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Abstract— Secrecy graphs model the connectivity of wireless
networks under secrecy constraints. Directed edges in the graph
are present whenever a node can talk to another node securely
in the presence of eavesdroppers. In the case of infinite networks,
a critical parameter is the maximum density of eavesdroppers
that can be accommodated while still guaranteeing an infinite
component in the network, i.e., thepercolation threshold. We focus
on the case where the location of the nodes and the eavesdroppers
are given by Poisson point processes. We present bounds for
different types of percolation, including in-, out- and undirected
percolation.

I. I NTRODUCTION

To assess the impact of secrecy constraints in wireless
networks, we have recently introduced a random geometric
graph, the so-calledsecrecy graph, that represents the network
or communication graph including only links over which
secure communication is possible [5].

We assume that a transmitter can choose the rate such that
it can communicate to any receiver that is closer than any of
the eavesdroppers. This way, the secrecy constraint translates
into a simple geometric constraint for secrecy. Natural topics
for investigation include the degree distributions and the
threshold at which infinite components cease to exist. Since
the resulting graph is directed, there are different types of
components, including in-, out-, and undirected components.
In each case, the percolation threshold (in terms of the density
of eavesdroppers) is different.

In this paper, we give an overview of the progress made in
the last three years on the percolation thresholds for secrecy
graphs, introduce new methods, and present improved bounds
for the case where nodes and eavesdroppers form independent
Poisson point processes.

II. M ODEL

Our model is as follows. LetP and P ′ be independent
Poisson processes, of intensities 1 andλ respectively, inR

d.
The cased = 2 provides a good example. We will call the
points ofP black pointsand the points ofP ′ red points. Now
define a directed graph, thedirected secrecy graph~Gsec, on
vertex setP , by sending a directed edge fromx ∈ P to y ∈ P
if there is no point ofP ′ in the open ballD(x, ‖x − y‖)
centered atx with radius ‖x − y‖. Note that it makes no
difference whether we consider open or closed balls since,
with probability 1, there are no two points ofP ∪ P ′ at the
same distance from any point ofP .

The motivation for this construction is thatx ∈ P can
send a message toy ∈ P without being overheard by an
eavesdropper fromP ′. For more details, see [5], where the
model was originally defined.

Our main aim in this paper is to study the critical value(s)
of λ for various types of percolation in~Gsec in the plane
(precise definitions will be given later). We will also make
some comments about the situation in higher dimensions.

Let us remark that the indegree and outdegree distributions
in ~Gsec have been obtained in [12] and [5] respectively. We
summarize the results below.

Theorem 1:The outdegree distribution in~Gsec is geometric
with mean1/λ, and the indegree distributionI has moment
generating function

E(etI) = E(eVd(et−1)/λ),

whereVd is the random variable representing the volume of a
randomly chosen cell in a Voronoi tessellation associated with
a unit intensity Poisson process inRd. Equivalently, if fd(t)
is the probability density function ofVd, then

P(I = k) =
1

k!

∫ ∞

0

fd(t)e
−t/λ(t/λ)k dt.

Proof: Fix a vertexx ∈ P . Label the points ofP ∪
P ′ \ {x} = {y1, y2, . . .} in order of increasing distance from
x. Now x has outdegreek if and only if thek nearest points
y1, . . . , yk to x belong toP andyk+1 ∈ P ′. The probability of

this is
(

1
1+λ

)k
λ

1+λ . Consequently, the outdegree distribution

is geometric with mean1/λ.
For the indegree distribution, we again fixx ∈ P , and

temporarily rescale the model so thatP andP ′ have intensities
1/λ and 1 respectively. This does not affect either degree
distribution. The vertexx has indegreek if and only if there
are exactlyk points of P in the Voronoi cellC defined by
P ′ ∪ {x} containingx. If C has volumeV , then

P(C ∩ P = k) = 1
k!e

−V/λ(V/λ)k.

The result follows.
Unfortunately, fd(t) is only known whend = 1, when
f1(t) = 4te−2t. Consequently, the indegree distribution in
~Gsec remains unknown ford ≥ 2. However, its mean is of
course1/λ in all dimensions.



