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Abstract—In wireless channels, the path loss exponent (PLE) define a spatial point process that incorporates both. k thi
has a strong impact on the quality of the links, and hence, it paper, we consider a large planar wireless network where
needs_ to be _accurately estlmate_d for the efficient design and nodes are arranged as a Poisson point process and present thr
operation of wireless networks. This paper addresses the pblem distributed alaorithms t tel timate the chas BeIE
of PLE estimation in large wireless networks, which is releantto Istributed algorithms o_accura_e yes |ma ethec
several important issues in communications such as locatiion, N the presence of fading, noise and interference. We also

energy-efficient routing, and channel access. We considerlarge  provide simulation results to illustrate the performanté¢he
ad hoc network where nodes are distributed as a homogeneous a|gorithms and study the estimation error.

planar Poisson point process and the channels are subject to

Nakagami-m fading. Under these settings, we propose and study B. Related Work

three distributed algorithms for estimating the PLE at eachnode, P—_ . . .
which explicitly takg into account the inte?ference in the retwork. In most of the prior I'teratwe On PLE estimation aIgonthms_
Additionally, we provide simulation results to demonstrae the authors have assumed a simplified channel model consisting
performance of the algorithms and quantify the estimation erors.  only of a large-scale path loss component and a shadowing
counterpart, and therefore, their methods have focusedlynai
on RSS-based localization techniques. We are however not

A. Motivation aware of any related work that has considered fading, and

In wireless networks, the path loss over a link is commonfj#ost importantly, interference in the system model.
modeled by the product of a distance Component (Common|yEStimati0n based on a known internode distance probablllty
known as large-scale path loss) and a small-scale fadmigtribution is discussed in [2]. The authors assume that th
component [1]. The large-scale path loss model assumes figtance distribution between two neighboring nodasd; is
the received signal strength attenuates with the transmittknown or can be determined easily. With the transmit power
receiver distancel asd”, where~ is the path loss exponentat nodei equal to Fy[dBm] (assume this is a constant for
(PLE) of the channel. Fading represents the deviation of tA# nodes), the RSS at nodeis modeled by a log-normal
signal strength from the power-law decay. While the largélistribution as
§ca|e path loss part is assumed_ to be determ_inistlic,. faqiing Py;[dBm] ~ N(Py;[dBm], o2),
is often modeled as a stochastic process. This distinction, .
however, does not hold in scenarios where the nodes thenhere o denotes the log-normal spread amt;[dBm] =
selves are randomly arranged, and thus the precise distanBddBm] — 10vlog,, di;. Now, if the neighbor’s distance
between them are subject to uncertainty. A critical requeet  distribution is given bypr(r), then
for the efficient design and operation of such networks is = _
characterizing the large-scale behavior of the channel and Pij = PoEr [R V]' @)
accurately estimating the PLE, amidst the uncertainty & tiThe value ofy is estimated by equating;; to the empirical
locations of the nodes. mean value of the received powers taken over several node
This problem is non-trivial even for a single link due to thgairs: and .
existence of multipath propagation and thermal noise.&gel If the nearest neighbor distribution is in a complicatedhfor
ad hoc networks with multiple transmitter-receiver pattee that is not integrable, an idea similar to the quantile-di@n
problem is further complicated due to the following reasonplot can be used [2]. For cases where it might not be possible
First, the achievable performance of a typical ad hoc or@menso obtain the neighbor distance distribution, the idea @i es
network is not only susceptible to noise and fading, but alsnating~ using the concept of the Cayley-Menger determinant
interference-limited due to the presence of simultane@rst or the pattern matching technique [2] is useful.
mitters. Dealing with fading and interference simultarggu  In [3], the authors consider a network where the path loss
is a major challenge in the estimation problem. Moreover, etween a few low-cost sensors is measured and stored for
view of the distance uncertainties, we will need to considéuture use. They propose an algorithm that employs interpol
the small-scale fading and distance ambiguities jointly,, i tion techniques to estimate the path loss between a sendor an

I. INTRODUCTION



any arbitrary point in the network. In [4], a PLE estimatomterference ratio (SINR) ay is larger than a threshol®.
based on the method of least squares is discussed and wdathematically speaking, an outage occurs if and only if
in the design of an efficient handover algorithm. However,

