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Abstract—It has recently been observed that the SIR distribu-
tions of a variety of cellular network models and transmission
techniques look very similar in shape. As a result, they are well
approximated by a simple horizontal shift of the distribution of
the most tractable model, the Poisson point process. This paper
makes a first step towards explaining this remarkable property
by showing that the asymptotics of the SIR distribution near 0
and near infinity can only differ by a constant.

Index Terms—Cellular networks, stochastic geometry, signal-
to-interference ratio, Poisson point processes.

I. INTRODUCTION

A. Motivation

The distribution of the signal-to-interference ratio (SIR) is a

key quantity in the analysis and design of interference-limited

wireless systems. Here we focus on general single-tier cellular

networks where users are connected to the strongest (nearest)

base station (BS). Let Φ ⊂ R
2 be a point process representing

the locations of the BSs and let x0 ∈ Φ be the serving BS of

the typical user at the origin, i.e., define x0 , arg min{x ∈
Φ: ‖x‖}. Assuming all BSs transmit at the same power level,

the downlink SIR is given by

SIR ,
S

I
=

hx0
ℓ(x0)

∑

x∈Φ\{x0}
hxℓ(x)

, (1)

where (hx) are iid random variables representing the fading

and ℓ is the path loss law. The complementary cumulative

distribution (ccdf) of the SIR is

F̄SIR(θ) , P(SIR > θ). (2)

Under the SIR threshold model for reception, the ccdf of the

SIR can also be interpreted as the success probability of a

transmission, i.e., ps(θ) ≡ F̄SIR(θ).
In the case where Φ forms a homogeneous Poisson point

process (PPP), Rayleigh fading, and ℓ(x) = ‖x‖−α, the

success probability was determined in [1]. It can be expressed

in terms of the Gaussian hypergeometric function 2F1 as [2]

ps,PPP(θ) =
1

2F1(1,−δ; 1− δ;−θ)
, (3)

where δ , 2/α. For α = 4, remarkably, this simplifies to

ps,PPP(θ) =
1

1 +
√
θ arctan

√
θ
.

For all other cases, the success probability is intractable or can

at best be expressed using combinations of infinite sums and

integrals. Hence there is an important need for techniques that

yield good approximations of the SIR distribution for non-

Poisson networks.

B. Asymptotic SIR gains and the MISR

It has recently been observed in [3], [4] that the SIR ccdfs

for different point processes and transmission techniques (e.g.,

BS cooperation or silencing) appear to be merely horizontally

shifted versions of each other (in dB), as long as the resulting

diversity gain is the same.

Consequently, the success probability of a network model

can be accurately approximated by that of a reference network

model by scaling the threshold θ by this SIR gain factor (or

shift in dB) G, i.e.,

ps(θ) ≈ ps,ref(θ/G).

Formally, the horizontal gap at target probability p is defined

as

Gp(p) ,
F̄−1
SIR

(p)

F̄−1
SIRref

(p)
, p ∈ (0, 1), (4)

where F̄−1
SIR

is the inverse of the ccdf of the SIR and p is

the success probability where the gap is measured. It is often

convenient to consider the gap as a function of θ, defined as

G(θ) , Gp(ps,ref(θ)) =
F̄−1
SIR

(ps,ref(θ))

θ
. (5)

Due to its tractability, the PPP is a sensible choice as the

reference model1.

So the main focus of this paper are the asymptotic gains

relative to the PPP, defined as follows.

Definition 1 (Asymptotic gains relative to PPP). The asymp-

totic gains (whenever the limits exist) G0 and G∞ are defined

as

G0 , lim
θ→0

G(θ); G∞ , lim
θ→∞

G(θ), (6)

where the PPP is used as the reference model.

1This is why the method of approximating an SIR distribution by a shifted
version of the PPP’s SIR distribution is called ASAPPP—“Approximate SIR
analysis based on the PPP” [5].



−20 −15 −10 −5 0 5 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SIR CCDF

θ (dB)

P
(S

IR
>

θ)

 

 

Poisson
triangular lattice
exp(−θ)

Figure 1. The SIR distributions for the PPP (solid) and the triangular lattice
(dashed) for α = 4 and the lower bound (which is asymptotically tight) e−θ

for the PPP (dash-dotted). The horizontal gap between the SIR distributions
of the PPP and the triangular lattice is quite exactly 3.4 dB for a wide range of
θ values. The shaded band indicates the region in which the SIR distributions
for all stationary point process fall that are more regular than the PPP.