III. PERCOLATION

For a model of an infinite undirected random graph,per-
colation is said to occur if an infinite component occurs with
positive probability. (In fact, this probability is almostalways
1 by Kolmogorov’s 0-1 law – see below.) Since~Gsec is a
directed graph, there are several things we could mean by
“component”, which lead to several definitions of percolation.
Following [2], we distinguish five distinct events. First, write
Gsec for the undirected graph obtained from~Gsec by removing
the orientations of the edges and replacing any resulting double
edges by single edges, andG′

sec for the undirected graph
obtained from ~Gsec by including only those edgesxy for
which both ~xy ∈ ~Gsec and ~yx ∈ ~Gsec. We write U for the
event thatGsec has an infinite component,O for the event
that ~Gsec has an infinite out-component,I for the the event
that ~Gsec has an infinite in-component,S for the event that
~Gsec has an infinite strongly connected subgraph, andB for
the event thatG′

sec has an infinite component. Here, an out
(resp. in)-component is a subgraph with a spanning subtree
whose edges are all directed away from (resp. towards) a root
vertex, and a strongly connected subgraph is one where there
are directed paths fromx to y for all x andy in the subgraph.
As noted in [2], we have the following implications:

B ⇒ S ⇒ (I and O), (I or O) ⇒ U. (1)

Let X denote any ofU,O, I,S or B, and let pX(λ, d) =
P(X).

Theorem 2:For all values ofλ and d, and all choices of
X , pX(λ, d) is either 0 or 1.

Proof: Let E be the event that~Gsec has an infiniteX-
component. By Kolmogorov’s 0-1 law, it is enough to show
thatE is a tail event, meaning that, for allK > 0, E depends
only on vertices at distance greater thanK from the origin
O. Fix K > 0. Then, for anyε > 0, there is aKε > K
such that the probability that there exists a vertex at distance
at leastKε from O that is not prohibited byP ′ from sending
a directed edge to some vertex withinK of the origin is less
thanε. This is because one can calculate the expected number
of black verticesv at distance at leastL from O whose nearest
red point is at distance more than‖v‖ − K as

∫ ∞

L

e−λαd(r−K)d

Sdr
d−1 dr

whereSd = 2πd/2/Γ(d/2) andαd = πd/2/Γ(1+d/2) are the
surface area and volume respectively of a unitd dimensional
ball. The integrand above is a polynomial times a (super-)
exponentially decreasing function, so the integral converges.
Hence the integral can be made less thanε by suitable choice
of L. Note that this probability is taken over the restriction of
P ∪ P ′ to R

d \ D(O, K).
Now, for each choice ofX, X-percolation is unaffected

by the removal of a finite number of vertices. Also, with
probability 1, there are only finitely many vertices within
distanceKε of the origin. Consequently, up to probability zero
events,E is also the event that there is an infinite component

in G1, the directed graph obtained from~Gsec by removing
all vertices ofP insideB(O, Kε) and all edges incident with
them. But, with probability1 − ε, taken over the restriction
of P ∪ P ′ to R

d \ B(O, K), this does not depend on points
within distanceK of the origin. Since this holds for allε > 0,
E is, up to a set of probability zero, equal to an event that
does not depend on points within distanceK of the origin.
Consequently,E is a tail event.

Since, for a fixed instance ofP , adding points toP ′ can
only remove edges from~Gsec, the probabilitypX(λ, d) is
non-increasing inλ. Define thecritical intensityλX,d by the
formula

λX,d = inf{λ : pX(λ, d) = 0} = sup{λ : pX(λ, d) = 1}
and write (just for this paper)λX = λX,2. We reiterate that
increasingλ decreasesthe probability of percolation, in our
formulation of the model. From (1), we have

λB ≤ λS ≤ min{λI, λO}, max{λI, λO} ≤ λU. (2)

Our first aim is to provide bounds onλX. While doing
this, we survey various methods that have been used for other
continuum percolation models. All of these are from [4], [8]
and [11], on percolation in the Gilbert disc model, and from [2]
and [7], on percolation in thek-nearest neighbour model.