: . T : Gayllz —y|| 77
as described earlier, the situation is completely diffevemen Ny||;7—1/|| <0, 3)
interference and fading are considered and we cannot use the 0+ Lo} (v)
purely RSS-based estimators. where s (1 (y) denotes the interference in the networkyat

due to all the transmitters, except the desired one. at
Il. SYSTEM MODEL

. e IIl. PATH LOSSEXPONENTESTIMATION
We consider an infinite ad hoc network &3, where nodes

are distributed as a homogeneous Poisson point procesy (PPPhIS section describes three completely distributed algo-
® of density)\. Accordingly, the number of points lying in afithms for. PLE estimation, eaph ba§ed on a certain network
compact sef3, denoted byd(B), is Poisson-distributed with c_haractenstlc, anq prowde_s simulation results on thenest

meanivy(B), wherews () is the two-dimensional Lebesguellon €rrors. The first algorithm uses the mean v_alu_e of the
measure (area). Also, the number of points in disjoint seds dnterference and assumes that the network density is known
independent random variables. beforehand. Algorithms 2 and 3 are based on outage proba-

The attenuation in the channel is modeled as the producti¥jties and the network’s connectivity properties respety,
the large-scale path loss with exponentnd a flat block- and do not require knowledge of the densitgr the Nakagami

fading component. To obtain a concrete set of results, tRgrametem. _ _

fading amplitudeH is taken to be Nakagamis distributed. ~ 1he PLE estimation problem is essentially tackled by
Letting . = 1 results in the well-known case of Rayleighequat'”g the empirically (observed) measured values of the
fading, while lower and higher values af signify stronger aforementioned network characteristics to the theorgtica
and weaker fading scenarios respectively. The case of fgfablished ones to obtain In each time slot, nodes either

fading is modeled by setting: — oo. When dealing with transmit (w.pp) or listen to record measurements (Wip- p).

received signal powers, we use the power fading variagfPon obtaining the required measurement values over devera

denoted by = H2. SinceG captures the random deviationtime slots, the estimation process can be performed at each
from the large-scale path losE:[G] = 1. The moments of node in the network in a distributed fashion.

G are [5, Eqn. 17] Thg simulation result_s are _obtained_ using MATLAB. Th_e
PPP is generated by distributing a Poisson number of points
Ec[G"] = L(m+n) c R+ @) uniformly randomly in a50 x 50 square with densityl. To
¢ mnT'(m)’ ' avoid border effects, we use the measurements recorded at th

d th . i82.(C) — 1 We take th ise 10 b node lying closest to the center of the network. To analyze
2\r/IVGNe \(f\hrlance I ZN_ /m. We take the noise to €the mean error performance of the algorithms, we consider
Wwith mean powet¥o. the estimates resulting frors0, 000 different realizations of

Since _th_e .PLI.E es_ti_mation is usually performed during_le PPP. The contention probability is taken topbe 0.05 in
network initialization, it is reasonable to assume thattthas- egch cage and N, = —25 dBm.

missions in the system during this phase are uncoordinate
Therefore, we take the channel access scheme to be ALOHA. Algorithm 1: Estimation Using the Mean Interference

We denote the ALOHA contention probability by a constant |, many situations, the network density is a design param-

p meaning that nodes independently decide to transmit Witer and known. In other cases, it is possible to estimate the

probability p or stay idle with probabilityl — p in any gensity (see [6, Sec. 2.7] and the references therein favagu

time slot. Consequently, the set of transmitters at any givesj the estimation methods for a PPP). A simple technique to
; . . )

moment forms a PPR’ of density Ap. Also, since there is jyter the PLE+ when the nodal density is known is based on

no information available for power control, we assume thiat 3ha mean interference in the network.

the transmit powers are equal to unity. Then, the interfezen According to this method, nodes simply need to record the

at nodey is given by strength of the received power that they observe and use it
_ to estimatey. For v > 2 (a fair assumption in a wireless
Ly) = Y Goyllz—yl ™, 7. Fory > 2 P

. scenario), the mean interference is theoretically equérijto
z

2—
whereG., is the fading gain of the channel affid || denotes pr = Ch = 2nAp=2 ! (4)
the Euclidean distance. =2

