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Abstract—The outage analysis of networks with randomly the rangel < x < a/2 for any reasonableMAC scheme.
distributed nodes has been mostly restricted to the case obisson  While x = 1 is the exponent for ALOHAx = a/2 can be
networks, where the node locations form a homogeneous Poigs achieved with MAC schemes that impose a hard minimum

point process. In this paper, we show that in great generaly, the . .
outage probability, as a function of the density of interfeing distance between interferers that growsjagecreases.

nodes n, approaches~n™ as n goes to zero, wherey and « We demonstrate both analytica”y and by means of simu-
are the spatial contention and the interference scaling exponent, lations that the outage probabilities are related to theireg

respectively. Interestingly, » is restricted to a small range of |arity of the network,i.e.,, the more regular, the network the
gl‘;is'glriv‘éalfheai: 1for§ :LéHO,&/2 ;Or_alp‘;"r%s'g:iti%pgfniﬂteab (\)/i\ft higher the probability of success. Furthermore the franmewo
process properties, and weldemonstrate how the upper bound dfaveloped permits to determine the optimal MAC choice for

k = a/2 can be achieved. different type of networks and outage probabilities.

We adopt the standard signal-to-interference-plus noise

(SINR) model for link outages (aka the physical model [7]),

. INTRODUCTION where a transmission is successful if the instantaneou& SIN

o ) . exceeds a threshold. With Rayleigh fading, the success

The outage probability is the natural metric for large wires ohapility is known to factorize into a term that only degen

less systems, where it cannot be assumed that the tramsmitf, (e noise and a term that only depends on the interference
are aware of the states of all the random processes governing gy, [9]:
y

the system. On of the main sources of uncertainty In man

networks are the nodes’ positions, which are then best reddel P(SINR>0) =P(S > 0(I +W))

using a s_tochastic point process model whose points ragrese = exp(—W/P)Eexp(—0I),
the locations of the nodes.

Previous work on outage characterization in networks with
randomly placed nodes has mainly focused on the casewdfereS is the received signal power, assumed exponential
the homogeneous Poisson point process with ALOHA amdth mean1 (unit link distance),W is the noise powerp
Rayleigh fading [1], [2], for which a simple closed-formthe transmit power, and the interference (the sum of the
expression for the outage exists that valid for all netwodkowers of all non-desired transmitters). The first term is th
densities, thresholds, and path loss exponents. Extensionnoise term, the second one is the Laplace transform of the
models with dependence (node repulsion or attraction) dnéerference, which does not depend @n or P. Since the
non-trivial. On the repulsion or hard-core side, where sodérst term is a pure point-to-point term, which does not depen
have a guaranteed minimum distances, approximate expres-the interference or MAC scheme, it is less interestingd, an
sions were derived in [3], [4]; on the attraction or clusterewe will focus on the second term, denoted Bythroughput
side, [5] gives an outage expression in the form of a multiptbe paper.
integral for the case of Poisson cluster processes.

Clearly, outage expressions for general networks would be
highly desirable. In view of the difficulties of analyzingmo  The location of the nodes (radios) is modeled as a stationary
Poisson point processes, it cannot be expected that gengral isotropic point process of density\ on the plane [10]-
closed-form expressions will be found. In this paper, waufoc [12]. We assume that the time is slotted and that at every
on Rayleigh fading and resort to the asymptotic regimenigtt time instant, a subset of these nodgs selected by the MAC
the density of interferers) go to zero. We will show the protocol transmit. We constrain the MAC protocols to have

outage probability approaches g asn — 0, wherey is the following properties:
the network’sspatial contentiorparameter [6], andk is the
interference scaling exponerinterestingly,x is confined to  1To be defined rigorously later.

P

Il. SYSTEM MODEL



« At every time instant the transmitting sét, C ® is a I1l. OUTAGE PROBABILITY SCALING AT HIGH SIR
stationary and isotropic point process of density A. General result

o The MAC protocol has some tuning parameter (for ex-

ample the probability of transmission in ALOHA) so that

the density\; can be tuned frond to . P p 1 o 0 5

We define a (normalized) tuning parameter= \;/\ that n TS ®)

denotes the fraction of nodes that transmit. The path-lodéile the spatial contention depends o, «, and the MAC

model is denoted by(z) : R?\ {0} — RT is a continuous, scheme, the interference scaling exponerdepends on,

In this section we show that for a wide range of MAC
rotocols,

positive, non-increasing function d¢ffc|| and and the MAC, but not orf. For example when the node
set ® is a Poisson point process of unit density £ 1),
/2\ ( )g(x)dﬂf < oo, Ve>0, (1) and ALOHA with parameter < 1 is used as the MAC, the
R2\ B(o,e

success probability [1] is
where B(o, ) denotes the ball of radius around the origin

1

0. P, =exp| — ————dz | .

In this paper we assumiz) to be a power law in one of ! Y < U/RZ 140~ 1(x)~! )
the forms: Hence for smally,

1) Singular path loss mode|lx|~“.