A. Branching processes ([4], [7], [8], [11])

For both the Gilbert disc model and thek-nearest neighbour
model (the “traditional models”), the basic method is as fol-
lows. We start with a vertexx of P , grow the cluster containing
x in “generations”, and compare the growing cluster to a
branching process. For the most natural way of doing this
(details below), the branching process has more points than
the cluster, so, in all dimensions, if the branching processdies
out, so will the cluster. We can now use classical results which
tell us when certain branching processes die out. Consequently,
in all dimensions, branching processes give lower bounds for
thresholds in the traditional models, i.e., they show that for
certain parameters, percolationdoes notoccur.

In the following, we will describe the method for the Gilbert
disc model, although it is almost the same as for thek-nearest
neighbour model. Assume that the originO is a point ofP .
First pick the points ofP within distancer of O – these are
the first generation. The second generation are the points of
P which are each within distancer of some first generation
point, but are not in the first generation themselves (i.e., they
are not within distancer of O). The third generation are the
points of P not belonging to the first two generations, but
which are each within distancer of some second generation
point, and so on. The associated branching process is obtained
by setting each offspring size distribution to bePo(πr2), so
that we are essentially growing the same cluster containingO,
but ignoring the fact that the various discs we have scanned for
points actually overlap. In [4], Gilbert argues that ifπr2 ≤ 1,
the branching process dies out with probability 1, so that the
critical area for percolation is at least 1. Whenπr2 > 1, it
is possible to calculate (numerically) the probability that the



branching process dies out, so this gives an upper bound on the
probability thatO belongs to an infinite component. Gilbert
also notes the following improvement. The discs surrounding
a point of P and its descendant inP always intersect in
an area of at leastα = (2

3π −
√

3
2 )r2, so we can compare

with a branching process whose offspring size distributionis
just Po(π − α)r2. This leads to the improved lower bound
of π

π−α ≈ 1.642, which was further improved to 2.184
by Hall [8] using multitype branching processes. In Hall’s
method, the type of a child is just the Euclidean distance
to its parent: children of higher types are likely to have
more descendants. We include a brief description of Hall’s
modification later.

This method can be used to give an upper bound ofλO ≤
1 for the secrecy graph model. In fact, for oriented out-
percolation, we have the following result.

Proposition 3: The probabilityθO(λ) thatO belongs to an
infinite out-component in the secrecy graph satisfies

θO(λ) ≤ 1 − λ.

Proof: As in the above proof sketch, we compare the
growing cluster, starting at a black pointp ∈ P , with a branch-
ing process. The number of children in the first generation
has distribution given by a geometric random variable with
mean1/λ. After the nth generation has been completed, we
order the points of thenth generation in order of distance
from p, and begin growing a disc around each point in turn
(according to the order). For each black pointx, there are
two possibilities. First, the disc corresponding tox might
encounter a red point which has already been encountered.
If not, the disc will certainly outgrow the regionR already
scanned (by points in previous generations, or the current
generation). In this case, the number of black pointsoutside
the region R that we encounter before the first red point
(which stops the disc) will again have a geometric distribution
with mean1/λ. Consequently, the number of children of a
black point is always stochastically dominated by a geometric
random variable with mean1/λ, and generating function
f(x) = λ

1+λ−x . A branching process whose offspring size
distribution is given by this geometric random variable has
extinction probability 1 ifλ ≥ 1, and extinction probabilityλ
if λ ≤ 1. (Whenλ < 1, the extinction probability is given by
the smallest root ofx = f(x).) Consequently, the cluster stops
growing with probability at leastλ, and soθO(λ) ≤ 1−λ.

In higher dimensions, the cluster is approximated better and
better by the appropriate branching process, at least for the
Gilbert andk-nearest neighbour models. This is because the
distances from a pointp ∈ P to its two nearest neighbours in
P converge in distribution to a (common) deterministic limit,
and because the overlap between the balls centered at a parent
and at its child gets smaller and smaller, asd → ∞. There
is a slight complication in that the error (between the model
and a branching process) is only asymptotically negligibleover
finitely many generations. Therefore, in both [7] and [11], ori-
ented lattice percolation is brought in to establish asymptotic
thresholds for percolation. The results are that in sufficiently

high dimension,k = 2 gives percolation for thek-nearest
neighbour model, and that the critical volume in the Gilbert
model tends to 1 asd → ∞.

