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Abstract—The outage analysis of networks with randomly
distributed nodes has been mostly restricted to the case of Poisson
networks, where the node locations form a homogeneous Poisson
point process. In this paper, we show that in great generality, the
outage probability, as a function of the density of interfering
nodes η, approaches γηκ as η goes to zero, whereγ and κ
are the spatial contention and the interference scaling exponent,
respectively. Interestingly, κ is restricted to a small range of
possible values:1 ≤ κ ≤ α/2 for a path loss exponentα. We
also prove that for ALOHA, κ = 1 irrespective of the point
process properties, and we demonstrate how the upper bound
κ = α/2 can be achieved.

I. I NTRODUCTION

The outage probability is the natural metric for large wire-
less systems, where it cannot be assumed that the transmitters
are aware of the states of all the random processes governing
the system. On of the main sources of uncertainty In many
networks are the nodes’ positions, which are then best modeled
using a stochastic point process model whose points represent
the locations of the nodes.

Previous work on outage characterization in networks with
randomly placed nodes has mainly focused on the case of
the homogeneous Poisson point process with ALOHA and
Rayleigh fading [1], [2], for which a simple closed-form
expression for the outage exists that valid for all network
densities, thresholds, and path loss exponents. Extensions to
models with dependence (node repulsion or attraction) are
non-trivial. On the repulsion or hard-core side, where nodes
have a guaranteed minimum distances, approximate expres-
sions were derived in [3], [4]; on the attraction or clustered
side, [5] gives an outage expression in the form of a multiple
integral for the case of Poisson cluster processes.

Clearly, outage expressions for general networks would be
highly desirable. In view of the difficulties of analyzing non-
Poisson point processes, it cannot be expected that general
closed-form expressions will be found. In this paper, we focus
on Rayleigh fading and resort to the asymptotic regime, letting
the density of interferersη go to zero. We will show the
outage probability approaches isγηκ as η → 0, whereγ is
the network’sspatial contentionparameter [6], andκ is the
interference scaling exponent. Interestingly,κ is confined to

the range1 ≤ κ ≤ α/2 for any reasonable1 MAC scheme.
While κ = 1 is the exponent for ALOHA,κ = α/2 can be
achieved with MAC schemes that impose a hard minimum
distance between interferers that grows asη decreases.

We demonstrate both analytically and by means of simu-
lations that the outage probabilities are related to the regu-
larity of the network,i.e., the more regular, the network the
higher the probability of success. Furthermore the framework
developed permits to determine the optimal MAC choice for
different type of networks and outage probabilities.

We adopt the standard signal-to-interference-plus noise
(SINR) model for link outages (aka the physical model [7]),
where a transmission is successful if the instantaneous SINR
exceeds a thresholdθ. With Rayleigh fading, the success
probability is known to factorize into a term that only depends
on the noise and a term that only depends on the interference
[1], [8], [9]:

P(SINR > θ) = P(S > θ(I + W ))

= exp(−θW/P ) E exp(−θI)
︸ ︷︷ ︸

P

,

where S is the received signal power, assumed exponential
with mean1 (unit link distance),W is the noise power,P
the transmit power, andI the interference (the sum of the
powers of all non-desired transmitters). The first term is the
noise term, the second one is the Laplace transform of the
interference, which does not depend onW or P . Since the
first term is a pure point-to-point term, which does not depend
on the interference or MAC scheme, it is less interesting, and
we will focus on the second term, denoted byP throughput
the paper.

II. SYSTEM MODEL

The location of the nodes (radios) is modeled as a stationary
and isotropic point processΦ of densityλ on the plane [10]–
[12]. We assume that the time is slotted and that at every
time instant, a subset of these nodesΦη, selected by the MAC
protocol transmit. We constrain the MAC protocols to have
the following properties:

1To be defined rigorously later.



• At every time instant the transmitting setΦη ⊂ Φ is a
stationary and isotropic point process of densityλt.

• The MAC protocol has some tuning parameter (for ex-
ample the probability of transmission in ALOHA) so that
the densityλt can be tuned from0 to λ.