2) Bounded (non-singular) path loss model:+ ||z||*) . Pp~1-mn| Alz)dz,
min{1, ||z]|~*} is also an example of a non-singular path-loss =
function. To satisfy the condition (1), we requite> 2 in all K
the above models. where ]

Al) =TT

Select a nodg € ¢, and let it be the receiver of a virtual . o .
transmitterz at a distance such thdty — z) = 1. Including Thus x = 1 for Poisson distributed nodes with ALOHA
the receivery as part of the process, allows to study the &S the MAC protocol. The parameter indicates the gain
success probability at the receiver rather than at thertrates  in performance of the network to a decrease in the density
and accounts for the spacing of the transmitters. The ssicceb transmitters. For< > 1, the network can accommodate
probability obtained is a good approximation fansmitter- & certain density of interferers without affecting the geta
initiated MACs if ||y — z| is short, since the interferencewhile for = =1, when increasing the density fromto dn,
power level at the receiver is approximately the same as i€ success probability decreases-jly).
one at the transmitter if\; /> > 1. The analysis in the e begin by proving that the exponent cannot take
subsequent sections does not change much if the positigfitrary values. LeC,(B), B C R?, denote the second-order
of the transmitter and the receiver are interchanged. Eurthféduced moment measure, defined as
more both the transmission power and the link distance are K,(B) £ (n))~'E" Z 1(x € B).
normalized tol so as to isolate the effect gfon the success
probability. LetS be the received power from the intende
transmitter; we assume thatis exponentially distributed with
unit mean. LetI(y) denote the interference at the receiver

I(y) = Z hxg(”x - yH)a (2)

x€®,, wherep® (z) is the second-order product density of the point
whereh, is iid exponential fading with unit mean. WithoutProcess [10], [11]. For motion-invariant prczg)ess,é%)(x) IS
loss of generality, we can assume that the virtual receiverd function of only ||z[|, so we may usep'®(r) instead.

located aty = 0 and hence the probability of success is giveltuitively p® (r)dzdy represents the probability of finding
by two points of the process locatedzatindy with ||z —y|| = 7.

S The second-order measukg,(B) is a positive and positive-
P, 2P —>4¢ 6 >0 (3) -
n= I(o) = )’ ’ definite (PPD) measure [11]. As a property of a PPD measure,

o i . we have
whereP” is the reduced Palm probability d@f,. The Palm
probability of a point process is equivalent to conditional
probability andP'° denotes the probability conditioned orwheneveriC, (B) < oo, and whereC'z(n) < oo is a constant
there being a point of the process at the origin but not cagntithat does not depend on Ripley’s K-function, defined as
the point. SinceS is exponentially distributed, the succesd(,(R) = K,(B(o, R)), is the average number of points in
probability is given by a ball of radiusR centered at the origin, normalized by the

P Eox (—01) @) intensity of the point process, conditioned on there being a
n p ’ point at the origin but not counting it. For any stationaryrppo
where for convenience we have usedo denoteI(o). processK (R) — nR? as R — oo [10].

X€q>n

%\Iternatively, K, can be expressed as

Ky (B) = (n\) 2 /B ) (2)dz,

Ky(B +2) < Cun), VeecR



Theorem 1 (Bounds on the interference scaling exponenthereSy; = [k, k+1]x[j, j+1]. LetAg; = A(inf{||z|,z €
k). Any MAC protocol which results in a motion-invariantSy;}). SinceA(z) is a decreasing function dfz||, we have