For the secrecy graph, we have
Theorem 4:λO,d → 1 asd → ∞.

Proof: (Sketch) The proof of [7] goes through, except
that we compare with a much simpler branching process,
namely the one where the offspring size distribution is ge-
ometric with mean1/λ, as above. There is no need to have
two types of offspring.

The first step is to show that, over finitely many (sayk)
generations, the number of descendants of a black pointp
in its cluster tends to the number of descendants ofp in the
above branching process, asd → ∞. This follows since, as
d → ∞, the edges in the cluster have asymptotically identical
lengths, and are asymptotically orthogonal. Consequently, the
first possibility in the above proof, where an expanding disc
is stopped by a previously encountered red point, occurs with
probability tending to zero over the firstk generations. The
extension to infinitely many generations is accomplished by
truncation and comparison with oriented site percolation,as
in [7] and [11].

The method seems to be tailored for oriented out-
percolation, so we expect it won’t give bounds for other types
of percolation, except via equation (2). In two dimensions,it
should be possible to improve the bound in Proposition 3 using
Hall’s modification, which, for the disc model, runs as follows.
Each offspringy is indexed by its distancet to its parentx,
and its offspring size distribution is bounded in terms of the
area of the luneD(y, r)\D(x, r). In addition, the distribution
of the typesof these offspring is also bounded in terms of the
same lune. Consequently, one can compare the growing cluster
with an appropriate multitype branching process (the typesare
indexed byt). For the secrecy graph, there are three parameters
one might wish to keep track of (instead of just one). These
are: the radiusr of the disc centered atx, the distancet of
x to its offspringy, and the location of the red pointz on
the boundary∂D(x, r) of D(x, r). Nonetheless, one could
in principle compute the appropriate conditional probability
distribution and this should result in a slightly improved upper
bound.

To summarize, although branching processes are usually
employed to show that percolationdoes not occurin these
models, they can also be used to show that percolationdoes
occur for certain fixed values of the parameters, asd →
∞. For the secrecy graph model, it would be interesting to
investigate the caseλ = 1, asd → ∞.

B. Lattice percolation ([4], [7], [8], [13], [14])

Two variants of the basic method, applied to the Gilbert
model, are described in Gilbert’s original paper [4]. For both
variants, fix a connection radiusr. First, if we consider the
square lattice with bonds of lengthr/2, and make the state
of a bond e open iff there is at least one point ofP in
the square whosediagonal is e, then bond percolation in the
lattice implies percolation in the Gilbert model. Second, if we



consider the hexagonal lattice where the hexagons have side
length r/

√
13, and make the state of a hexagon open iff it

contains a point ofP , then face percolation in the hexagonal
lattice implies percolation in the Gilbert model. Using thefact
that the critical probabilities for both bond percolation in the
square lattice and face percolation in the hexagonal lattice are
equal to1/2, one thus obtains upper bounds on the critical area
πr2

c of about17.4 and10.9, respectively. The latter value was
improved to 10.588 by Hall [8] using “rounded hexagons”.

Häggström and Meester [7] used this method to show that,
for fixed d, percolation occurs in thek-nearest neighbour
model for sufficiently largek. Pinto and Win [13] (see [14]
for more details) applied it to show that percolation occursin
all versions of the secrecy graph model whenλ is sufficiently
small. For the latter application, one needs to usedependent
percolation, which means that the bounds are rather weak.
In the same paper, Pinto and Win prove an upper bound on
λU, also using lattice percolation. Their method is to tile the
plane with regular hexagons, each of side lengthδ. Divide each
hexagon into 6 equilateral triangles in the obvious way. Setthe
state of a hexagon to be closed if it contains no black points
and at least one red point in each of its 6 triangles, and open
otherwise. If the probabilityg(λ, δ) of this is at least1/2, the
critical probability of face percolation on the hexagonal lattice,
then the origin will almost surely be surrounded by arbitrarily
large closed circuits. It is easy to check that an edge ofGsec

cannot cross a closed circuit, and so percolation will not occur
in Gsec if g(λ, δ) ≥ 1/2. Now

g(λ, δ) =
(

1 − e−λ
√

3δ2/4
)6

e−3
√

3δ2/2,

and, for fixedλ, we maximizeg(λ, δ) by setting

e−λ
√

3δ2/4 =
1

1 + λ
,

so the smallest value ofλ for which
(

λ

1 + λ

)6 (

1

1 + λ

)6/λ

≥ 1

2

will be an upper bound forλU. The last equation can be solved
numerically to yield the boundλU ≤ 40.9. The method can
easily be modified to give bounds for the otherλX, but we
expect that the results will be rather weak.

