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Abstract—To be considered for an 2015 IEEE Jack Keil Wolf ISIT
Student Paper Award. The stable packet arrival rate region of the
discrete-time slotted ALOHA network with the sources distributed
as a static Poisson point process is investigated here. The problem
is a generalization and extension of interacting queues problem,
in which the physical layer is abstracted. Employing tools from
queueing theory as well as point process theory, we obtain sufficient
conditions and necessary conditions for stability by the concept of
dominance. Numerical results show that the gap between sufficient
conditions and necessary conditions is small, and the results also
reveal how these conditions vary with system parameters.

Index Terms—dominant system, interacting queues, Poisson bipo-
lar process, static network, stability.

I. INTRODUCTION

The protocol of slotted ALOHA is studied and analyzed
extensively in the literature. However, most of these works either
concentrate on capacity analysis or assume that terminals are
backlogged, i.e., the terminals always have packets to transmit
and no queueing of packets at the terminals occurs. If each
terminal provides a buffer for queueing, the problem becomes
more practically relevant and more challenging. It is complicated
because it involves interacting queues, i.e., the serving rate of
each queue depends on the sizes of queues, the analysis of which
requires the combination of queueing theory and multi-access
information theory, which is notoriously difficult to cope with.

Previous analyses of interacting queues are mostly based on a
physical layer that is abstracted. Most works consider a discrete-
time slotted ALOHA system with N terminals. In each time slot,
each terminal attempts to transmit the head-of-line packet with a
certain probability if its buffer is not empty. A collision occurs
if two or more terminals transmit in the same time slot. Even
for this simplified ALOHA system, the exact stability region has
been found only when the number of terminals is N = 2 [1],
[2] or N = 3 [3]. For N > 3, only sufficient conditions and
necessary conditions for stability could be derived.

In practical networks, concurrent transmissions lead to interfer-
ence between transmissions, which cannot be accurately modeled
as collisions. Moreover, the randomness in the deployment of
transmitters makes accurate modeling and analysis of interference
complicated. Therefore, the interaction between the queues at the
transmitters in practical networks is much more intricate than the
aforementioned simplified ALOHA system.

In this work, we model a large-scale network by using tools
from point process theory, which is widely adopted to analyze
the performance of wireless networks [4]–[6]. A common and
meaningful model is the Poisson point process (PPP), in which
each transmitter in the network is modeled as one point of the
PPP. We combine queueing theory and stochastic geometry to
analyze the stability region for the arrival rate at each transmitter
in a static network, i.e., the transmitters and the receivers are

generated at first and remain static during all the time slots. If
each transmitter maintains a buffer of infinite capacity to store
the packets generated, the analysis becomes complicated since
the serving rate of each queue depends on the status of other
queues as well as the channel status and the ALOHA protocol.
By applying the concept of dominance, we derive sufficient
conditions and necessary conditions for stability, and by slightly
relaxing the results, we obtain the results in closed form.

Previous analyses have yielded only bounds to the regions
of arrival rate for which the system is stable [1]–[3], [7], [8].
The stability of multi-access systems with an infinite number
of transmitters is studied in [9]. The stability region of two-
user interference channel is obtained in [10]. The stability and
delay of high-mobility networks are analyzed in [11] using a
combination of queueing theory and stochastic geometry. In high-
mobility networks, the sizes of queues and the serving rates are
decoupled; however, this does not hold in static networks.

II. SYSTEM MODEL

We consider a discrete-time slotted ALOHA system with
transmitters and receivers distributed as a Poisson bipolar network
[5, Def. 5.8], i.e., we model the locations of the transmitters as a
PPP Φ = {xi} ⊂ R2 of intensity λ. Each transmitter is associated
with a receiver at a fixed distance r0 and a random orientation.
In the analysis, we condition on x0 ∈ Φ which is the typical
transmitter under consideration, where r0 = |x0| is the distance of
x0 to the origin where the corresponding receiver is located (see
Fig. 1). Time is divided into discrete slots with equal duration, and
each transmission attempt occupies one time slot. We assume the
network is static, i.e., the locations of transmitters and receivers
are generated once and then kept unchanged during all time slots.
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Fig. 1. A snapshot of the bipolar model with ALOHA.

We use the Rayleigh block fading model in which the power
fading coefficients remain constant over each time slot and are



spatially and temporally independent with exponential distribution
of mean 1. Let α be the path loss exponent and hk,x be the fading
coefficient between transmitter x and the considered receiver at
origin o in time slot k. All transmitters are assumed to transmit
at unit power. The power spectral density of the thermal noise is
N0 and the bandwidth is W . We assume that the SINR threshold
model is applied, i.e., as long as the SINR is above a threshold
θ, a link can be successfully used for information transmission at
spectral efficiency log2(1 + θ) bits/s/Hz.