We define the communication from the transmittercelb  whereA is the near-field radius of the antenna. Consequently,
the receiver aty to be successful if the signal-to-noise anthe mean received power is; = 17+ Np, and is independent

of m.
1The beginning and ending times of a slot is based on the ihainode’s
clock cycle. Thus, time slots across different nodes ne¢dara in general, 2This value ofp was found to be suitable to obtain several quasi-different
will not) be synchronized. We will only assume that the dioratbf the slots realizations of the PP®’ and helped obtain accurate estimates in a reasonable
are the same. number of time slots.




The algorithm based on the mean interference matches tieerec; = exp(—Ny©) and
sample and theoretic values of the mean received power and
is described as follows.

o Record the strengths of the received powRis. .., Ry

T (m)m2/~
at any arbitrarily chosen node duriny time slots. . .
y y S . To estimatey, the nodes are required to measure the SINR
Eventually, the empirical mean received power

lues during several time slots and use it to compute the em-
1/N) % 'R, converges. val " : .
(1/N) 2 iy B g Egcal success probability, which matches the theorktigue

¢o = AprE[G2/T <1 B %) _ Aprl’ (m + %) r (1 — %)

o Equating the observed mean value to the theoretical val AT . )
q 9 . However, note that it is impractical to place transenit

of ug, v can be estimated by using a look-up table an . :
the known values of, No, A, and estimated (or known) or each receiver node where a SINR measurement is taken.
Instead, nodes can can simply measure the received powers,

density \. . . \
Fig. 1 depicts the mean squared error (MSE) values of t gd compute the (virtual) SINRs taking the signal powers to

estimated PLES using the above algorithm for different Te independent realizations of an exponential randombfaria

. : his algorithm is implemented at each node as follows.
and N values. The estimates are seen to be fairly accurate i
over a wide range of PLE values. o Record the values of the received pow@&s ..., Ry at

the node duringV time slots. Take the signal powers
A=1,p=005m=1N,=-25dBm, A =1 Si, 1 < i < N, to be N independent realizations of

024 ‘ ‘ an exponential random variable with unit mean. Using
the valuesS;/R; Vi, a histogram of the observed SINR
values is obtained.

o Evaluate the empirical success probabilities
at two different thresholds, i.e., compute
ps,; = (1/N) vazll{si/Rp@j}, j = 1,2. Eventually,
the success probability values converge.

o Assuming that the empirically observed values match the
theoretical values, we have from (5),

Relative MSE
o
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Number of time slots N which is independent of both and m.

Fig. 2 plots the MSE ofy for ©; = 10 dB and®; = 0
Fig. 1. MSE of4 versus the number of time slots for different PLE valuesdB for differenty and N values. We observe that the error is
for the estimation method based on the mean interference efiior is small  small when the PLE is small, but increases with |arger values
when the path loss exponent is small. of ~. Also, Fig. 3 plots the MSE of versusm at various PLE
values for the estimation method based on outage prohesilit
B. Algorithm 2: Estimation Based on Virtual Outage Proba- We observe that the algorithm performs more accurately at
bilities lower values ofm. We provide an intuitive explanation for

We now describe an estimation method based on outatgt;“eS behavior in ll-D.

probabilities that does not require the knowledge of the. Algorithm 3: Estimation Based on the Cardinality of the
network density or the Nakagami fading parameter. We firsiansmitting Set

overview some theoretical results and then present a padcti
scheme to estimate.

In [8], it is shown that when the signal power is exponenti
distributed, the success probabilify, across any link in
the Poisson network is equal to the product of the Lapla
transforms of noise and interference. In particular, whan t
transceiver pair separation is uriityve have [7]

When the network densityx and the Nakagami parameter
n are unknown, the PLE can be also be accurately estimated
Pased on the connectivity properties of the network. In this
subsection, we derive the average number of nodes that are
€Bnnected to any arbitrary node in the network, and describe
a PLE estimation algorithm based on our analysis.