We define a (normalized) tuning parameterη , λt/λ that
denotes the fraction of nodes that transmit. The path-loss
model is denoted byℓ(x) : R

2 \ {o} → R
+ is a continuous,

positive, non-increasing function of‖x‖ and
∫

R2\B(o,ǫ)

ℓ(x)dx < ∞, ∀ǫ > 0 , (1)

whereB(o, r) denotes the ball of radiusr around the origin
o.

In this paper we assumeℓ(x) to be a power law in one of
the forms:

1) Singular path loss model:‖x‖−α.
2) Bounded (non-singular) path loss model:(1+ ‖x‖α)−1.

min{1, ‖x‖−α} is also an example of a non-singular path-loss
function. To satisfy the condition (1), we requireα > 2 in all
the above models.

Select a nodey ∈ Φη and let it be the receiver of a virtual
transmitterz at a distance such thatℓ(y − z) = 1. Including
the receivery as part of the processΦη allows to study the
success probability at the receiver rather than at the transmitter
and accounts for the spacing of the transmitters. The success
probability obtained is a good approximation fortransmitter-
initiated MACs if ‖y − z‖ is short, since the interference
power level at the receiver is approximately the same as the
one at the transmitter ifλ−1/2

t ≫ 1. The analysis in the
subsequent sections does not change much if the positions
of the transmitter and the receiver are interchanged. Further-
more both the transmission power and the link distance are
normalized to1 so as to isolate the effect ofη on the success
probability. Let S be the received power from the intended
transmitter; we assume thatS is exponentially distributed with
unit mean. LetI(y) denote the interference at the receiver

I(y) =
∑

x∈Φη

hxℓ(‖x − y‖), (2)

wherehx is iid exponential fading with unit mean. Without
loss of generality, we can assume that the virtual receiver is
located aty = 0 and hence the probability of success is given
by

Pη , P
!o

(
S

I(o)
≥ θ

)

, θ > 0, (3)

whereP
!o is the reduced Palm probability ofΦη. The Palm

probability of a point process is equivalent to conditional
probability andP

!o denotes the probability conditioned on
there being a point of the process at the origin but not counting
the point. SinceS is exponentially distributed, the success
probability is given by

Pη = E
!o exp (−θI) , (4)

where for convenience we have usedI to denoteI(o).

III. O UTAGE PROBABILITY SCALING AT HIGH SIR

A. General result

In this section we show that for a wide range of MAC
protocols,

Pη ∼ 1 − γηκ, η → 0. (5)

While the spatial contentionγ depends onθ, α, and the MAC
scheme, the interference scaling exponentκ depends onα,
and the MAC, but not onθ. For example when the node
set Φ is a Poisson point process of unit density (λ = 1),
and ALOHA with parameterη ≤ 1 is used as the MAC, the
success probability [1] is

Pη = exp

(

−η

∫

R2

1

1 + θ−1ℓ(x)−1
dx

)

.

Hence for smallη,

Pη ∼ 1 − η

∫

R2

∆(x)dx

︸ ︷︷ ︸

γ

,

where
∆(x) =

1

1 + θ−1ℓ(x)−1
.

Thus κ = 1 for Poisson distributed nodes with ALOHA
as the MAC protocol. The parameterκ indicates the gain
in performance of the network to a decrease in the density
of transmitters. Forκ > 1, the network can accommodate
a certain density of interferers without affecting the outage,
while for κ = 1, when increasing the density from0 to dη,
the success probability decreases byγdη.

We begin by proving that the exponentκ cannot take
arbitrary values. LetKη(B), B ⊂ R

2, denote the second-order
reduced moment measure, defined as

Kη(B) , (ηλ)−1
E

!o
∑

x∈Φη

1(x ∈ B).