Each transmitter has a buffer of infinite capacity to store the
packets generated. Letting ∆T be the duration of each time slot,
the amount of information of a packet is W∆T log2(1 + θ)
bits. Each transmitter generates packets according to a Bernoulli
process with arrival rate λa (0 ≤ λa ≤ 1) packets per time
slot. With these notations, the arrival rate of the amount of
information is λaW log2(1 + θ) bits/s. To simplify the notation,
we normalize the arrival rate of the amount of information by
the bandwidth, which yields λs = λa log2(1 + θ) bits/s/Hz. The
arrival processes of different transmitters are independent. In each
time slot, each transmitter attempts to send its head-of-line packet
with probability p if its buffer is not empty. If an attempt of
transmission is failed, the transmitter attempts to retransmit the
packet at the next time slot with probability p; if an attempt of
transmission is successful, the transmitter deletes the packet from
the buffer. The SINR of the typical receiver in time slot k is

SINRk =
hk,x0r

−α
0

WN0 +
∑

x∈Φ\{x0} hk,x|x|
−α1(x ∈ Φk)

. (1)

In order to clearly define the stability of the large scale network,
we use the following notation. We condition on Φ having a point
at x0, thus the relevant probability measure of the point process
is the Palm probability Px0 . Correspondingly, the expectation,
denoted by Ex0 , is taken with respect to the measure Px0 . Let
Ck
Φ be the event that the transmission of the typical transmitter x0

succeeds in time slot k conditioned on the PPP Φ, i.e., Ck
Φ consists

of two events: that the transmission is scheduled by ALOHA in
time slot k and that the scheduled transmission is successful. Even
if the realization of the PPP Φ and the time slot index k are given,
it is still uncertain whether the typical transmission is successful
because of the effect of fading and ALOHA. Let Px0(Ck

Φ) be
the success probability conditioned upon Φ and k. We define the
stability region for the network as follows.

Definition 1. The stability region S is defined as the set of traffic
arrival rates λs = λa log2(1 + θ) bits/s/Hz given by

S
∆
=

{
λs ∈ R+ : Px0

{
lim

K→∞

1

K

K∑
k=1

Px0(Ck
Φ) < λa

}
< ε

}
. (2)

Remark 1. Px0
{
limK→∞

1
K

∑K
k=1 Px0(Ck

Φ) < λa
}

is the prob-
ability that the queue at the typical transmitter is unstable, due to
the conclusion from Loynes [12], which states that the condition
for stability of an isolated queue is that the service rate is larger
than the arrival rate. We declare that the network is stable when
the probability that the queue at the typical transmitter to be
unstable is less than a certain threshold ε. Strictly speaking, the
stability in the definition should be named ϵ-stability since there
always exist some transmitters whose queues are unstable in the
static Poisson network.

In the following, we derive sufficient conditions and necessary
conditions for the stability of the static Poisson network.

III. SUFFICIENT CONDITIONS

In order to derive sufficient conditions for stability, we consider
a dominant system. In the dominant system the typical transmis-
sion behaves exactly the same as in the original system; however,
for other transmissions, we assume that when the queues become
empty, the transmitters continue to transmit “dummy” packets
with probability p, thus continuing their interference to other
transmissions no matter whether their queues are empty or not.
Therefore, the stability region we obtain under these assumptions,
denoted by S, will be a subset of S. Under these assumptions, the
success probability for the typical transmission given Φ, denoted
by Px0(CΦ), is the same for each time slot since the fading and
the ALOHA are i.i.d. between different time slots. Thus Px0(CΦ)
is a random variable uniquely determined by the realization of
the PPP Φ. The mathematical description of S is

S
∆
=
{
λs ∈ R+ : Px0 {Px0(CΦ) < λa} ≤ ε

}
. (3)

Theorem 1. Given a slotted ALOHA system with transmitters
distributed as a PPP and with Bernoulli packet arrivals, a
sufficient condition for the system to be stable is

λs ∈
{
λs ∈ R+ :

1

2
− 1

π

∫ ∞

0

1

ω
Im

{
pjω exp

(
− jωθrα0WN0

−2πλ

∫ ∞

0

(
1−

( p

1 + θrα0 r
−α

+ 1− p
)jω)

rdr

−jω ln

(
λs

log2(1 + θ)

))}
dω < ε

}
. (4)

Proof: The proof is in Appendix A.
The proof of Theorem 1 relies on deriving the cumulative

distribution function (cdf) of Px0(CΦ), which is implemented by
deriving the moments of Px0(CΦ) and by applying the Gil-Pelaez
Theorem [13]. We omit the proof due to the space limitations.

The sufficient condition given by Theorem 1 is difficult to eval-
uate. Using the Chernoff bound, we obtain sufficient conditions
that are easier to evaluate, as stated in the following corollary.

Corollary 1. Given a slotted ALOHA system with the transmitters
distributed as a PPP and with Bernoulli packet arrivals, a
sufficient condition for the system to be stable is

λs ∈
{
λs ∈ R+ : λs ≤ pε

1
t log2(1 + θ) exp

(
− θrα0WN0

+
2πλ

t

∫ ∞

0

(
1−

( p

1 + θrα0 r
−α

+ 1− p
)−t)

rdr
)}

, (5)

for all t > 0. In particular, if t is chosen as a positive integer,
we obtain a sufficient condition in closed form as

λs ∈
{
λs ∈ R+ : λs ≤ λsuff(n)

}
, (6)

where

λsuff(n) = pε
1
n log2(1 + θ) exp

(
− θrα0WN0

−πλδ(1− p)δθδr20

n∑
i=1

((1− p)−i − 1)
Γ(i− δ)Γ(n− i+ δ)

Γ(i+ 1)Γ(n− i+ 1)

)
(7)



and δ = 2/α for all n ∈ N+. Let nmax = argmaxn∈N+λsuff(n).
An improved closed-form sufficient condition for the system to be
stable is then given by

λs ∈
{
λs ∈ R+ : λs ≤ λsuff(nmax)

}
. (8)

Proof: The proof is in Appendix B.