transmitter set of density, such that, ) o )
| [t @aee <n? 3 Ay [ P
Al lim sup K, (S +2) < oo, whereS; = [0,1]?, (k.j)ez? Skj
10 peR2
(12)
has the interference scaling exponent
g p Z Ak] Skj (13)
1 <k, (k,g)ez2
If the MAC protocol is such that there existsRa> 0 such < Cs, Z AVS (14)
that (k,j)€z?
(®)
B.1 lim nK,(Rnp~/%) >0, < 00, (15)
n—
h where (a) follows from the transitive boundedness prop-
en erty of a PPD measure an@) follows since fora > 2,
K< of2. > (k.jyezz Dkj < co and Condition A.1. Hence it follows from
(9) that 5
. : lim ——"1 =
Proof: Part 1: We first prove that > 1. We will show nlg% nl—e
thatve > 0, L p Part 2: Next we prove that < a/2. We will show that
lin% —1 =0, Ve > 0, L_p
T lim ——2 = oo, (16)
which implies the result. From (4) we have n—0 n/=Te
which implies the result. The success probability is
P, = E°exp (_9 > hxé(x)) (6) , [ 0 1
» P, = E*° —_—
) E‘I)n n Xeq:,n 1 + QE(X)
(@) ! 1 r
= E —_— 7
Hq) 1+ HE(X)] ( ) < ]E!o H #
[X€Pn - 1+ 6¢(x)
| x€®,NB(o,Rn—1/2)
= E 1-AX)|, 8 I @, (B(o,Rn~"/?))
g (%) ®) - 1
[ xEPy |1+ 04(Rp~1/2)

where (a) follows from the independence and exponentialg n — 0, {(Rn~/?) ~ R~*»*/2, and using the identity

distribution of theh,. Using the inequality (14 2)% ~ 1 — ka for smallz we obtain
1-P
[TO-v)=1->m wi<t, lim —" > lim E°[®,(B(o, Ry~ /?))|0R™*
n—0 ’]704/2 n—0
we obtain . - —a
| = lim ko, (R~ /%)0R
P, > 1-E" Y A(x). (9) (@)
x€dy, > C>0,
Hence where(a) follows from Condition B.1. Hence (16) follows.
1-P _ u
7717677 < TEP D AKX (10) Discussion of the conditions:
*€Dy 1) Let
e C, = K S1).
=7 / 1~ 2pP (z) A(x)dz, (11) n=sup (T + 51)
@), ) Then from a similar argument as in the proof, it is easy
wherep;”’ (z) is the second-order product density &f. We to observe that

have \
E°[®(B(o, R))] = AMpK(B(0, R)) < M[rR*]C,,.

(2) (2)
/R n2py) (@)A(z)de Z /S de, Condition A.1 can be expressed ks, .o C, < oo,
(k.j)ez2 which implies that

2See the discussion after the proof. E°[®(B(0,7"%)] — 0 fora<1/2.



So Condition A.1 implies that the average number aff ®, the resultant process has an average nearest-neighbor
points in a ball of radius®,, =7, a < 1/2, is zero as distance ofl//An. Independent thinning of a point process
the density tends to zero. This condition is violated whethoes not guarantee that there is no receiver within a distanc
the average nearest-interferer distance remains const&Bnt= ¢/\/An, ¢ < 1 asn goes to zero. If suppose there
with decreasing density;. For example, consider aare n points originally in the ballB(o, R), the probability
clustered point process with cluster densijtyand each that none of the points are selected by ALOHA(is— ).
cluster having a fixed number of points on average. 80 although ALOHA with parametej would guarantee an
this case, Condition A.1 is violated as— 0. average nearest-neighbor distange!/2, there is a finite

2) )\nK,](Rn—l/Q) is equal to the average number of pointgrobability 1 — (1 — )™ that the ballB(o, R) is not empty.
in a ball of radiusRy~'/? and hence condition B.1 So ALOHA leads to asoft minimum distance proportional to
requires the number of points inside a ball of radiug—'/2, and as we state in the following theorem, results in
Rn~1/? to be greater than zero. By the sphere-packing= 1 for any distribution of nodes which uses ALOHA as
argument, in any stationary point process of densitAC. The theorem is presented without proof.

A, the probability that the nearest neighbor is withiq.heorem 2 (ALOHA). When ALOHA is used as the MAC
a distance,/2/v3\~/? is greater than zero. In otherprotocol with transmit probability; and

words, the probability of the event that all the nearest

neighbors are further away than075,7—'/2 is zero. / / P (x,9)A(z)Ay)dzdy < oo, (17)
HencenkK,(Rn~'/?) > 0, whereR = ,/% But this Rz JR2

does not strictly satisfy Condition B.1 which requirefn€ outage probability satisfies

the limit to be greater than zero. Except for patholog- Py~1—9m, n—0, (18)
ical cases, this condition is generally valid since the
nearest-neighbor distance scales liRé¢;—'/2) when Where 1

the point process is of density\. So, while Condition T3 0(2)($)A($)dx-

A.1 requires the nearest interferer distance to increase R

with decreasing;, Condition B.1 requires an interfererp® (z) and p(®(z,y) denote the second- and third-order
to be present at a distan&®(n~'/?). Essentially any product densities [10], [11], [13] of the point process,
MAC which schedules the nearest interferer only at a@gspectively.

average distance that scales wifh'/? satisfies these
two conditions, and in this casé,< k < a/2.