Alternatively,Kη can be expressed as

Kη(B) = (ηλ)−2

∫

B

ρ(2)(x)dx,

whereρ(2)(x) is the second-order product density of the point
process [10], [11]. For motion-invariant processesρ(2)(x) is
a function of only ‖x‖, so we may useρ(2)(r) instead.
Intuitively ρ(2)(r)dxdy represents the probability of finding
two points of the process located atx andy with ‖x−y‖ = r.
The second-order measureKη(B) is a positive and positive-
definite (PPD) measure [11]. As a property of a PPD measure,
we have

Kη(B + x) < CB(η), ∀x ∈ R
2,

wheneverKη(B) < ∞, and whereCB(η) < ∞ is a constant
that does not depend onx. Ripley’s K-function, defined as
Kη(R) = Kη(B(o, R)), is the average number of points in
a ball of radiusR centered at the origin, normalized by the
intensity of the point process, conditioned on there being a
point at the origin but not counting it. For any stationary point
processK(R) → πR2 asR → ∞ [10].



Theorem 1 (Bounds on the interference scaling exponent
κ). Any MAC protocol which results in a motion-invariant
transmitter set of densityλη such that2,

A.1 lim
η→0

sup
x∈R2

Kη(S1 + x) < ∞, whereS1 = [0, 1]2,

has the interference scaling exponent

1 ≤ κ.

If the MAC protocol is such that there exists aR > 0 such
that

B.1 lim
η→0

ηKη(Rη−1/2) > 0 ,

then
κ ≤ α/2.

Proof: Part 1: We first prove thatκ ≥ 1. We will show
that ∀ǫ > 0,

lim
η→0

1 − Pη

η1−ǫ
= 0 ,

which implies the result. From (4) we have

Pη = E
!o exp



−θ
∑

x∈Φη

hxℓ(x)



 (6)

(a)
= E

!o




∏

x∈Φη

1

1 + θℓ(x)



 (7)

= E
!o




∏

x∈Φη

1 − ∆(x)



 , (8)

where (a) follows from the independence and exponential
distribution of thehx. Using the inequality

∏

(1 − yi) ≥ 1 −
∑

yi, yi < 1,

we obtain

Pη ≥ 1 − E
!o

∑

x∈Φη

∆(x). (9)

Hence

1 − Pη

η1−ǫ
≤ ηǫ−1

E
!o

∑

x∈Φη

∆(x) (10)

= ηǫ

∫

R2

η−2ρ(2)
η (x)∆(x)dx, (11)

whereρ
(2)
η (x) is the second-order product density ofΦη. We

have
∫

R2

η−2ρ(2)
η (x)∆(x)dx = η−2

∑

(k,j)∈Z2

∫

Skj

ρ(2)
η (x)∆(x)dx,

2See the discussion after the proof.

whereSkj = [k, k+1]×[j, j+1]. Let ∆kj , ∆(inf{‖x‖, x ∈
Skj}). Since∆(x) is a decreasing function of‖x‖, we have

∫

R2

η−2ρ(2)
η (x)∆(x)dx < η−2

∑

(k,j)∈Z2

∆kj

∫

Skj

ρ(2)
η (x)dx

(12)

=
∑

(k,j)∈Z2

∆kjKη(Skj) (13)

(a)
< CS1

∑

(k,j)∈Z2

∆kj (14)

(b)
< ∞, (15)

where (a) follows from the transitive boundedness prop-
erty of a PPD measure and(b) follows since for α > 2,
∑

(k,j)∈Z2 ∆kj < ∞ and Condition A.1. Hence it follows from
(9) that

lim
η→0

1 − Pη

η1−ǫ
= 0.

Part 2: Next we prove thatκ ≤ α/2. We will show that
∀ǫ > 0,

lim
η→0

1 − Pη

ηα/2+ǫ
= ∞ , (16)

which implies the result. The success probability is

Pη = E
!o




∏

x∈Φη

1

1 + θℓ(x)





≤ E
!o




∏

x∈Φη∩B(o,Rη−1/2)

1

1 + θℓ(x)





≤ E
!o

[
1

1 + θℓ(Rη−1/2)

]Φη(B(o,Rη−1/2))

As η → 0, ℓ(Rη−1/2) ∼ R−αηα/2, and using the identity
(1 + x)−k ∼ 1 − kx for small x we obtain

lim
η→0

1 − Pη

ηα/2
≥ lim

η→0
E

!o[Φη(B(o, Rη−1/2))]θR−α

= lim
η→0

ηKη(Rη−1/2)θR−α

(a)

≥ C > 0,

where(a) follows from Condition B.1. Hence (16) follows.