IV. NECESSARY CONDITIONS

To derive necessary conditions for stability, we consider some
simplified systems. In the following, we propose two approaches
to derive two different types of necessary conditions for stabil-
ity, namely type I necessary conditions and type II necessary
conditions. In the derivation of type I necessary conditions, we
consider a simplified system in which only the effect of the nearest
interferer is considered. In the derivation of type II necessary
conditions, we consider a modified system that drops the packets
in the interfering transmitters that are not scheduled by ALOHA
or whose transmissions are failed.

A. Type I necessary conditions
We consider a simplified version of the original system, in

which only two pairs of transmitters and receivers are considered.
One pair is the typical pair, and the other pair is the pair
containing the nearest interferer. Let T1 = (rm cosφ, rm sinφ)
be the location of the nearest transmitter, where rm is the distance
from the origin and φ is the angle. Let R1 = (rm cosφ +
r0 cosψ, rm sinφ + r0 sinψ) be the location of the associated
receiver, where ψ is the angle between T1 and R1 (see Fig.
2). Thus φ and ψ are uniformly distributed random variables in
[0, 2π]. The probability density function of rm is given by

frm(r) = 2πλr exp
(
−πλr2

)
. (9)

Transmitter Receiver

O x0

T1

R1

X

Y

r0

r0

rm
λa

λa

φ

ψ rs

Fig. 2. The simplified system which consists of two pairs of transmitters and
receivers, i.e., the typical transmission and the nearest transmission.

The following lemma gives the sufficient and necessary condi-
tion for the typical transmission to be stable with given φ,ψ, rm.

Lemma 1. For the simplified system with given φ,ψ, rm (see
Fig. 2), the sufficient and necessary condition for the typical
transmission to be stable is

λs ∈
{
λs ∈ R+ : λs < λu,1

}
, for rs > rm (10)

λs ∈
{
λs ∈ R+ : λs < λu,2

}
, for rs ≤ rm (11)

where

λu,1 =

(
p

1+θrα0 r−α
s

+ 1− p
)
p log2(1 + θ)e−WN0θr

α
0

p

1+θrα0 r−α
s

− p

1+θrα0 r−α
m

+ 1
,

λu,2 =

(
p

1 + θrα0 r
−α
m

+ 1− p

)
p log2(1 + θ)e−WN0θr

α
0 ,

rs =
√
(rm cosφ+ r0 cosψ − r0)2 + (rm sinφ+ r0 sinψ)2.

Proof: The proof is in Appendix C.
The proof of Lemma 1 is similar to the derivation of the

sufficient and necessary condition for the stability of two inter-
acting queues [10]. Consider a dominant system of the simplified
system, in which the typical transmitter still transmits “dummy”
packets when its queue is empty; however, the nearest interfering
transmitter in the dominant system behaves the same as the
original simplified system. If the queue at the typical transmitter
in the dominant system is unstable, it will be also unstable
in the original simplified system. Because when the queue at
the typical transmitter is unstable, it tends to grow to infinity,
and the probability of ever sending a dummy packet by the
typical transmitter in the dominant system is zero, thus the
dominant system is indistinguishable from the original system
under saturation. Therefore, we only need to derive the sufficient
and necessary condition for stability of the dominant system,
which is exactly the sufficient and necessary condition for stability
of the original simplified system.

Since φ,ψ, rm are random variables, by applying Lemma 1,
we get the following theorem which gives a type I necessary
condition for stability of the original system.

Theorem 2. Given a slotted ALOHA system with the transmitters
distributed as a PPP and with packet arrival being Bernoulli
processes, a type I necessary condition for the system to be stable
is

λs ∈
{
λs ∈ R+ : λs < λnec

}
, (12)

where

λnec =

(
1− θp

θ +
(
F−1
Z (ε)

)α
)
p log2(1 + θ)e−WN0θr

α
0 , (13)

Z = 1
r0

max{rm, rs} with FZ(z) being the cdf of Z, and rs is
defined in Lemma 1.

Proof: The proof is in Appendix D.
The necessary condition given by Theorem 2 is not in closed

form. In the following, we derive a closed-form necessary con-
dition by considering the simplified system in the special case
φ = ψ = −π. With given rm, if the queue at the typical
transmitter in the simplified system is unstable for φ = ψ = −π,
it will also be unstable for other φ and ψ, due to the fact that
when φ = ψ = −π, the interaction between the two pairs of
transceivers is the smallest among all φ and ψ.

Corollary 2. Given a slotted ALOHA system with the transmitters
distributed as a PPP and with packet arrival being Bernoulli
processes, a closed-form type I necessary condition for the system
to be stable is given by

λs ∈
{
λs ∈ R+ : λs < λ̂nec

}
, (14)

where

λ̂nec =

(
1 +

(
pθrα0(√

− ln(1−ε)
πλ + 2r0

)α
+ θrα0

)2)−1

p log2(1 + θ) exp(−WN0θr
α
0 ). (15)



Proof: The proof is in Appendix E.

B. Type II necessary condition
Here we consider a modified system, where packets at the inter-

fering transmitters are dropped if the transmitters are silenced due
to ALOHA or if the transmission fails due to the SINR condition,
thus an interfering transmitter is active with probability λap. Since
the packets will not accumulate at interfering transmitters in the
modified system, a necessary condition for the queue at the typical
transmitter in the original system to be stable is that the queue
at the typical transmitter in the modified system is stable. The
following theorem gives a type II necessary condition for the
original system to be stable.