In summary, lattice percolation has generally been used to
show that percolationdoes occurin these models, although
Pinto and Win also used it to show that percolationdoes not
occur in the secrecy graph ifλ is sufficiently large.

C. The rolling ball method ([2])

This is a method designed to show that percolationdoes
occur for certain parameter ranges in various models. It was
applied in [2] to prove upper bounds for critical values ofk in
thek-nearest neighbour model. Unfortunately, when applied to
the Gilbert disc model, it only yields an upper bound (onπr2

c )
of about 12, worse than the previously best known bound.

The method involves comparison with 1-independent per-
colation and carries through almost entirely for the secrecy

S T

K M
L

v

Fig. 1. The rolling ball method

graph. However, we will use a slight modification of it to give
a lower bound forλB, the percolation threshold for the graph
G′

sec consisting of bidirectional edges.
Consider the rectangular region consisting of two adjacent

squaresS, T shown in Figure 1. BothS and T have side
length 2r + 2s, wherer and s are to be chosen later. Also,
T may be to the right, left, above or belowS, in which case
Figure 1 should be rotated accordingly. We define thebasic
good eventEB,S,T to be the event that every black pointu in
the central discK of S is joined to at least one black point in
the central discM of T by a path inG′

sec, regardless of the
state of the Poisson processes outsideS ∪ T , and moreover
that K contains at least one black point.

Now consider the following percolation model onZ
2. Each

vertex (i, j) ∈ Z
2 corresponds to a square[Ri, R(i + 1)] ×

[Rj, R(j + 1)] in R
2, whereR = 2r + 2s, and an edge is

open between adjacent vertices (corresponding to squaresS
and T ) if both the corresponding basic good eventsEB,S,T

andEB,T,S hold. Note that this is a 1-independent model on
Z

2, and that percolation in this model implies percolation in
the original one. Since it is known (see [2]) that the critical
probability for any 1-independent model is at most 0.8639, if
we can show that, for somer, s, λ,

P(EB,S,T ) ≥ 0.9347

it will follow that

P(EB,S,T ∩ EB,T,S) ≥ 0.8639

by symmetry, and hence we will have shown thatλB ≥ λ.
To bound the probability that a basic good event fails, we

proceed as follows. LetK, L andM be as in Figure 1. (L is
the region between the two discsK andM .) DefineE′

B,S,T

to be the event that for every black pointv ∈ S ∪L, there is a
black pointu such that i)‖u− v‖ ≤ s and ii) u ∈ Dv, where
Dv is the disc of radiusr inside K ∪ L ∪ M with v on its
K-side boundary (the middle disc in Figure 1). If we letFS

be the event that there is at least one black point inK, and
HS,T be the event that there is no red point inS ∪T , then we
have (see [2] for background)

E′
B,S,T ∩ FS ∩ HS,T ⊂ EB,S,T



and so
EC

B,S,T ⊂ (E′
B,S,T )C ∪ FC

S ∪ HC
S,T

so that

P(EC
B,S,T ) ≤ e−πr2

+ 1 − e−8λ(r+s)2 + 2r(2r + 2s)pB,r,s

wherepB,r,s is the probability that i) or ii) fails for some fixed
v, which is juste−|Dv∩B(v,s)|, so that finally

P(EC
B,S,T ) ≤ e−πr2

+1−e−8λ(r+s)2+2r(2r+2s)e−|Dv∩B(v,s)|

= f(r, s, λ)

which can be minimized over various values ofr ands.
A computer calculation shows that whenλ = 0.000332, the

minimum of f(r, s, λ) is 0.06514, attained atr = 1.76 and
s = 2.97, and consequently, we have the following theorem.

Theorem 5:λB ≥ 0.000332.