3) Indeed, if Condition A.1 is violated,

In this theorem, we characterize the scaling law with
ALOHA as the MAC protocol in which only the average
distance to the nearest interferer scales lké/2. We now

lim nK,(R) >0 for someR > 0, consider the MAC protocols in which the nearest interferer
n—=0 distance scales likg—'/? a.s. For example, a TDMA scheme
and it follows that in which the distance between the nearest transmitterg scal

like n~'/2 falls into this category. In Fig.1, TDMA on a
lattice network is illustrated. An alternative version dWMA
Based on this discussion, we can define the classasfonable is(Q)iIIustrated in Fig.2. From Fig.1, we also observe that
MAC schemes: pn (x/\/m) = 0 for x < 1, while this is not the case in

o ) the modified TDMA scheme in Fig.2. More precisely, it is

which Conditions A.1 and B.1 hold.

lim P, < 1.
n—0

. . : -2 (2) —-1/2y,.1—«
Theorem 1 implies that for all reasonable MAC schemes, lim ) Ny (T )T dr < oo (19)

—0
1 <k < /2. A MAC scheme for whichlim, .o P, <1 !
would clearly be unreasonable—it would defeat the purpo
of achieving high reliability as the density of interferdss
decreased.

golds in the TDMA scheme illustrated in Fig. 1 but not in the
alternativeunreasonablé DMA version in Fig. 2. We require
the multiplying factom—2 in front of the second-order product
density sinceogf)(x) scales liken?. In the first TDMA we also
B. Achieving the boundary points=1 andx = «/2 observe that the resulting transmitter process is selftain

In this section, we provide exact conditions on the MAdhe spatial axes are scaled hy'/?. It can be proven that for
protocols which achieve the boundary points= 1 and all MAC schemes that satisfy (19) and a few more constraints,
k = a/2. ALOHA is a simple MAC protocol, and its fully ~ = /2.
distributed nature makes it very appealing. As shown betore In the reasonable TDMA case shown in Fig. 1, tight bounds
Poisson distribution of transmitters with ALOHA as the MACON the success probability can be derived following the pro-
protocol results ins = 1. In a stationary point process ofcedure in [6]:
density )\, the average nearest-neighbor distance scales like o—TDNA /M < 1

< R
1/v/X. Using ALOHA with parameter, results in a thinning ~Pnx 1+ yroma/me (20)
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Fig. 2. UnreasonableTDMA on a two-dimensional latticeZ? for n =
1/9 andn = 1/16. In this case, the nearest interferer is at distahce-
irrespective ofy.

Fig. 1. Reasonabl@DMA on a two-dimensional lattic&? for n = 1/9 and
n = 1/16. In this arrangement, the nearest interferer is at distace’2.

wherem = 1~1/2 is the distance between nearest transmitters,
yroma = 4¢(a/2)B(a/2)8 with ¢ the Riemann zeta and
the Dirichlet beta functions. If follows from (20) that 2-dimensional lattice network, m-phase TDMA

H ‘ ‘ ‘ ‘ —*— simulated data
P~1-— ’YTDMAT/O[/2 s — = lower bound
095} — — —upper bound
as expected. The results in Fig.3 show the simulation resu
together with the two bounds. The plot confirms that the slope | |
atn = 0 is indeed 0. In this case, sinee= 4, the success
probability is quadratically decreasing neat 0. 2 os| |
IV. CONCLUSIONS
In this paper we provide asymptotics of the outage probabil |
ity in the high SIR regime for essentially all MAC protocols. o5l |
The asymptotic results are of the foftg ~ 1 — 0", n — 0, ' R
wherer is the fraction of nodes selected to transmit by the T NN

MAC. The two parameters and~ are related to the network *'0 002 004 006 008 01 012 01 016 018 02

and to the MAC:~ the intrinsic spatial contentionof the !

network ands theinterference scaling exponeifiat quantifies Fig. 3. Success probability as a function of the transmittensity , for
coordination levelachieved by the MAC. We studie®, reasonableTDMA on a two-dimensional lattice fos = 4. Simulation results
under the signal-to-interference ratio (SIR) model, Rigyle and the bounds are shown.

fading and power law path loss, explaining how the pararaeter



depends on models parameters in use. We prove that any
reasonableMAC protocol results ink € [1,«/2], where

«a is the path-loss exponent. For ALOHA, we show that
P, ~1—n, i.e, x = 1, for all motion-invariant networks. If

the MAC protocol is such that the nearest interferer digtanc
scales liken~'/2, the exponenk = «/2, a value achieved by
using TDMA or CSMA.
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