Discussion of the conditions:
1) Let

Cη = sup
x∈R2

Kη(x + S1) .

Then from a similar argument as in the proof, it is easy
to observe that

E
!o[Φ(B(o, R))] = ληK(B(o, R)) < λη⌈πR2⌉Cη.

Condition A.1 can be expressed aslimη→0 Cη < ∞,
which implies that

E
!o[Φ(B(o, η−a)] → 0 for a < 1/2 .



So Condition A.1 implies that the average number of
points in a ball of radiusRη = η−a, a < 1/2, is zero as
the density tends to zero. This condition is violated when
the average nearest-interferer distance remains constant
with decreasing densityη. For example, consider a
clustered point process with cluster densityη and each
cluster having a fixed number of points on average. In
this case, Condition A.1 is violated asη → 0.

2) ληKη(Rη−1/2) is equal to the average number of points
in a ball of radiusRη−1/2 and hence condition B.1
requires the number of points inside a ball of radius
Rη−1/2 to be greater than zero. By the sphere-packing
argument, in any stationary point process of density
λ, the probability that the nearest neighbor is within

a distance
√

2/
√

3λ−1/2 is greater than zero. In other
words, the probability of the event that all the nearest
neighbors are further away than1.075η−1/2 is zero.
HenceηKη(Rη−1/2) > 0, whereR =

√
2√
3
. But this

does not strictly satisfy Condition B.1 which requires
the limit to be greater than zero. Except for patholog-
ical cases, this condition is generally valid since the
nearest-neighbor distance scales likeΘ(η−1/2) when
the point process is of densityηλ. So, while Condition
A.1 requires the nearest interferer distance to increase
with decreasingη, Condition B.1 requires an interferer
to be present at a distanceΘ(η−1/2). Essentially any
MAC which schedules the nearest interferer only at an
average distance that scales withη−1/2 satisfies these
two conditions, and in this case,1 ≤ κ ≤ α/2.

3) Indeed, if Condition A.1 is violated,

lim
η→0

ηKη(R) > 0 for someR > 0,

and it follows that

lim
η→0

Pη < 1.

Based on this discussion, we can define the class ofreasonable
MAC schemes:

Definition 1. A reasonableMAC scheme is a MAC scheme for
which Conditions A.1 and B.1 hold.

Theorem 1 implies that for all reasonable MAC schemes,
1 ≤ κ ≤ α/2. A MAC scheme for whichlimη→0 Pη < 1
would clearly be unreasonable—it would defeat the purpose
of achieving high reliability as the density of interferersis
decreased.

B. Achieving the boundary pointsκ = 1 and κ = α/2

In this section, we provide exact conditions on the MAC
protocols which achieve the boundary pointsκ = 1 and
κ = α/2. ALOHA is a simple MAC protocol, and its fully
distributed nature makes it very appealing. As shown before, a
Poisson distribution of transmitters with ALOHA as the MAC
protocol results inκ = 1. In a stationary point process of
density λ, the average nearest-neighbor distance scales like
1/

√
λ. Using ALOHA with parameterη results in a thinning

of Φ, the resultant process has an average nearest-neighbor
distance of1/

√
λη. Independent thinning of a point process

does not guarantee that there is no receiver within a distance
R = c/

√
λη, c < 1 as η goes to zero. If suppose there

are n points originally in the ballB(o, R), the probability
that none of the points are selected by ALOHA is(1 − η)n.
So although ALOHA with parameterη would guarantee an
average nearest-neighbor distanceη−1/2, there is a finite
probability 1 − (1 − η)n that the ballB(o, R) is not empty.
So ALOHA leads to asoft minimum distance proportional to
η−1/2, and as we state in the following theorem, results in
κ = 1 for any distribution of nodes which uses ALOHA as
MAC. The theorem is presented without proof.

