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Abstract—In wireless channels, the path loss exponent (PLE)
has a strong impact on the quality of the links, and hence, it
needs to be accurately estimated for the efficient design and
operation of wireless networks. This paper addresses the problem
of PLE estimation in large wireless networks, which is relevant to
several important issues in communications such as localization,
energy-efficient routing, and channel access. We consider alarge
ad hoc network where nodes are distributed as a homogeneous
planar Poisson point process and the channels are subject to
Nakagami-m fading. Under these settings, we propose and study
three distributed algorithms for estimating the PLE at eachnode,
which explicitly take into account the interference in the network.
Additionally, we provide simulation results to demonstrate the
performance of the algorithms and quantify the estimation errors.

I. I NTRODUCTION

A. Motivation

In wireless networks, the path loss over a link is commonly
modeled by the product of a distance component (commonly
known as large-scale path loss) and a small-scale fading
component [1]. The large-scale path loss model assumes that
the received signal strength attenuates with the transmitter-
receiver distanced as dγ , whereγ is the path loss exponent
(PLE) of the channel. Fading represents the deviation of the
signal strength from the power-law decay. While the large-
scale path loss part is assumed to be deterministic, fading
is often modeled as a stochastic process. This distinction,
however, does not hold in scenarios where the nodes them-
selves are randomly arranged, and thus the precise distances
between them are subject to uncertainty. A critical requirement
for the efficient design and operation of such networks is
characterizing the large-scale behavior of the channel and
accurately estimating the PLE, amidst the uncertainty in the
locations of the nodes.

This problem is non-trivial even for a single link due to the
existence of multipath propagation and thermal noise. For large
ad hoc networks with multiple transmitter-receiver pairs,the
problem is further complicated due to the following reasons:
First, the achievable performance of a typical ad hoc or sensor
network is not only susceptible to noise and fading, but also
interference-limited due to the presence of simultaneous trans-
mitters. Dealing with fading and interference simultaneously
is a major challenge in the estimation problem. Moreover, in
view of the distance uncertainties, we will need to consider
the small-scale fading and distance ambiguities jointly, i.e.,

define a spatial point process that incorporates both. In this
paper, we consider a large planar wireless network where
nodes are arranged as a Poisson point process and present three
distributed algorithms to accurately estimate the channel’s PLE
in the presence of fading, noise and interference. We also
provide simulation results to illustrate the performance of the
algorithms and study the estimation error.

B. Related Work

In most of the prior literature on PLE estimation algorithms,
authors have assumed a simplified channel model consisting
only of a large-scale path loss component and a shadowing
counterpart, and therefore, their methods have focused mainly
on RSS-based localization techniques. We are however not
aware of any related work that has considered fading, and
most importantly, interference in the system model.

Estimation based on a known internode distance probability
distribution is discussed in [2]. The authors assume that the
distance distribution between two neighboring nodesi andj is
known or can be determined easily. With the transmit power
at nodei equal toP0[dBm] (assume this is a constant for
all nodes), the RSS at nodej is modeled by a log-normal
distribution as

Pij [dBm] ∼ N (P ij [dBm], σ2
dB),

where σ denotes the log-normal spread andP ij [dBm] =
P0[dBm] − 10γ log10 dij . Now, if the neighbor’s distance
distribution is given bypR(r), then

P ij = P0ER

[

R−γ
]

. (1)

The value ofγ is estimated by equatingP ij to the empirical
mean value of the received powers taken over several node
pairs i andj.
If the nearest neighbor distribution is in a complicated form
that is not integrable, an idea similar to the quantile-quantile
plot can be used [2]. For cases where it might not be possible
to obtain the neighbor distance distribution, the idea of esti-
matingγ using the concept of the Cayley-Menger determinant
or the pattern matching technique [2] is useful.

In [3], the authors consider a network where the path loss
between a few low-cost sensors is measured and stored for
future use. They propose an algorithm that employs interpola-
tion techniques to estimate the path loss between a sensor and



any arbitrary point in the network. In [4], a PLE estimator
based on the method of least squares is discussed and used
in the design of an efficient handover algorithm. However,
as described earlier, the situation is completely different when
interference and fading are considered and we cannot use these
purely RSS-based estimators.