C. Prior work

Some insights on G0 are available from prior work. In

[4] it is shown that G0 is closely connected to the mean

interference-to-signal ratio (MISR). The MISR is the mean

of the interference-to-(average)-signal ratio ISR, defined as

IS̄R ,
I

Eh(S)
,

where Eh(S) = E(S | Φ) is the mean received signal power

averaged only over the fading. Not unexpectedly, the calcula-

tion of the MISR for the PPP is relatively straightforward and

yields MISRPPP = 2/(α− 2).
In general, the success probability can be expressed as

ps(θ) = EF̄h(θ IS̄R), (7)

where F̄h is the ccdf of the fading random variables. For

Rayleigh fading, F̄h(x) = e−x and thus ps(θ) ∼ 1− θMISR,

θ → 0, resulting in

G0 =
MISRPPP

MISR
=

2

α− 2

1

MISR

and

ps(θ) ∼ ps,PPP(θ/G0), θ → 0.

So asymptotically the shifted ccdf of the PPP is exact.

An example is shown in Fig. 1, where α = 4, which results

in MISRPPP = 1, while for the triangular lattice MISRtri =
0.457. Hence the horizontal shift is MISRPPP/MISRtri = 3.4
dB. For Rayleigh fading, we also have the relationship ps(θ) =
LIS̄R(θ) & e−θMISR by Jensen’s inequality, also shown in the

figure. Here ’&’ is a lower bound with asymptotic equality.

D. Contributions

In this paper, we derive similar results for G∞. In particular,

we show that for all stationary point process models and any

type of fading, the tail of the SIR distribution always scales

as θ−δ , i.e., we have ps(θ) ∼ cθ−δ where the constant c
captures the effects of the network geometry and fading. The

asymptotic gain follows as

G∞ =

(

c

cPPP

)1/δ

, (8)

and we have

ps(θ) ∼ ps,PPP(θ/G∞), θ → ∞.

II. SYSTEM MODEL

The base station locations are modeled as a stationary point

process Φ ⊂ R
2. Without loss of generality, we assume that the

typical user is located at the origin o. The path loss between the

typical user and a BS at x ∈ Φ is given by ℓ(x) = ‖x‖−α, α >
2. Let F̄h denote the ccdf of the iid fading random variables. In

this paper, we will assume unit mean fading random variables.

We assume nearest-BS association, wherein a user is served

by the closest BS. Let x0 denote the closest BS to the typical

user at the origin, and define R , ‖x0‖ and Φ! = Φ \ {x0}.

With the nearest BS association rule, the downlink SIR (1) of

the typical user can be expressed as

SIR =
hR−α

∑

x∈Φ! hxℓ(x)
. (9)

Further, let b(o, r) be the open disk of radius r at o.

III. ASYMPTOTICS OF SIR DISTRIBUTION

In this section, we analyze the asymptotics of the SIR

distribution. The analysis of SIR in (9) is complicated by the

fact that the first contact distance R and the interference I are

correlated random variables.

A. The expected fading-to-interference ratio (EFIR)

The constants defining the asymptotic gain G∞ in (8)

are closely related to a quantity termed expected fading-

to-interference ratio (EFIR), which plays a similar role for

θ → ∞ as the MISR does for θ → 0.

Definition 2 (Expected fading-to-interference ratio (EFIR)).

For a point process Φ, let I∞ =
∑

x∈Φ hxℓ(x) and let h be a

fading random variable independent of all (hx). The expected

fading-to-interference ratio (EFIR) is defined as

EFIR ,

(

λπE!o

[

(

h

I∞

)δ
])1/δ

, (10)

where E
!o is the expectation with respect to the reduced Palm

measure of Φ.

Lemma 1 (EFIR for the PPP). For the PPP, with arbitrary

fading,

EFIRPPP = (sinc δ)1/δ. (11)

2



Proof: The term E
!o[I−δ

∞ ] in (10) can be calculated by

taking the expectation of the following identity which follows

from the definition of the gamma function Γ(x).

I−δ
∞ ≡ 1

Γ(δ)

∫ ∞

0

e−sI∞s−1+δds.