Theorem 3. Given a slotted ALOHA system with the transmitters
distributed as a PPP and with packet arrival being Bernoulli
processes, a type II necessary condition for the system to be stable
is

λs ∈
{
λs ∈ R+ :

1

2
− 1

π

∫ ∞

0

1

ω
Im

{
pjω exp

(
− jωθrα0WN0

−2πλ

∫ ∞

0

(
1−

(λsp/ log2(1 + θ)

1 + θrα0 r
−α

+ 1− λsp

log2(1 + θ)

)jω)
rdr

−jω ln

(
λs

log2(1 + θ)

))}
dω < ε

}
. (16)

Proof: The proof is in Appendix F.
The proof of Theorem 3 is similar to that of Theorem 1. By

applying the Markov inequality, we obtain a type II necessary
condition as follows that is easier to evaluate.

Corollary 3. Given a slotted ALOHA system with the transmitters
distributed as a PPP and with packet arrival being Bernoulli
processes, for all t > 0, a type II necessary condition for the
system to be stable is

λs ∈

{
λs ∈ R+ : λs ≤ p(1− ε)−

1
t log2(1 + θ)

exp
(
− θrα0WN0 −

2πλ

t

∫ ∞

0

(
1−

(λsp/ log2(1 + θ)

1 + θrα0 r
−α

+1− λsp

log2(1 + θ)

)t)
rdr
)}

. (17)

When t = 1, we obtain a closed-form result as

λs ∈
{
λs ∈ R+ : λs ≤ λ̃nec

}
. (18)

where

λ̃nec =
log2(1 + θ)

pλπr20θ
δ πδ
sin(πδ)

W

(
p2

1− ε
λπr20θ

δ πδ

sin(πδ)
e−θrα0 WN0

)
(19)

and W(z) is the Lambert W function.

Proof: The proof is in Appendix G.

V. ASYMPTOTIC BEHAVIOR

In this section, we obtain some asymptotic results based on the
previous analysis.

When p approaches 0, we obtain

λsuff(∞) ∼ p log2(1 + θ) exp (−θrα0WN0) ; (20)

λ̂nec ∼ p log2(1 + θ) exp (−θrα0WN0) ; (21)

λ̃nec ∼ 1

1− ε
p log2(1 + θ) exp(−θrα0WN0). (22)
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Fig. 3. Comparison of sufficient conditions and necessary conditions as functions
of p. The parameters are set as ε = 0.1, θ = 10dB, r0 = 1, N0 = −173dBm,
W = 20MHz, α = 4 and λ = 0.05.
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Fig. 4. Comparison of sufficient conditions and necessary conditions as functions
of ε. The parameters are set as p = 0.5, θ = 10dB, r0 = 1, N0 = −173dBm,
W = 20MHz, α = 4 and λ = 0.05.

When θ approaches 0, we obtain

λsuff(∞) ∼ pθ

ln 2
; λ̂nec ∼

pθ

ln 2
; λ̃nec ∼

pθ

(1− ε) ln 2
. (23)

More asymptotic results can be obtained when ε or λ approach-
es 0; however, we omit them due to space limitations.

VI. COMPARISON OF SUFFICIENT CONDITIONS AND
NECESSARY CONDITIONS

In this section, we numerically compare the sufficient condi-
tions and necessary conditions derived in the previous sections.

Fig. 3 shows the maximal arrival rates in the sufficient and the
necessary conditions as functions of p. It is observed that when
p→ 0, all curves converge to 0. As p increases, the curves for the
sufficient condition in Theorem 1 (blue solid line) and the type I
necessary condition in Theorem 2 (black solid line) first increase
then decrease. It can be inferred that the actual maximal arrival
rate also first increases then decreases. This can be explained as
follows: for small p, the capacity is limited by the small ALOHA
probability, and for large p, it is limited by the large interference.
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Fig. 5. Comparison of sufficient conditions and necessary conditions as functions
of θ. The parameters are set as p = 0.5, ε = 0.1, r0 = 1, N0 = −173dBm,
W = 20MHz, α = 4 and λ = 0.05.

Fig. 4 plots the maximal arrival rates in the sufficient and the
necessary conditions as functions of ε. The curves for sufficient
conditions and necessary conditions do not depend strongly on
ε. Since the gap between the curve for sufficient conditions and
that for necessary conditions is not large, it can be inferred that
the actual maximal arrival rate does not change much either as
the increasing of ε, indicating that small changes in the arrival
rate λs will greatly affect the stability of the network.

Fig. 5 plots the maximal arrival rates in the sufficient and the
necessary conditions as functions of θ. It is observed that when
θ → 0, all curves converge to 0. By comparing the curve for
type I necessary condition in Theorem 2 (black solid line) and
that for type II necessary condition in Theorem 3 (red solid line),
we observe that when θ is small, the type II necessary condition
is better than the type I necessary condition because for small θ
the success probability is large and the probability of dropping a
packet is small, thus the modified system is close to the original
system. When θ starts to grow, the type I necessary condition
becomes tighter since the success probability becomes smaller
and the probability of dropping a packet increases. However,
when θ continues to grow, the type II necessary condition
becomes better again, which is due to the fact that very large
values of θ make it almost impossible for a transmission to be
successful in the presence of interference. Since the derivation
of the type I necessary condition only considers the effect of the
nearest interferer, the accuracy is worse than the type II necessary
condition.