II. SYSTEM MODEL

We consider an infinite ad hoc network onR
2, where nodes

are distributed as a homogeneous Poisson point process (PPP)
Φ of densityλ. Accordingly, the number of points lying in a
compact setB, denoted byΦ(B), is Poisson-distributed with
meanλν2(B), whereν2(·) is the two-dimensional Lebesgue
measure (area). Also, the number of points in disjoint sets are
independent random variables.

The attenuation in the channel is modeled as the product of
the large-scale path loss with exponentγ and a flat block-
fading component. To obtain a concrete set of results, the
fading amplitudeH is taken to be Nakagami-m distributed.
Letting m = 1 results in the well-known case of Rayleigh
fading, while lower and higher values ofm signify stronger
and weaker fading scenarios respectively. The case of no
fading is modeled by settingm → ∞. When dealing with
received signal powers, we use the power fading variable
denoted byG = H2. SinceG captures the random deviation
from the large-scale path loss,EG[G] = 1. The moments of
G are [5, Eqn. 17]

EG[Gn] =
Γ(m + n)

mnΓ(m)
, n ∈ R

+. (2)

and the variance isσ2
G(G) = 1/m. We take the noise to be

AWGN with mean powerN0.
Since the PLE estimation is usually performed during

network initialization, it is reasonable to assume that thetrans-
missions in the system during this phase are uncoordinated.
Therefore, we take the channel access scheme to be ALOHA.
We denote the ALOHA contention probability by a constant
p meaning that nodes independently decide to transmit with
probability p or stay idle with probability1 − p in any
time slot1. Consequently, the set of transmitters at any given
moment forms a PPPΦ′ of densityλp. Also, since there is
no information available for power control, we assume that all
the transmit powers are equal to unity. Then, the interference
at nodey is given by

IΦ(y) =
∑

z∈Φ′

Gzy‖z − y‖−γ,

whereGzy is the fading gain of the channel and‖ · ‖ denotes
the Euclidean distance.

We define the communication from the transmitter atx to
the receiver aty to be successful if the signal-to-noise and

1The beginning and ending times of a slot is based on the individual node’s
clock cycle. Thus, time slots across different nodes need not (and in general,
will not) be synchronized. We will only assume that the duration of the slots
are the same.

interference ratio (SINR) aty is larger than a thresholdΘ.
Mathematically speaking, an outage occurs if and only if

Gxy‖x − y‖−γ

N0 + IΦ′\{x}(y)
≤ Θ, (3)

whereIΦ′\{x}(y) denotes the interference in the network aty
due to all the transmitters, except the desired one atx.

III. PATH LOSSEXPONENT ESTIMATION

This section describes three completely distributed algo-
rithms for PLE estimation, each based on a certain network
characteristic, and provides simulation results on the estima-
tion errors. The first algorithm uses the mean value of the
interference and assumes that the network density is known
beforehand. Algorithms 2 and 3 are based on outage proba-
bilities and the network’s connectivity properties respectively,
and do not require knowledge of the densityλ or the Nakagami
parameterm.

The PLE estimation problem is essentially tackled by
equating the empirically (observed) measured values of the
aforementioned network characteristics to the theoretically
established ones to obtain̂γ. In each time slot, nodes either
transmit (w.p.p) or listen to record measurements (w.p.1−p).
Upon obtaining the required measurement values over several
time slots, the estimation process can be performed at each
node in the network in a distributed fashion.

The simulation results are obtained using MATLAB. The
PPP is generated by distributing a Poisson number of points
uniformly randomly in a50 × 50 square with density1. To
avoid border effects, we use the measurements recorded at the
node lying closest to the center of the network. To analyze
the mean error performance of the algorithms, we consider
the estimates resulting from50, 000 different realizations of
the PPP. The contention probability is taken to bep = 0.05 in
each case2, andN0 = −25 dBm.

A. Algorithm 1: Estimation Using the Mean Interference

In many situations, the network density is a design param-
eter and known. In other cases, it is possible to estimate the
density (see [6, Sec. 2.7] and the references therein for a survey
of the estimation methods for a PPP). A simple technique to
infer the PLEγ when the nodal density is known is based on
the mean interference in the network.

According to this method, nodes simply need to record the
strength of the received power that they observe and use it
to estimateγ. For γ > 2 (a fair assumption in a wireless
scenario), the mean interference is theoretically equal to[7]

µI = C1 = 2πλp
A2−γ

0

γ − 2
, (4)

whereA0 is the near-field radius of the antenna. Consequently,
the mean received power isµR = µI +N0, and is independent
of m.