Hence

E
!o[I−δ

∞ ] =
1

Γ(δ)

∫ ∞

0

L!o
I∞(s)s−1+δds. (12)

From Slivnyak’s theorem [6, Thm. 8.10], E
!o ≡ E for the

PPP, so we can replace L!o
I∞

(s) by the unconditioned Laplace

transform LI∞(s), which is well known for the PPP and given

by [7]

LI∞(s) = exp(−λπE[hδ]Γ(1− δ)sδ).

From (12), we have

E[I−δ
∞ ] =

1

Γ(δ)

∫ ∞

0

e−λπE[hδ]Γ(1−δ)sδs−1+δds

=
1

λπE(hδ)Γ(1 − δ)Γ(1 + δ)
=

sinc δ

λπE(hδ)
.

So λπE!o(I−δ
∞ )E(hδ) = sinc δ, and the result follows.

Remarkably, EFIRPPP only depends on the path loss expo-

nent. It can be closely approximated by EFIRPPP ≈ 1− δ.

B. Main result

Let f(R,Φ!) be a positive function of the distance R and the

point process Φ!. The average E[f(R,Φ!)] can be evaluated

using the joint distribution of R and Φ!, which is known

only for a few spatial point processes. Thus we introduce an

alternative representation of f(R,Φ!) that is easier to analyze.

The indicator variable 1(Φ(b(o, ‖x‖)) = 0), x ∈ Φ, equals

one only when x = x0 and zero otherwise. Hence it follows

that

f(R,Φ!) ≡
∑

x∈Φ

f(‖x‖,Φ \ {x})1(Φ(b(o, ‖x‖)) = 0). (13)

This representation of f(R,Φ!) allows for computing the

expectation of f(R,Φ!) using the Campbell-Mecke theorem

[6, Thm. 8.2]. We will use it to analyze the asymptotics of the

ccdf F̄SIR of the SIR (or, equivalently, the success probability

ps(θ)) as θ → ∞.

Theorem 1. For all BS stationary point processes Φ, where

the typical user is served by the nearest BS,

ps(θ) ∼
(

θ

EFIR

)−δ

, θ → ∞.

Proof: From (9), we have ps(θ) = EF̄h(θR
αI). Using the

representation given in (13), the success probability equals

E

∑

x∈Φ

F̄h



θ‖x‖α
∑

y∈Φ\{x}

hy‖y‖−α



1
(

Φ(b(o, ‖x‖)) = 0
)

(a)
= λ

∫

R2

E
!
oF̄h

(

θ‖x‖α
∑

y∈Φx

hy‖y‖−α
)

1(b(o, ‖x‖) empty)dx,

where (a) follows from the Campbell-Mecke theorem and

Φx , {y ∈ Φ: y+x} is a translated version of Φ. Substituting

xθδ/2 7→ x,

= λθ−δ

∫

R2

E
!oF̄h

(

‖x‖α
∑

y∈Φ
xθ−δ/2

hy‖y‖−α
)

· 1(b(o, ‖x‖θ−δ/2) empty)dx

(a)∼ λθ−δ

∫

R2

E
!oF̄ (‖x‖αI∞) dx, θ → ∞ (14)

(b)
= λθ−δ

E
!o[I−δ

∞ ]

∫

R2

F̄h (‖x‖α) dx, θ → ∞,

where (a) follows since θ−δ/2 → 0 and hence

1(b(o, ‖x‖θ−δ/2) empty) → 1. The equality in (b) follows

by using the substitution xI
1/α
∞ → x. Here we use I∞ to

denote the interference term since this interference stems from

all points in the point process, as opposed to I , which stems

from Φ!. Changing into polar coordinates, the integral can be

written as
∫

R2

F̄h (‖x‖α) dx =πδ

∫ ∞

0

rδ−1F̄h(r)dr
(a)
= πE[hδ],

where (a) follows since h is a positive random variable [8].

Since h > 0 and E(h) < ∞ and δ < 1 we necessarily have

E(hδ) < ∞.

Corollary 2 (Asymptotic gain at θ → ∞). For an arbitrary

stationary point process Φ with EFIR given in Def. 2, the

asymptotic gain at θ → ∞ relative to the PPP is

G∞ =
EFIR

EFIRPPP
=

(

λπE!o(I−δ
∞ )E(hδ)

sinc δ

)1/δ

.