Lastly, consider the case where the transmit probability p and
the SINR threshold θ are designable parameters to maximize the
maximal arrival rate. To obtain realistic values, we choose p from
[0, 1] and choose θ from [−20, 30] dB. Fig. 6 plots the maximal
arrival rates in terms of the sufficient and the necessary conditions
as functions of λ when the optimal p and θ are chosen. It is
observed that all curves except the curve for the type II necessary
condition in Corollary 3 converge to the same value, because for
small λ, the effect of interference is negligible, thus the dominant
system and the simplified system tend to be the same.
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Fig. 6. Comparison of sufficient conditions and necessary conditions as functions
of λ with optimal pair of (p, θ). The parameters are set as ε = 0.1, r0 = 1,
N0 = −173dBm, W = 20MHz and α = 4.

VII. CONCLUSIONS

In this paper, we investigated the stable packet arrival rate
region of the discrete-time slotted ALOHA network where the
transmitters and receivers distributed as a static Poisson bipolar
network. We employed tools from queueing theory as well as
point process theory and proposed several novel approaches to
study stability of this system by the concept of dominance.
We obtained sufficient conditions and necessary conditions for
stability in closed form. The numerical results show that the gap
between sufficient conditions and necessary conditions is small
and reveal how the conditions vary with the system parameters.
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APPENDIX A
PROOF OF THEOREM 1

The success probability for the typical transmission condi-
tioned on Φ in the dominant system is denoted as Px0(CΦ) =
pPx0(SINR > θ | Φ), which can be evaluated as

Px0(CΦ)
(a)
=pPx0(SINR > θ | Φ)
=pPx0

(
hk,x0r

−α
0 > θ (WN0 + Ik) | Φ

)
(b)
=pEx0 (exp (−θrα0 (WN0 + Ik)) | Φ)
=p exp (−θrα0WN0)∏

x∈Φ\{x0}

Ex0
(
exp

(
−θrα0 hk,x|x|−α1(x ∈ Φk)

)
| Φ
)

=p exp (−θrα0WN0)∏
x∈Φ\{x0}

(
pEx0

(
exp

(
− θrα0 hk,x|x|−α

)
| Φ
)
+ 1− p

)
(c)
=p exp

(
− θrα0WN0

) ∏
x∈Φ\{x0}

( p

1 + θrα0 |x|−α
+ 1− p

)
, (24)

where (a) is because a transmission occurs with probability p,
and (b) and (c) follows because the fading coefficients hk,x are
i.i.d. random variables with exponential distribution of unit mean.

Letting Y ∆
= ln (Px0(CΦ)), the moment generating function of

Y is

MY (s)=E
(
es ln(P

x0 (CΦ))
)

=E ((Px0(CΦ))
s
)

=ps exp (−sθrα0WN0)

E
( ∏

x∈Φ\{x0}

( p

1 + θrα0 |x|−α
+ 1− p

)s)
=ps exp

(
− sθrα0WN0

−λ
∫
R2

(
1−

( p

1 + θrα0 |x|−α
+ 1− p

)s)
dx
)

=ps exp
(
− sθrα0WN0

−2πλ

∫ ∞

0

(
1−

( p

1 + θrα0 r
−α

+ 1− p
)s)

rdr
)
. (25)

The pdf of Y can be derived by applying the inverse transform
of the characterized function MY (jω). The cdf of Y , denoted by
FY (y) = P (Y ≤ y), can be derived by applying the Gil-Pelaez
Theorem.

FY (y) =
1

2
− 1

π

∫ ∞

0

Im{e−jωyMY (jω)}
ω

dω. (26)

The probability that the queue at the typical transmitter in the
dominant system is unstable is given by the cdf of Px0(CΦ), which
is

Px0 {Px0(CΦ) ≤ λa}
= Px0 {ln (Px0(CΦ)) ≤ ln(λa)}
= FY (ln(λa))

=
1

2
− 1

π

∫ ∞

0

Im{e−jω ln(λa)MY (jω)}
ω

dω. (27)

The condition for the queue at the typical transmitter in the
dominant system to be stable is Px0 {Px0(CΦ) ≤ λa} < ε. By
combining (25) and (27), and plugging in the equality λs =
λa log2(1 + θ), we get the condition for the queue at the typical
transmitter to be stable as follows

1

2
− 1

π

∫ ∞

0

1

ω
Im

{
pjω exp

(
− jωθrα0WN0

−2πλ

∫ ∞

0

(
1−

( p

1 + θrα0 r
−α

+ 1− p
)jω)

rdr

−jω ln

(
λs

log2(1 + θ)

))}
dω < ε. (28)

Solving the above inequality, we get the results.

APPENDIX B
PROOF OF COROLLARY 1

For all t > 0, by applying the Markov inequality, we obtain
the following inequality.