2This value ofp was found to be suitable to obtain several quasi-different
realizations of the PPPΦ′ and helped obtain accurate estimates in a reasonable
number of time slots.



The algorithm based on the mean interference matches the
sample and theoretic values of the mean received power and
is described as follows.

• Record the strengths of the received powersR1, . . . , RN

at any arbitrarily chosen node duringN time slots.
Eventually, the empirical mean received power
(1/N)

∑N
i=1 Ri converges.

• Equating the observed mean value to the theoretical value
of µR, γ can be estimated by using a look-up table and
the known values ofp, N0, A0 and estimated (or known)
densityλ̂.

Fig. 1 depicts the mean squared error (MSE) values of the
estimated PLÊγ using the above algorithm for differentγ
and N values. The estimates are seen to be fairly accurate
over a wide range of PLE values.
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Fig. 1. MSE ofγ̂ versus the number of time slots for different PLE values,
for the estimation method based on the mean interference. The error is small
when the path loss exponent is small.

B. Algorithm 2: Estimation Based on Virtual Outage Proba-
bilities

We now describe an estimation method based on outage
probabilities that does not require the knowledge of the
network density or the Nakagami fading parameter. We first
overview some theoretical results and then present a practical
scheme to estimateγ.

In [8], it is shown that when the signal power is exponential
distributed, the success probabilityps across any link in
the Poisson network is equal to the product of the Laplace
transforms of noise and interference. In particular, when the
transceiver pair separation is unity3, we have [7]

ps = c1 exp(−c2Θ
2/γ), (5)

3When the transmitter node is unit distance away from the receiver node,
the PLE will not affect the received power strength. This case is particularly
helpful for implementation of the PLE estimation algorithm.

wherec1 = exp(−N0Θ) and

c2 = λpπE[G2/γ ]Γ

(

1 −
2

γ

)

=
λpπΓ

(

m + 2
γ

)

Γ
(

1 − 2
γ

)

Γ(m)m2/γ
.

To estimateγ, the nodes are required to measure the SINR
values during several time slots and use it to compute the em-
pirical success probability, which matches the theoretical value
(5). However, note that it is impractical to place transmitters
for each receiver node where a SINR measurement is taken.
Instead, nodes can can simply measure the received powers,
and compute the (virtual) SINRs taking the signal powers to
be independent realizations of an exponential random variable.
This algorithm is implemented at each node as follows.

• Record the values of the received powersR1, . . . , RN at
the node duringN time slots. Take the signal powers
Si, 1 ≤ i ≤ N , to be N independent realizations of
an exponential random variable with unit mean. Using
the valuesSi/Ri ∀i, a histogram of the observed SINR
values is obtained.

• Evaluate the empirical success probabilities
at two different thresholds, i.e., compute
ps,j = (1/N)

∑N
i=1 1{Si/Ri>Θj}, j = 1, 2. Eventually,

the success probability values converge.
• Assuming that the empirically observed values match the

theoretical values, we have from (5),

ln ps,1 + N0Θ1

ln ps,2 + N0Θ2
=

(

Θ1

Θ2

)2/γ

.

An estimate ofγ is obtained as

γ̂ =
2 ln(Θ1/Θ2)

ln ((ln ps,1 + N0Θ2) / (ln ps,2 + N0Θ2))
, (6)

which is independent of bothλ andm.

Fig. 2 plots the MSE of̂γ for Θ1 = 10 dB andΘ2 = 0
dB for differentγ andN values. We observe that the error is
small when the PLE is small, but increases with larger values
of γ. Also, Fig. 3 plots the MSE of̂γ versusm at various PLE
values for the estimation method based on outage probabilities.
We observe that the algorithm performs more accurately at
lower values ofm. We provide an intuitive explanation for
this behavior in III-D.

C. Algorithm 3: Estimation Based on the Cardinality of the
Transmitting Set

When the network densityλ and the Nakagami parameter
m are unknown, the PLE can be also be accurately estimated
based on the connectivity properties of the network. In this
subsection, we derive the average number of nodes that are
connected to any arbitrary node in the network, and describe
a PLE estimation algorithm based on our analysis.