Proof: From Theorem 1, we have that the constant c in

(8) is given by c = EFIR
δ. cPPP follows from Lemma 1 as

cPPP = EFIR
δ
PPP = sinc δ.

The Laplace transform of the interference in (12) for general

point processes can be evaluated as follows:

L!o
I∞(s) = E

!o
(

e−s
∑

x∈Φ
hx‖x‖

−α
)

= E
!o
∏

x∈Φ

Lh(s‖x‖−α) = G!o(Lh(s‖ · ‖−α)),

where G!o(.) is the probability generating functional with

respect to the reduced Palm measure and Lh is the Laplace

transform of the fading distribution.

Corollary 3 (Rayleigh fading). With Rayleigh fading, the

expected fading-to-interference ratio simplifies to

EFIR =

(

λ

∫

R2

G!o(∆(x, ·))dx
)1/δ

,

where

∆(x, y) =
1

1 + ‖x‖α‖y‖−α
.

3



Proof: With Rayleigh fading, the fading power is expo-

nential and F̄h(x) = exp(−x). From (14), we have

ps(θ) ∼ λθ−δ

∫

R2

E
!oF̄ (‖x‖αI) dx

= λθ−δ

∫

R2

E
!o
∏

y∈Φ

1

1 + ‖x‖α‖y‖−α
dx,

and the result follows from the definition of the reduced

probability generating functional.

C. Relation to the SIR distribution for max-SIR BS association

We now explore the tail of the distribution to the maximum

SIR seen by the typical user for exponential h. Assume that

the typical user at the origin connects to the BS that provides

the instantaneously strongest SIR. Also assume that θ > 1.

Let SIR(x) denote the SIR between the BS at x and the user

at the origin. Then

P(max
x∈Φ

SIR(x) > θ) = E

∑

x∈Φ

P(SIR(x) > θ)

= λ

∫

R2

P
!o(SIR(x) > θ)dx

= λ

∫

R2

G!o

[

1

1 + θ(‖x‖/‖ · ‖)α
]

dx

= λθ−δ

∫

R2

G!o(∆(x, ·))dx.

From the above we observe that (for exponential fading),

ps(θ) ∼ P(max
x∈Φ

SIR(x) > θ), θ → ∞,

which is a well known property for heavy tailed distributions.

IV. EXAMPLES

A. Determinantal point processes

Determinantal (fermion) point processes (DPPs) [10] exhibit

repulsion and can be used to model minimum separation in

a cellular network. The kernel of the DPP Φ is denoted by

K(x, y) and due to stationarity is of the form K(x− y). The

reduced Palm measure µx0 pertains to a DPP with kernel Kxo

defined by

Kxo(x, y) =
1

K(xo, xo)
det

(

K(x, y) K(x, xo)
K(xo, y) K(xo, xo)

)

,

(15)

whenever K(xo, xo) > 0. Let Ko(x, y) denote the kernel

associated with the reduced Palm distribution of the DPP

process. The reduced Palm probability generating functional

is known for a DPP and is given by [10]

G!o(f(·)) , E
!o

[

∏

x∈Φ

f(x)

]

= detf(1− (1 − f)Ko), (16)

where detf is the Fredholm determinant and 1 is the identity

operator. The next lemma characterizes the EFIR in a general

DPP with Rayleigh fading.
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Figure 2. Scaled success probability ps(θ)θδ for the GPP of intensity 1/π
for Rayleigh fading with α = 4. The asymptote (dashed line) is at

√
EFIR ≈

0.89.

Lemma 2. When the BSs are distributed as a stationary DPP,

the EFIR with Rayleigh fading is

EFIR =

(

λ

∫

R2

detf(1− (1 −∆(x, ·))Ko)dx

)1/δ

. (17)

Proof: Follows from Corollary 3 and (16).