D. High confidence results ([2])

This method gives both upper and lower bounds for perco-
lation thresholds in thek-nearest neighbour model. It involves
computing a certain high dimensional integral using Monte
Carlo methods, and so is not fully rigorous. The approach
carries over essentially completely for the secrecy graph,
and the lower bound method (corresponding to the upper
bound method for thek-nearest neighbour model) may be
summarized as follows.

Given a trial value ofλ, which we wish to show is a lower
bound on one of the percolation thresholdsλU, λO or λB, we
chooser ands as above. Then we generate a random instance
of P ∪P ′ insideS ∪ T and test for the following conditions:
i) for more than half of the black pointsv ∈ K, there are
paths (inGsec, ~Gsec or G′

sec for the casesX = U,O,B) to
more than half the black points inM , regardless of the state
of P ∪ P ′ outsideS ∪ T ; ii) for more than half of the black
points v ∈ M , there are paths to more than half the black
points inK, regardless of the state ofP ∪ P ′ outsideS ∪ T .
If these conditions hold with probability at least 0.8639, then
percolation occurs.

Using a computer program we generated many instances,
and counted the proportion of times these conditions held.
From these we calculated the confidence level, i.e., the prob-
ability p that these results (or better) could be obtained, if the
true probability of success was less than 0.8639. In all cases
p was less that10−50. It turns out that the method for the
X = O case actually applies to the casesX = S andX = I

as well, and the results obtained are as follows.
Proposition 6: With high confidence,λB ≥ 0.08, λO ≥

0.1, λI ≥ 0.1, λS ≥ 0.1 andλU ≥ 0.18.
Corresponding high confidence upper bounds will appear in a
forthcoming paper.

IV. U NIQUENESS OF THE INFINITE CLUSTER

Uniqueness of the infinite cluster above the percolation
threshold was proved by Harris [9] for bond percolation in
Z

2, by Aizenman, Kesten and Newman [1] for connected,
transitive and amenable graphs, by Meester and Roy [10]

for the Gilbert model, and by Häggström and Meester [7]
for the k-nearest neighbour model. The last two results were
obtained by modifying a very short and elegant argument of
Burton and Keane [3], which was originally applied to give a
second proof of the Aizenman–Kesten–Newman theorem. The
Burton–Keane argument goes through for the secrecy graph,
with a considerably simpler proof than in [7], and so we have
the following result.

Theorem 7:For all values ofd and forX = U,B, if λ <
λX,d, there is exactly one infiniteX-component in the secrecy
graph.

Proof: (Sketch) Following the account in the survey
paper by Häggström and Jonasson [6], we just outline the
basic steps.

The first step is to show that, below the percolation thresh-
old, the number of infinite components is almost surely (a.s.)
constant (possibly∞). For example, if the constant is 5, then
the probability of getting exactly 5 infinite components is 1.
This follows by ergodicity, as for all the other models. One
then rules out the possibility that the constant is anythingother
than 1 or∞ using the “local modifier”. The idea is that any
secrecy graph containing 5 components which intersect a large
ball can be locally modified so that these components join up.
In the case of the secrecy graph the local modifier is particu-
larly simple. LetN be the number of infinite components, and
suppose that, for somen ∈ {2, 3 . . .}, P(N = n) = 1. Then
there exists somer such that, with positive probability,D(0, r)
intersects alln infinite components. Remove all the red points
in D(0, 3r). In the “local coupling” described in [7], such
a new configuration has positive probability (conditional on
the original configuration). But, in the new configuration, all
n components have joined up, so there is only one infinite
component. Consequently,P(N = 1) > 0, contradicting the
fact that the number of infinite components is a.s. constant.

The final step is to rule out the possibility that, above the
threshold, there are infinitely many infinite components with
probability 1. For this, the analogue of Lemma 4.2 of [7] goes
through, and the construction in the above paragraph can be
used to complete the argument, using the local modifier to
produce, with positive probability, a forbidden “trifurcation”
from any configuration where three infinite components inter-
sect some ball. Details will appear in a forthcoming paper.

V. CONCLUDING REMARKS

We have presented several methods to calculate bounds on
five percolation thresholds in the Poisson secrecy graph. While
the rigorous bounds are still rather loose, the high-confidence
lower bounds derived here are much tighter.
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