Px0 {Px0(CΦ) < λa}
= Px0

{
e−t ln(Px0 (CΦ)) > e−t ln(λa)

}
<

1

e−t ln(λa)
E
(
e−t ln(Px0 (CΦ))

)
= et ln(λa)E

(
(Px0(CΦ))

−t
)

= p−t exp
(
t ln(λa) + tθrα0WN0

)
E
( ∏

x∈Φ\{x0}

( p

1 + θrα0 |x|−α
+ 1− p

)−t
)

= p−t exp
(
t ln(λa) + tθrα0WN0

−2πλ

∫ ∞

0

(
1−

( p

1 + θrα0 r
−α

+ 1− p
)−t)

rdr
)
. (29)

Solving the following inequality and plugging in λs =
λa log2(1 + θ), we have

p−t exp
(
t ln(λa) + tθrα0WN0

−2πλ

∫ ∞

0

(
1−

( p

1 + θrα0 r
−α

+ 1− p
)−t)

rdr
)
≤ ε, (30)

we get an upper bound for the arrival rate λs in (5) within which
the queues at the typical transmitter in the dominant system and
in the original system will both be stable.

By setting t = n ∈ N+, we get

λs ≤ pε
1
n log2(1 + θ) exp

(
− θrα0WN0

+
2πλ

n

∫ ∞

0

(
1−

( p

1 + θrα0 r
−α

+ 1− p
)−n)

rdr
)

(a)
= pε

1
n log2(1 + θ) exp

(
− θrα0WN0

−2πλ

n

n∑
i=0

Ci
n(1− (1− p)i)

∫ ∞

0

(θrα0 r
−α)ir

(1 + (1− p)θrα0 r
−α)n

dr
)

(b)
= pε

1
n log2(1 + θ) exp

(
− θrα0WN0

−πλδ(1− p)δθδr20

n∑
i=1

((1− p)−i − 1)
Γ(i− δ)Γ(n− i+ δ)

Γ(i+ 1)Γ(n− i+ 1)

)
,

(31)



where Ci
n = n!/(i!(n−i)!) = Γ(n+1)/(Γ(i+1)Γ(n−i+1)) is the

binomial coefficient and δ = 2/α. The equation (a) holds from
the binomial expansion and from the exchange of summation and
integral. The equation (b) follows from the relationship between
beta function and gamma function and from the fact that the term
for i = 0 equals to zero.

APPENDIX C
PROOF OF LEMMA 1

Consider a dominant system of the simplified system shown
in Fig. 2, i.e., the typical transmission still transmits “dummy”
packets when its queue is empty, thus it keeps causing interference
to the nearest transmission. Unlike the typical transmission, the
nearest interfering transmission in the dominant system behaves
the same as the original simplified system.

In the dominant system, the typical transmission is active
with probability p. The probability that the nearest interfering
transmission is scheduled by ALOHA and also successfully
transmitted is

p2
∆
=p2P

{
h1r

−α
0

h2r
−α
s +WN0

> θ

}
+ p(1− p)P

{
h1r

−α
0

WN0
> θ

}
(a)
=

(
p

1 + θrα0 r
−α
s

+ 1− p

)
p exp (−WN0θr

α
0 ) , (32)

where h1 is the fading coefficient between the transmitter and
the receiver of the nearest transmission, and h2 is the fading
coefficient between the typical transmitter and the receiver of the
nearest transmission. And (a) follows because h1 and h2 are both
exponentially distributed. In the following, we divide the proof
into two cases, i.e., λa ≥ p2 and λa < p2.

1) The case when λa ≥ p2: When λa ≥ p2, the queue at the
nearest interfering transmitter is unstable and will never be empty,
thus the nearest interfering transmitter will cause interference
to the typical transmission with probability p. Therefore, the
probability that the typical transmission is scheduled by ALOHA
and also successfully transmitted is

p1
∆
=p2P

{
h3r

−α
0

h4r
−α
m +WN0

> θ

}
+ p(1− p)P

{
h3r

−α
0

WN0
> θ

}
=

(
p

1 + θrα0 r
−α
m

+ 1− p

)
p exp (−WN0θr

α
0 ) , (33)

where h3 is the fading coefficient between the transmitter and
the receiver of the typical transmission, and h4 is the fading
coefficient between the nearest interfering transmitter and the
receiver of the typical transmission.

If rs > rm, by comparing (32) with (33), we have λa >
p2 > p1, which implies that the queue at the typical transmitter
is unstable for the case λa ≥ p2. This conclusion can be
explained intuitively by Fig. 2 since the interference from the
typical transmitter to the nearest interfering transmission is less
than that from the nearest interfering transmitter to the typical
transmission. Thus, when the queue of the nearest interfering
transmitter is unstable, the queue at the typical transmitter will
also be unstable.

If rs ≤ rm, by comparing (32) with (33), we have p1 ≥ p2,
which implies that the queue at the typical transmitter is stable
for p1 ≥ λa ≥ p2 and unstable for λa > p1 for the case λa ≥ p2.

2) The case when λa < p2: When λa < p2, the queue of
the nearest interfering transmitter is empty with probability 1 −

λa/p2 and is nonempty with probability λa/p2. Therefore, the
probability that the typical transmission is scheduled by ALOHA
and also successfully transmitted is as

p′1 = p2
λa
p2

P
{

h3r
−α
0

h4r
−α
m +WN0

> θ

}
+

(
p(1− p)

λa
p2

+ p

(
1− λa

p2

))
P
{
h3r

−α
0

WN0
> θ

}
=

(
pλa
p2

1

1 + θrα0 r
−α
m

+ 1− pλa
p2

)
p exp (−WN0θr

α
0 ) . (34)

In order to make the typical transmission stable, the arrival rate
should satisfy λa < p′1 which can be evaluated into

λa <
pp2

p2 exp (WN0θrα0 ) + p2 − p2 1
1+θrα0 r−α

m

=
p2

p

1+θrα0 r−α
s

− p

1+θrα0 r−α
m

+ 1

=

(
p

1+θrα0 r−α
s

+ 1− p
)
p exp (−WN0θr

α
0 )

p

1+θrα0 r−α
s

− p

1+θrα0 r−α
m

+ 1
. (35)

If rs > rm, it can be verified that the right side of the above
inequality is less than p2. Therefore, for the case λa < p2, the
queue at the typical transmitter in the dominant system will be
stable only when the inequality (35) is fulfilled.

