearest

probability thatO belongs to an infinite component. Gilberineighbour model, and that the critical volume in the Gilbert

also notes the following improvement. The discs surrougdirmodel tends to 1 ag — oc.

a point of P and its descendant if? always intersect in  For the secrecy graph, we have

an area of at least = (37 — @)73, so we can compare Theorem 4:\g 4 — 1 asd — oc.

with a branching process whose offspring size distributon Proof: (Sketch) The proof of [7] goes through, except

just Po(r — «)r?. This leads to the improved lower boundhat we compare with a much simpler branching process,

of - =~ 1.642, which was further improved to 2.184namely the one where the offspring size distribution is ge-

by Hall [8] using multitype branching processes. In Hall®metric with meanl /), as above. There is no need to have

method, the type of a child is just the Euclidean distand@o types of offspring.

to its parent: children of higher types are likely to have The first step is to show that, over finitely many (Say

more descendants. We include a brief description of Halgenerations, the number of descendants of a black point

modification later. in its cluster tends to the number of descendantp of the
This method can be used to give an upper bound®f< above branching process, ds— oco. This follows since, as

1 for the secrecy graph model. In fact, for oriented out# — oo, the edges in the cluster have asymptotically identical

percolation, we have the following result. lengths, and are asymptotically orthogonal. Consequethiy
Proposition 3: The probabilitydo ()) thatO belongs to an first possibility in the above proof, where an expanding disc
infinite out-component in the secrecy graph satisfies is stopped by a previously encountered red point, occuts wit
probability tending to zero over the firét generations. The
fo(A) <1—A extension to infinitely many generations is accomplished by
Proof: As in the above proof sketch, we compare thguncation and comparison with oriented site percolatis,
growing cluster, starting at a black point P, with a branch- in [7] and [11]. m

ing process. The number of children in the first generationThe method seems to be tailored for oriented out-
has distribution given by a geometric random variable withercolation, so we expect it won't give bounds for other gy/pe
mean1/\. After the n™ generation has been completed, wef percolation, except via equation (2). In two dimensidhs,
order the points of the:'™ generation in order of distanceshould be possible to improve the bound in Proposition 3giusin
from p, and begin growing a disc around each point in turRall’s modification, which, for the disc model, runs as fola
(according to the order). For each black pointthere are Each offspringy is indexed by its distanceto its parentzr,
two possibilities. First, the disc corresponding tomight and its offspring size distribution is bounded in terms of th
encounter a red point which has already been encounter&a of the luneéD(y, )\ D(z,r). In addition, the distribution
If not, the disc will certainly outgrow the regioR already of the typesof these offspring is also bounded in terms of the
scanned (by points in previous generations, or the curregsime lune. Consequently, one can compare the growing cluste
generation). In this case, the number of black pooutside with an appropriate multitype branching process (the types
the region R that we encounter before the first red poinindexed byt). For the secrecy graph, there are three parameters
(which stops the disc) will again have a geometric distidout one might wish to keep track of (instead of just one). These
with mean1/X. Consequently, the number of children of are: the radius: of the disc centered at, the distance of
black point is always stochastically dominated by a geoimetr: to its offspringy, and the location of the red point on
random variable with meari/), and generating function the boundarydD(z,r) of D(x,r). Nonetheless, one could
f(z) = 3= A branching process whose offspring sizén principle compute the appropriate conditional prokigpil
distribution is given by this geometric random variable hagistribution and this should result in a slightly improvezper
extinction probability 1 ifA > 1, and extinction probabilith  bound.
if A <1. (When\ < 1, the extinction probability is given by  To summarize, although branching processes are usually
the smallest root of = f(x).) Consequently, the cluster stopsmployed to show that percolatiatoes not occuiin these
growing with probability at leash, and sofo(A) < 1—A. B models, they can also be used to show that percolatues

In higher dimensions, the cluster is approximated bettdr aoccur for certain fixed values of the parameters, &s—
better by the appropriate branching process, at least #®r th. For the secrecy graph model, it would be interesting to
Gilbert andk-nearest neighbour models. This is because thvestigate the cas® = 1, asd — oo.
distances from a point € P to its two nearest neighbours in ] )
P converge in distribution to a (common) deterministic limitB- Lattice percolation ([4], [7], [8], [13], [14])
and because the overlap between the balls centered at & parefwo variants of the basic method, applied to the Gilbert
and at its child gets smaller and smaller, s~ oo. There model, are described in Gilbert's original paper [4]. Fottho
is a slight complication in that the error (between the modeériants, fix a connection radius First, if we consider the
and a branching process) is only asymptotically negligitler square lattice with bonds of lengtty2, and make the state
finitely many generations. Therefore, in both [7] and [11]; o of a bonde open iff there is at least one point @ in
ented lattice percolation is brought in to establish asytipt the square whosdiagonalis e, then bond percolation in the
thresholds for percolation. The results are that in suffitye lattice implies percolation in the Gilbert model. Secoridyé