For any node, define ittransmitting set as the group of

ps = 1 exp(—c202/7), (5) transmitting nodes whom it receives a packet from, in a given

3 _ o _ time slot. More formally, for receivey, transmitter node: is

When the transmitter node is unit distance away from theiveceode, . . s if th d.i he SINR
the PLE will not affect the received power strength. Thisecasparticularly n ItS. transmitting Seny it _ey are connected, 1.e., t e
helpful for implementation of the PLE estimation algorithm at y is greater than a certain threshahl Note that this set
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to ©2/7.
Proof: The pdf of the the Nakagami: power fading
variable is given by [5]
pa(z) = %xmfl exp(—mz), m>1/2. )
For Ny < I, the success probability for a transceiver pair at
an arbitrary distancé units apart can be expressed as

ps(R) = E;[Pr(GR™" >10 |I)]
oo mm
= E / — 2™ Lexp(—ma)dz
! { rer+ I'(m) ( )

1 o y
- W/o I'(m, zORYm)p;(x)dz, (8)

whereT(-,-) is the upper incomplete gamma functioand
pr(z) denotes the pdf of the interference.

The expressions can be further simplified whenis an
integer. Form € N, we have

m—1
1 oo
— Ym)k — Y
Fig. 2. MSE of4 versus the number of time slots for the estimation methoES(R) @ Z k! /0 (zOFTm)" exp(~2O R m) Py (w)dx
k=0

based on virtual outage probabilities.

A=1,p=0.05, Ny =-25 dBm, 0,=10 dB, 9,=0 dB, N = 2000
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Fig. 3. MSE of4 versus the Nakagami parameter for different PLE

m—1 - v k gk
o 3 COE o, (@
k=0
where M;(s) is the moment generating function (MGF) bf
Here, (a) is obtained from the series expansion of the upper
incomplete gamma function an@) using the definition of
the MGF. When the node distribution is Poisson, we have the

following closed-form expression for the MGF [7, Eqgn. 20]:
Mi(s) = exp(—AprEa[G¥70(1 - 2/7)s7), ~ > 2.

Using this, we get
m—1 2\ k k
po(B) = exp( ey i) 3 () (3) . meN (10)
= k! ¥

wherecz = \prEq (G (1 — 2/7)(0Om)*/7 = com?/7,

Now, we consider a receiver node O, shift it to the origin and
analyze the transmitting set for this “typical’ node. Calesia
disc of radiuse centered at the origin. Lef’ denote the event
that an arbitrarily chosen transmitter inside this dismi€i's
transmitting set. Since the nodes in the disc are uniformly
randomly distributed, we have

values, for the estimation method based on virtual outagbagtilities. Pr(E) - ER[ S(R) | R]

2 [ exp(—c3r?)r?k [ 2c3
changes from time slot to time slot. Also note that &¢> 1, 1=l ron NF e o (—csr?)
the cardinality of the transmitting set can at most be ond, an = = Z (—3> / pTgr%%dr
that transmitter is the one with the best channel to the vecei @ = N 0 ’
The estimation algorithm is based on matching the thealetic 1 1

and empirical values of the mean number of elements in the @

transmitting set. The following proposition forms the Isasf
this estimation scheme.

Proposition 3.1: Under the conditions of Nakagami-fad-
ing for m € N and Ny < I, for any arbitrary node, the
mean cardinality of the transmitting se¥, is proportional

m— k 1 c3a2 B
— t —t)dt
a2cs > k! /0 exp(=1)

4Mathematica: Gammala,z]



where(a) is obtained by a simple change of variableg¢ = A=1,p=005m=1N,=-25dBm, O, =10d8,©,=0dB

t) and (b) using the definition of the incomplete gamm ‘
function.
_ -B-y=2.
Thus, N7 = c4, where 0.2 _9_1:25
—A-y=3
¢g = lim N,Pr(E) .9.1:4315
a—00 . 0. +y24_5
(@) Aﬂmzl(g)k_ Aﬂﬁ 7 |
- a2 \y cs  1— % % 0.18 c
ron (1 (2)) %
(b) il . (11) 0.16 A
= I(m+2)r2-2)e2 r
Here, (a) is obtained using the fact théitm, .., I'(a,z) = 0.14
I'(a) and (b) using the definition ot; and (2). [ |
From (11), we see tha¥; is inversely proportional t&>/7. ‘ ‘ ‘ ‘ ‘ ‘ ‘