If rs ≤ rm, the right side of the above inequality is larger
than p2. Therefore, for the case λa < p2, the queue at the typical
transmitter in the dominant system will be stable.

Combining the cases of λa ≥ p2 and λa < p2, we get the
stability region of the dominant system as follows.

λa <


(

p

1+θrα0 r
−α
s

+1−p

)
p exp(−WN0θr

α
0 )

p

1+θrα0 r
−α
s

− p

1+θrα0 r
−α
m

+1 if rs > rm(
p

1+θrα0 r−α
m

+ 1− p
)
p exp (−WN0θr

α
0 ) if rs ≤ rm

(36)

Plugging in λs = λa log2(1 + θ), we get

λs <



(
p

1+θrα0 r
−α
s

+1−p

)
p log2(1+θ) exp(−WN0θr

α
0 )

p

1+θrα0 r
−α
s

− p

1+θrα0 r
−α
m

+1

if rs > rm(
p

1+θrα0 r−α
m

+ 1− p
)
p log2(1 + θ) exp (−WN0θr

α
0 )

if rs ≤ rm

(37)

If the queue at the typical transmitter in the dominant system
is unstable, then it is also unstable in the original system, because
in this case, the queue at the typical transmitter tends to grow to
infinity, so the probability of ever sending a dummy packet by
the typical transmitter in the dominant system is zero, thus the
dominant system is indistinguishable from the original system
under saturation. Therefore, we get the sufficient and necessary
condition for the original simplified system.

APPENDIX D
PROOF OF THEOREM 2

According to Lemma 1, if rs > rm, from (36) we have

λa <

(
p

1+θrα0 r−α
s

+ 1− p
)
p exp (−WN0θr

α
0 )

p

1+θrα0 r−α
s

− p

1+θrα0 r−α
m

+ 1

<

(
p

1 + θrα0 r
−α
s

+ 1− p

)
p exp (−WN0θr

α
0 ) . (38)



Since Lemma 1 gives the sufficient and necessary condition for
stability of the typical transmitter in the simplified system when
φ,ψ, rm are given, by comparing (36) and (38), we obtain a
necessary condition as follows.

λa <

(
p

1 + θrα0 (max{rm, rs})−α + 1− p

)
p exp (−WN0θr

α
0 ) .

According to the equation (2) and Lemma 1, when φ,ψ, rm are
random variables, letting Z = 1

r0
max{rm, rs}, Z is a random

variable determined by rm and rs A necessary condition for the
queue at the typical transmitter in the simplified system to be
stable is

ε ≥ P
{
λa ≥

(
p

1 + θZ−α
+ 1− p

)
pe−WN0θr

α
0

}
= P

{
Z ≤

(
θ
λa exp (WN0θr

α
0 ) + p2 − p

p− λa exp (WN0θrα0 )

) 1
α
}
. (39)

Denote the cdf of Z as FZ(z), whose closed-form expression is
hard to derive. Then, the equation (39) can be written as

ε ≥ FZ

((
θ
λa exp (WN0θr

α
0 ) + p2 − p

p− λa exp (WN0θrα0 )

)1/α
)
, (40)

which evaluates to

λa ≤

(
1− θp

θ +
(
F−1
Z (ε)

)α
)
p exp (−WN0θr

α
0 ) . (41)

Plugging in the equality λs = λa log2(1+θ), we obtain the result
in Theorem 2.

APPENDIX E
PROOF OF COROLLARY 2

According to (2) and Lemma 1, when rm is a random variable,
the sufficient and necessary condition for the queue at the typical
transmitter in the simplified system to be stable when φ = ψ =
−π is

ε≥P

{
λs ≥

p2 log2(1 + θ)
p

1+θrα0 (rm+2r0)−α − p

1+θrα0 r−α
m

+ 1

}

=P
{
λs ≥

(rαm + θrα0 ) ((rm + 2r0)
α
+ (1− p)θrα0 ) p exp(−WN0θr

α
0 )

(rαm + (1 + p)θrα0 ) ((rm + 2r0)
α
+ (1− p)θrα0 ) + p2θ2r2α0

log2(1 + θ)

}
. (42)

Since f(x) = x/(1+x) is an increasing function of x, we obtain
a necessary condition for stability as follows

ε>P

{
λs ≥

((rm + 2r0)
α + θrα0 )

2
p exp(−WN0θr

α
0 )

((rm + 2r0)α + θrα0 )
2
+ p2θ2r2α0

log2(1 + θ)

}

=P
{
(p log2(1 + θ) exp(−WN0θr

α
0 )− λs)

((rm + 2r0)
α + θrα0 )

2 ≤ λsp
2θ2r2α0

}
. (43)

Since the inequality p exp(−WN0θr
α
0 )−λa > 0 is satisfied from

Lemma 1, we have

ε > P
{
rm ≤(√

λsp2θ2r2α0
p log2(1 + θ) exp(−WN0θrα0 )− λs

− θrα0

)1/α

− 2r0︸ ︷︷ ︸
A

}
.