consider the hexagonal lattice where the hexagons have side S T
length »/+/13, and make the state of a hexagon open iff it
contains a point ofP, then face percolation in the hexagonal
lattice implies percolation in the Gilbert model. Using flaet
that the critical probabilities for both bond percolationthe
square lattice and face percolation in the hexagonal éattie
equal tol /2, one thus obtains upper bounds on the critical area K \ M
7r2 of about17.4 and10.9, respectively. The latter value was
improved to 10.588 by Hall [8] using “rounded hexagons”. L

Haggstrom and Meester [7] used this method to show that,
for fixed d, percolation occurs in thé&-nearest neighbour
model for sufficiently largek. Pinto and Win [13] (see [14]
for more details) applied it to show that percolation ocdars Fig. 1. The rolling ball method
all versions of the secrecy graph model wheis sufficiently
small. For the latter application, one needs to dependent
percolation which means that the bounds are rather weafraph. However, we will use a slight modification of it to give
In the same paper, Pinto and Win prove an upper bound @nower bound for\g, the percolation threshold for the graph
Au, also using lattice percolation. Their method is to tile the”  consisting of bidirectional edges.
plane with regular hexagons, each of side lengtDivide each  Consider the rectangular region consisting of two adjacent
hexagon into 6 equilateral triangles in the obvious wayt@t squaresS,T shown in Figure 1. BothS and 7' have side
state of a hexagon to be closed if it contains no black pointgth 2 + 2s, wherer and s are to be chosen later. Also,
and at least one red point in each of its 6 triangles, and opemmay be to the right, left, above or belas in which case
otherwise. If the probability;()\,é) of this is at least /2, the Figure 1 should be rotated accordingly. We define Iasic
critical probability of face percolation on the hexagoratite, good eventtg s 1 to be the event that every black pointn
then the origin will almost surely be surrounded by arbilyar the central disd< of S is joined to at least one black point in
large closed circuits. It is easy to check that an edgé&'@f the central disa\/ of T by a path inG’,., regardless of the
cannot cross a closed circuit, and so percolation will nauoc state of the Poisson processes outs$de 7', and moreover
iN Gsec if g(A,0) > 1/2. Now that K contains at least one black point.

6 Now consider the following percolation model @3. Each
g(A,0) = (1 - 64\/552/4) eIV, vertex (i, j) € Z* corresponds to a squaf&i, R(i + 1)] x

[Rj,R(j + 1)] in R?, where R = 2r + 2s, and an edge is
open between adjacent vertices (corresponding to squares

and, for fixed), we maximizeg(, d) by setting

e~ AV382 /4 _ R and T') if both the corresponding basic good evetig s r
1+ X and Eg 1, hold. Note that this is a 1-independent model on
so the smallest value of for which Z2, and that percolation in this model implies percolation in
N O\O . 6/x 4 the original one. Since it is known (see [2]) that the critica
(_) (_) > = probability for any 1-independent model is at most 0.8689, i
L+ A L+ A 2 we can show that, for somes, ),

will be an upper bound foky. The last equation can be solved

numerically to yield the boundy < 40.9. The method can

easily be modified to give bounds for the otheg, but we it will follow that

expect that the results will be rather weak.
In summary, lattice percolation has generally been used to P(Eg,s,r N Ep,1,5) > 0.8639

show that percolatiomioes occurin these models, althoughpy symmetry, and hence we will have shown that > .

Pinto and Win also used it to show that percolattwes not 1o hound the probability that a basic good event fails, we

occurin the secrecy graph it is sufficiently large. proceed as follows. Lek, L and M be as in Figure 1.1 is

C. The rolling ball method ([2]) the region between the two disés and M) Define £y g »

. . . to be the event that for every black poine SU L, there is a
This is a method designed to show that percolatioes black pointu such that i)ju — || < s and ii) u € D., where

occur for certain parameter ranges in various models. It W3S is the disc of radius inside & U L U M with v on its
applied in [] to prove upper bounds for critical valueslmiﬁ Kﬁside boundary (the middle disc in Figure 1). If we g}
the k-nearest neighbour model. Unfortunately, when applied 2 the event that there is at least one black poinkinand

the Gilbert disc model, it only yields an upper bound (o) Hs 1 be the event that there is no red pointdnJ T, then we
of about 12, worse than the previously best known bound. have (see [2] for background) '

The method involves comparison with 1-independent per-
colation and carries through almost entirely for the secrec Eg st NFsNHsr C Egsr