For any node, define itstransmitting set as the group of
transmitting nodes whom it receives a packet from, in a given
time slot. More formally, for receivery, transmitter nodex is
in its transmitting set,Ty if they are connected, i.e., the SINR
at y is greater than a certain thresholdΘ. Note that this set
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Fig. 2. MSE ofγ̂ versus the number of time slots for the estimation method
based on virtual outage probabilities.
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Fig. 3. MSE of γ̂ versus the Nakagami parameterm for different PLE
values, for the estimation method based on virtual outage probabilities.

changes from time slot to time slot. Also note that forΘ ≥ 1,
the cardinality of the transmitting set can at most be one, and
that transmitter is the one with the best channel to the receiver.
The estimation algorithm is based on matching the theoretical
and empirical values of the mean number of elements in the
transmitting set. The following proposition forms the basis of
this estimation scheme.

Proposition 3.1: Under the conditions of Nakagami-m fad-
ing for m ∈ N and N0 ≪ I, for any arbitrary node, the
mean cardinality of the transmitting set,̄NT , is proportional

to Θ−2/γ .
Proof: The pdf of the the Nakagami-m power fading

variable is given by [5]

pG(x) =
mm

Γ(m)
xm−1 exp(−mx), m ≥ 1/2. (7)

For N0 ≪ I, the success probability for a transceiver pair at
an arbitrary distanceR units apart can be expressed as

ps(R) = EI

[

Pr(GR−γ > IΘ | I)
]

= EI

[
∫ ∞

IΘRγ

mm

Γ(m)
xm−1 exp(−mx)dx

]

=
1

Γ(m)

∫ ∞

0

Γ(m, xΘRγm)pI(x)dx, (8)

where Γ(·, ·) is the upper incomplete gamma function4 and
pI(x) denotes the pdf of the interference.

The expressions can be further simplified whenm is an
integer. Form ∈ N, we have

ps(R) (a)
=

m−1
∑

k=0

1

k!

∫ ∞

0

(xΘRγm)k exp(−xΘRγm)PI(x)dx

(b)
=

m−1
∑

k=0

(−ΘRγm)k

k!

dk

dsk
MI(s)|s=ΘRγm, (9)

whereMI(s) is the moment generating function (MGF) ofI.
Here,(a) is obtained from the series expansion of the upper
incomplete gamma function and(b) using the definition of
the MGF. When the node distribution is Poisson, we have the
following closed-form expression for the MGF [7, Eqn. 20]:

MI(s) = exp(−λpπEG[G2/γ ]Γ(1 − 2/γ)s2/γ), γ > 2.

Using this, we get

ps(R) = exp(−c3R
2)

m−1
∑

k=0

(

c3R
2
)k

k!

(

2

γ

)k

, m ∈ N (10)

wherec3 = λpπEG(G2/γ)Γ(1 − 2/γ)(Θm)2/γ = c2m
2/γ .

Now, we consider a receiver node O, shift it to the origin and
analyze the transmitting set for this “typical” node. Consider a
disc of radiusa centered at the origin. LetE denote the event
that an arbitrarily chosen transmitter inside this disc is in O’s
transmitting set. Since the nodes in the disc are uniformly
randomly distributed, we have

Pr(E) = ER[ps(R) | R]

=
2π

πa2

∫ a

0

m−1
∑

k=0

exp(−c3r
2)r2k

k!

(

2c3

γ

)k

rdr

=
1

a2

m−1
∑

k=0

(

2c3

γ

)k ∫ a

0

exp(−c3r
2)

k!
r2k2rdr

(a)
=

1

a2c3

m−1
∑

k=0

(

2

γ

)k
1

k!

∫ c3a2

0

tk exp(−t)dt

(b)
=

1

a2c3

m−1
∑

k=0

(

2

γ

)k
1

k!

(

1 − Γ(k + 1, c3a
2)

)

,

4Mathematica: Gamma[a,z]



where(a) is obtained by a simple change of variables (c3r
2 =

t) and (b) using the definition of the incomplete gamma
function.

Thus,N̄T = c4, where

c4 = lim
a→∞

Na Pr(E)

(a)
=

λpπ

c3

m−1
∑

k=0

(

2

γ

)k

=
λpπ

c3

1 −
(

2
γ

)m

1 − 2
γ

(b)
=

Γ(m)
(

1 −
(

2
γ

)m)

Γ(m + 2
γ )Γ(2 − 2

γ )Θ2/γ
. (11)

Here, (a) is obtained using the fact thatlimz→∞ Γ(a, z) =
Γ(a) and (b) using the definition ofc3 and (2).