Theorem 2 (ALOHA) . When ALOHA is used as the MAC
protocol with transmit probabilityη and

∫

R2

∫

R2

ρ(3)(x, y)∆(x)∆(y)dxdy < ∞, (17)

the outage probability satisfies

Pη ∼ 1 − γη, η → 0, (18)

where

γ =
1

λ

∫

R2

ρ(2)(x)∆(x)dx.

ρ(2)(x) and ρ(3)(x, y) denote the second- and third-order
product densities [10], [11], [13] of the point processΦ,
respectively.

In this theorem, we characterize the scaling law with
ALOHA as the MAC protocol in which only the average
distance to the nearest interferer scales likeη−1/2. We now
consider the MAC protocols in which the nearest interferer
distance scales likeη−1/2 a.s. For example, a TDMA scheme
in which the distance between the nearest transmitters scale
like η−1/2 falls into this category. In Fig. 1, TDMA on a
lattice network is illustrated. An alternative version of TDMA
is illustrated in Fig. 2. From Fig. 1, we also observe that
ρ
(2)
η (x/

√
η) = 0 for x < 1, while this is not the case in

the modified TDMA scheme in Fig. 2. More precisely, it is
easy to observe that theminimum distance criterion

lim
η→0

∫ ∞

0

η−2ρ(2)
η (rη−1/2)r1−αdr < ∞ (19)

holds in the TDMA scheme illustrated in Fig. 1 but not in the
alternativeunreasonableTDMA version in Fig. 2. We require
the multiplying factorη−2 in front of the second-order product
density sinceρ(2)

η (x) scales likeη2. In the first TDMA we also
observe that the resulting transmitter process is self-similar if
the spatial axes are scaled byη−1/2. It can be proven that for
all MAC schemes that satisfy (19) and a few more constraints,
κ = α/2.

In the reasonable TDMA case shown in Fig. 1, tight bounds
on the success probability can be derived following the pro-
cedure in [6]:

e−γTDMA/mα

/ Pη /
1

1 + γTDMA/mα
, (20)
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Fig. 1. ReasonableTDMA on a two-dimensional latticeZ2 for η = 1/9 and
η = 1/16. In this arrangement, the nearest interferer is at distanceη−1/2 .

wherem = η−1/2 is the distance between nearest transmitters,
γTDMA = 4ζ(α/2)β(α/2)θ with ζ the Riemann zeta andβ
the Dirichlet beta functions. If follows from (20) that

P ∼ 1 − γTDMAηα/2 ,

as expected. The results in Fig. 3 show the simulation result
together with the two bounds. The plot confirms that the slope
at η = 0 is indeed 0. In this case, sinceα = 4, the success
probability is quadratically decreasing nearη = 0.

IV. CONCLUSIONS

In this paper we provide asymptotics of the outage probabil-
ity in the high SIR regime for essentially all MAC protocols.
The asymptotic results are of the formPη ∼ 1− γηκ, η → 0,
whereη is the fraction of nodes selected to transmit by the
MAC. The two parametersκ andγ are related to the network
and to the MAC:γ the intrinsic spatial contentionof the
network andκ the interference scaling exponentthat quantifies
coordination levelachieved by the MAC. We studiedPη

under the signal-to-interference ratio (SIR) model, Rayleigh
fading and power law path loss, explaining how the parameters
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Fig. 2. UnreasonableTDMA on a two-dimensional latticeZ2 for η =

1/9 and η = 1/16. In this case, the nearest interferer is at distance1 —
irrespective ofη.
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Fig. 3. Success probability as a function of the transmitterdensity η for
reasonableTDMA on a two-dimensional lattice forα = 4. Simulation results
and the bounds are shown.



depends on models parameters in use. We prove that any
reasonableMAC protocol results inκ ∈ [1, α/2], where
α is the path-loss exponent. For ALOHA, we show that
Pη ∼ 1− γη, i.e., κ = 1, for all motion-invariant networks. If
the MAC protocol is such that the nearest interferer distance
scales likeη−1/2, the exponentκ = α/2, a value achieved by
using TDMA or CSMA.
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