P(Eg.s1) > 0.9347



and so for the Gilbert model, and by Haggstrom and Meester [7]
ES§sr C(Epsr)° UFS UHS 1 for the k-nearest neighbour model. The last two results were
' ' ' obtained by modifying a very short and elegant argument of
Burton and Keane [3], which was originally applied to give a
P(Eg,S.T) < e ] = e BAHs)? 2r(2r 4 25)pB.r.s second proof of the Aizenman—Kesten—Newman theorem. The
- . o . Burton—Keane argument goes through for the secrecy graph,
wherng7_T,S.|s the probability that i) or_u) fails for some fixed ith a considerably simpler proof than in [7], and so we have
v, which is juste~|P»"B(v:9)l g0 that finally the following result.
]P’(Egs:r) < 6771'7‘2_,’_1_ef8>\(r+s)2+2r(2r+28)67|DvﬂB(v,s)| Theorem_?:For all valugs _ofd and forX = I_J,B, if A<
o Ax.d, there is exactly one infinit&X-component in the secrecy
= f(rs,2) graph.
which can be minimized over various valuesrofind s. Proof: (Sketch) Following the account in the survey
A computer calculation shows that whan= 0.000332, the paper by Haggstrom and Jonasson [6], we just outline the
minimum of f(r,s,\) is 0.06514, attained at = 1.76 and basic steps.
s = 2.97, and consequently, we have the following theorem. The first step is to show that, below the percolation thresh-

so that

Theorem 5:\g > 0.000332. old, the number of infinite components is almost surely )a.s.
) . constant (possiblyo). For example, if the constant is 5, then
D. High confidence results ([2]) the probability of getting exactly 5 infinite components is 1

This method gives both upper and lower bounds for perc®his follows by ergodicity, as for all the other models. One
lation thresholds in thé-nearest neighbour model. It involvesthen rules out the possibility that the constant is anytloitgr
computing a certain high dimensional integral using Monttan 1 orco using the “local modifier”. The idea is that any
Carlo methods, and so is not fully rigorous. The approadecrecy graph containing 5 components which intersecge lar
carries over essentially completely for the secrecy grapball can be locally modified so that these components join up.
and the lower bound method (corresponding to the upperthe case of the secrecy graph the local modifier is particu-
bound method for theé:-nearest neighbour model) may bdarly simple. LetN be the number of infinite components, and
summarized as follows. suppose that, for some € {2,3...}, P(N = n) = 1. Then

Given a trial value of\, which we wish to show is a lower there exists somesuch that, with positive probability) (0, )
bound on one of the percolation thresholds, Ao or A\g, we intersects alk infinite components. Remove all the red points
chooser ands as above. Then we generate a random instanice D(0, 3r). In the “local coupling” described in [7], such
of PUP’ insideSUT and test for the following conditions: a new configuration has positive probability (conditional o
i) for more than half of the black points € K, there are the original configuration). But, in the new configuratiofi, a
paths (inGseC,éSec or G.,. for the caseX = U,0,B) to n components have joined up, so there is only one infinite
more than half the black points it/, regardless of the statecomponent. Consequentlif{ N = 1) > 0, contradicting the
of P U P’ outsideS U T} ii) for more than half of the black fact that the number of infinite components is a.s. constant.
pointsv € M, there are paths to more than half the black The final step is to rule out the possibility that, above the
points in K, regardless of the state U P’ outsideS UT. threshold, there are infinitely many infinite componentshwit
If these conditions hold with probability at least 0.863%n probability 1. For this, the analogue of Lemma 4.2 of [7] goes
percolation occurs. through, and the construction in the above paragraph can be

Using a computer program we generated many instancased to complete the argument, using the local modifier to
and counted the proportion of times these conditions hefstoduce, with positive probability, a forbidden “trifurtien”
From these we calculated the confidence level, i.e., the-prdtbom any configuration where three infinite components inter
ability p that these results (or better) could be obtained, if theect some ball. Details will appear in a forthcoming paper.
true probability of success was less than 0.8639. In allsase ]

p was less thatt0~=°. It turns out that the method for the
X = O case actually applies to the cas®s=S andX =1 V. CONCLUDING REMARKS

aspv;lsllégggnth; ﬁfﬁltﬁ'i or? t?i)nnef%:;iea; foiovgs(.)S N > We have presented several methods to calculate bounds on
P ' 9 B = VY520 = five percolation thresholds in the Poisson secrecy graphiewh

0.1, At 2 0.1, As > 0.1 and Ay = 0.18. . _the rigorous bounds are still rather loose, the high-contide
Corresponding high confidence upper bounds will appear N er bounds derived here are much tighter

forthcoming paper.
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