From (11), we see that̄NT is inversely proportional toΘ2/γ .
Therefore, whenm is a positive integer, the ratio of the mean
cardinalities of the transmitting set at two different values of
Θ is independent ofm. This forms the main idea behind the
estimation algorithm, and we surmise that this behavior holds
at arbitrarym ∈ R

+.
For the rest of the subsection, we assume that the system

is interference-limited, i.e,N0 ≪ I. The algorithm based on
the cardinality of the transmitting set works as follows.

• For a known threshold valueΘ1 ≥ 1, set NT,1(i) = 1
at time slot i, 1 ≤ i ≤ N , if the node can decode
a packet andNT,1(i) = 0 otherwise. Eventually, the
empirical mean observed at any node over several time
slots,N̄T,1 = (1/N)

∑N
i=1 NT,1(i) converges.

• Likewise, evaluateN̄T,2 = (1/N)
∑N

i=1 NT,2(i) for
another threshold value,Θ2 ≥ 1.

• Equating the mean cardinalities of the transmitting set for
the two different threshold values, we obtain

N̄T,1/N̄T,2 = (Θ2/Θ1)
2/γ .

• Following this,γ is estimated as

γ̂ = (2 ln(Θ2/Θ1)) / ln(N̄T,1/N̄T,2). (12)

Thus, this algorithm does not require the knowledge of
eitherλ or m.

Fig. 4 plots the empirical MSE of̂γ for algorithm 3 versus
the number of time slotsN for various PLE values, while Fig.
5 shows the MSE of̂γ versusm. Again, we see that the MSE
is low at lower values ofm and increases withm.

D. Discussion

The issue of PLE estimation is a challenging problem,
yet needs to be accurately performed for the efficient design
and operation of wireless networks. We have proposed three
algorithms for this purpose that are fully distributed and can be
employed at each node in the network. Furthermore, they do
not require any information on the locations of other nodes in
the network or the Nakagami parameterm. Simulation results
validate that the estimates are quite accurate over a large range
of the system parametersγ and m. Also, the convergence
of the MSE is seen to occur occur within about2000 time
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Fig. 4. MSE ofγ̂ versus the number of time slots for different PLE values,
for the estimation method based on the mean cardinality of the transmitting
set.
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Fig. 5. MSE of γ̂ versus the Nakagami parameterm for the estimation
algorithm based on the mean cardinality of the transmittingset.

slots for each of the algorithms. For time slots of the order of
milliseconds, it takes only a few seconds to estimate the PLE
in practice.

There is a caveat though, that we wish to address here. Re-
call that each of the estimation algorithms works by equating
empirically measured values of certain network characteristics
with their corresponding theoretical values. While in theory,
we usually assume that we have access to a large number
of independent network realizations and derive results foran
“average network”, the problem in practice is that we have



only a single realization of the node distribution at hand. Thus,
even though the set of transmitters and the fading component
of the channel change independently in different slots, thenode
locations remain the same. Thus, in general, the estimates
are biased. We remark that the bias (and the MSE) can be
significantly lowered if the nodes that record measurements
have access to several independent realizations of the PPP.

This also intuitively explains the fact that for Algorithms2
and 3, the MSE decreases with decreasingm. Indeed, from
(2), the variance ofG is given by1 + 1/m, which increases
with decreasingm. Considering the fading and link distance
ambiguities jointly, a lower value ofm is equivalent to having
greater randomness in the location of the nodes (upon taking
the fading component to be a constant). Thus, the nodes are
able to see several diverse realizations of the process over
different time slots, and can estimate the PLE more accurately.

IV. SUMMARY

We are the first ones to address the PLE estimation problem
in large wireless networks in the presence of node location
uncertainties, m-Nakagami fading and most importantly, inter-
ference. We assume that nodes are arranged as a homogeneous
PPP on the plane and the channel access scheme is slotted
ALOHA (at least during the PLE estimation phase). Under
these settings, we present three distributed algorithms for PLE
estimation, and provide simulation results to demonstratetheir
performances. This work is easily extensible to one- or three-
dimensional networks as well.
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