Therefore, whemn is a positive integer, the ratio of the mear 01200200 400 600 800 1000 1200 1400 1600 1800 2000
cardinalities of the transmitting set at two different vesuof Number of time slots N
© is independent ofn. This forms the main idea behind the

estimation algorithm, and we surmise that this behaviod$iolFig. 4. MSE of4 versus the number of time slots for different PLE values,
at arbitrarym e R+, Loert the estimation method based on the mean cardinality eftdmsmitting
For the rest of the subsection, we assume that the system

is interference-limited, i.e]Ng < I. The algorithm based on

the cardinality of the transmitting set works as follows. A=1,p=005 N, =-25dBm, © =10dB, ©,=0dB, N = 2000
« For a known threshold valu®; > 1, set Ny (i) = 1 04
at time sloti, 1 < i < N, if the node can decode zvf§-5
a packet andNr(:) = 0 otherwise. Eventually, the 0351 *5;3_5
empirical mean observed at any node over several tir —9-y=4
slots, Ny ; = (l/N)Zf;l Nr.1(i) converges. 03f —B-y=45

« Likewise, evaluateNro = (1/N)SN, Nro(i) for
another threshold valu€), > 1.

« Equating the mean cardinalities of the transmitting set fi
the two different threshold values, we obtain

Nr1/Nrs= (92/91)2/7 .
« Following this,~ is estimated as
4= (2In(02/01)) / In(N7,1/N1y2). (12)

Thus, this algorithm does not require the knowledge ¢ 0.0 : = =
either \ or m. ' Nakagami parameter m

Fig. 4 plots the empirical MSE of for algorithm 3 versus
the number of time slot&/ for various PLE values, while Fig. rig. 5. MSE of4 versus the Nakagami parameter for the estimation
5 shows the MSE ofy versusm. Again, we see that the MSE algorithm based on the mean cardinality of the transmittiag
is low at lower values ofr and increases withn.

o
N
a

Relative MSE
o
N

0.15r

D. Discussion

The issue of PLE estimation is a challenging problenslots for each of the algorithms. For time slots of the order o
yet needs to be accurately performed for the efficient desigﬂlliseconds, it takes only a few seconds to estimate the PLE
and operation of wireless networks. We have proposed thigepractice.
algorithms for this purpose that are fully distributed aad be There is a caveat though, that we wish to address here. Re-
employed at each node in the network. Furthermore, they dall that each of the estimation algorithms works by equgatin
not require any information on the locations of other nogles empirically measured values of certain network charasties
the network or the Nakagami parameter Simulation results with their corresponding theoretical values. While in theo
validate that the estimates are quite accurate over a largger we usually assume that we have access to a large number
of the system parameters and m. Also, the convergence of independent network realizations and derive resultsafor
of the MSE is seen to occur occur within abd@00 time “average network”, the problem in practice is that we have



only a single realization of the node distribution at haniug,
even though the set of transmitters and the fading component
of the channel change independently in different slotsntioke
locations remain the same. Thus, in general, the estimates
are biased. We remark that the bias (and the MSE) can be
significantly lowered if the nodes that record measurements
have access to several independent realizations of the PPP.
This also intuitively explains the fact that for Algorithr2s
and 3, the MSE decreases with decreasingindeed, from
(2), the variance ofy is given by1 + 1/m, which increases
with decreasingn. Considering the fading and link distance
ambiguities jointly, a lower value aof: is equivalent to having
greater randomness in the location of the nodes (upon taking
the fading component to be a constant). Thus, the nodes are
able to see several diverse realizations of the process over
different time slots, and can estimate the PLE more acdyrate

IV. SUMMARY

We are the first ones to address the PLE estimation problem
in large wireless networks in the presence of node location
uncertainties, m-Nakagami fading and most importantkgrin
ference. We assume that nodes are arranged as a homogeneous
PPP on the plane and the channel access scheme is slotted
ALOHA (at least during the PLE estimation phase). Under
these settings, we present three distributed algorithmBIlf&
estimation, and provide simulation results to demonsttade
performances. This work is easily extensible to one- orethre
dimensional networks as well.
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