(44)

When A ≤ 0, the probability at the right side of the inequality is
zero; thus the above inequality (44) always holds. When A > 0,
by applying the probability distribution of rm given by (9), we
have

ε > 1− exp
(
−πλA2

)
. (45)

Then, we have

0 < A <

√
− ln(1− ε)

πλ
. (46)

Combining the cases of A ≤ 0 and A > 0, we have(√
λsp2θ2r2α0

p log2(1 + θ) exp(−WN0θrα0 )− λs
− θrα0

)1/α

−2r0 <

√
− ln(1− ε)

πλ
. (47)

Solving the above inequality, we get

λs <

(
1 +

(
pθrα0(√

− ln(1−ε)
πλ + 2r0

)α
+ θrα0

)2)−1

p log2(1 + θ) exp(−WN0θr
α
0 ). (48)

APPENDIX F
PROOF OF THEOREM 3

By introducing the modified system, the packets in the inter-
fering transmitters will be abandoned if they are not scheduled
or failed for transmitting, thus an interfering transmitter is active
with probability λap. Similar to the derivations of (24), we get
the success probability for the typical transmission conditioned
on Φ in the modified system as follows

Px0(CΦ)

= p exp (−θrα0WN0)∏
x∈Φ\{x0}

(
λapEx0

(
exp

(
− θrα0 hk,x|x|−α

)
| Φ
)
+ 1− λap

)
= p exp

(
− θrα0WN0

)
∏

x∈Φ\{x0}

( λap

1 + θrα0 |x|−α
+ 1− λap

)
. (49)

Let Y ∆
= ln (Px0(CΦ)), then the moment generating function

of Y is given by

MY (s) = ps exp
(
− sθrα0WN0

−2πλ

∫ ∞

0

(
1−

( λap

1 + θrα0 r
−α

+ 1− λap
)s)

rdr
)
. (50)



The cdf of Y can be derived as follows by applying the Gil-
Pelaez Theorem given by (26).

FY (y) =
1

2
− 1

π

∫ ∞

0

Im{e−jωyMY (jω)}
ω

dω. (51)

The probability that the queue at the typical transmitter in the
modified system being unstable is

Px0 {Px0(CΦ) ≤ λa}
= FY (ln(λa))

=
1

2
− 1

π

∫ ∞

0

Im{e−jω ln(λa)MY (jω)}
ω

dω. (52)

The condition for the queue at the typical transmitter in the
modified system to be stable is Px0 {Px0(CΦ) ≤ λa} < ε. By
combining (50) and (52), and plugging in the equality λs =
λa log2(1 + θ), we get the condition for the queue at the typical
transmitter in the modified system to be stable as follows

1

2
− 1

π

∫ ∞

0

1

ω
Im

{
pjω exp

(
− jωθrα0WN0

−2πλ

∫ ∞

0

(
1−

(λsp/ log2(1 + θ)

1 + θrα0 r
−α

+ 1− λsp

log2(1 + θ)

)jω)
rdr

−jω ln

(
λs

log2(1 + θ)

))}
dω < ε. (53)

Solving the above inequality, we get an upper bound for the arrival
rate λs which gives a necessary condition for the original system
to be stable.

APPENDIX G
PROOF OF COROLLARY 3

For any t > 0, by applying the Markov’s inequality, we obtain
the following inequality

Px0 {Px0(CΦ) < λa}
= Px0

{
(Px0(CΦ))

t < λta
}

> 1− λ−t
a E

(
(Px0(CΦ))

t
)

= 1− pt exp
(
− t ln(λa)− tθrα0WN0

)
E
( ∏

x∈Φ\{x0}

( λap

1 + θrα0 |x|−α
+ 1− λap

)t)
= 1− pt exp

(
− t ln(λa)− tθrα0WN0

−λ
∫
R2

(
1−

( λap

1 + θrα0 |x|−α
+ 1− λap

)t)
dx
)

= 1− pt exp
(
− t ln(λa)− tθrα0WN0

−2πλ

∫ ∞

0

(
1−

( λap

1 + θrα0 r
−α

+ 1− λap
)t)

rdr
)
. (54)

Solving the following inequality and plugging in the equality
λs = λa log2(1 + θ),

1− pt exp
(
− t ln(λa)− tθrα0WN0

−2πλ

∫ ∞

0

(
1−

( λap

1 + θrα0 r
−α

+ 1− λap
)t)

rdr
)
≤ ε, (55)

we get an upper bound for the arrival rate λs in (17) which gives
a type II necessary condition for the original system to be stable.

By applying the Markov inequality, we obtain the following
inequality

Px0 {Px0(CΦ) < λa}
> 1− λ−1

a E (Px0(CΦ))

= 1− pλ−1
a exp

(
− θrα0WN0 − λapλπr

2
0θ

δ πδ

sin(πδ)

)
. (56)

Letting W(z) be the Lambert W function, which is defined by
z = W(z)eW(z) for any complex number z. Solving the following
inequality and plugging in the equality λs = λa log2(1 + θ),

1− pλ−1
a exp

(
− θrα0WN0 − λapλπr

2
0θ

δ πδ

sin(πδ)

)
≤ ε, (57)

we get an upper bound for the arrival rate λs in Corollary 3 which
gives a type II necessary condition for the original system to be
stable.