Ginibre point processes: Ginibre point processes (GPPs)

are determinantal point processes with density λ = c/π and

kernel given by K(x, y) = c
π e

− c
2
(|x|2+|y|2)ecxȳ. Using the

properties of GPPs [11], it can be shown that

E
!o[e−sI∞ ] =

∞
∏

k=1

∫ ∞

0

Lh(sr
−α/2)

rk−1e−cr

c−kΓ(k)
dr,

from which E
!o[I−δ] can be evaluated using (12). In Figure

2, the scaled success probability ps(θ)θ
δ and its asymptote

EFIR
δ =

√
EFIR are plotted for a GPP with α = 4 as a

function of θ. The computed value of the EFIR is EFIRGPP ≈
0.80. We observe a close match as soon as θ > 15 dB.

Fig. 3 shows the simulated values of the gains G0 and G∞

for the GPP. G0 ≈ 1.5 for all values of α, while G∞ increases

slightly with α.

B. Square lattice point processes

Let u1, u2 be iid uniform random variables in [0, 1]. The

unit intensity (square) lattice point process Φ is defined as

Φ , Z
2 + (u1, u2). For this lattice, with Rayleigh fading, the

Laplace transform of the interference is bounded as [12]

e−sZ(2/δ) ≤ L!o
I∞(s) ≤ 1

1 + sZ(2/δ)
, (18)

where Z(x) = 4ζ(x/2)β(x/2) is the Epstein zeta function,

ζ(x) is the Riemann zeta function, and β(x) is the Dirichlet

beta function. From (12) we have

Z(2/δ)−δ ≤ E
!o[I−δ

∞ ] ≤ π csc(πδ)

Γ(δ)Z(2/δ)δ
.

4
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Figure 3. Simulated gains G0 and G∞ for the GPP of intensity 1/π with
Rayleigh fading as a function of α.
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Figure 4. Scaled success probability ps(θ)θδ for the square lattice point
process with Rayleigh fading and α = 4. The asymptote (dashed line) is√
EFIR ≈ 1.19.

The upper bound equals (Z(2/δ)δΓ(1 + δ) sinc δ)−1, and it

follows that for Rayleigh fading,

(πΓ(1 + δ))1/δ

Z(2/δ)
≤ EFIRlat ≤

( π

sinc δ

)1/δ 1

Z(2/δ)
. (19)

As α increases (δ → 0), the upper and lower bound

approach each other and thus both bounds get tight.

The success probability multiplied by θδ , the EFIR asymp-

tote and its bounds (19) for a square lattice process are plotted

in Figure 4 for α = 4. We observe that the lower bound, which

is 1.29, is indeed a good approximation to the numerically

obtained value EFIR ≈ 1.40, and that for θ > 15 dB, the ccdf

is already quite close to the asymptote.

V. CONCLUSIONS

For all stationary point process, the asymptotics of the SIR

ccdf (or success probability) are of the form

ps(θ) ∼ 1− c0θ
m, θ → 0 ; ps(θ) ∼ c∞θ−δ, θ → ∞

for a fading cdf Fh(x) = Θ(xm), x → 0. Both constants

c0 and c∞ depend on the path loss exponent and the point

process model, and c0 also depends on the fading statistics.

Fading may also affect c∞.

The constant c0 is related to the mean interference-to-signal-

ratio (MISR). For m = 1, c0 = MISR, while c∞ is related to

the expected fading-to-interference ratio (EFIR) through c∞ =
EFIR

δ .

This result partially explains the empirical observation that

the success probabilities all appear to be shifted versions of

each other. They show that interference affects the SIR ccdf

merely through a horizontal shift (in dB). Consequently, the

success probabilities for arbitrary stationary point process can

be well approximated by shifting the one for the Poisson point

process, which is known in analytical form.

ACKNOWLEDGMENT

The partial support of the U.S. National Science Foundation

through grant CCF 1216407 is gratefully acknowledged.

REFERENCES

[1] J. G. Andrews, F. Baccelli, and R. K. Ganti, “A Tractable Approach
to Coverage and Rate in Cellular Networks,” IEEE Transactions on
Communications, vol. 59, pp. 3122–3134, Nov. 2011.

[2] X. Zhang and M. Haenggi, “A Stochastic Geometry Analysis of Inter-
cell Interference Coordination and Intra-cell Diversity,” IEEE Transac-
tions on Wireless Communications, vol. 13, pp. 6655–6669, Dec. 2014.

[3] A. Guo and M. Haenggi, “Asymptotic Deployment Gain: A Simple
Approach to Characterize the SINR Distribution in General Cellular
Networks,” IEEE Transactions on Communications, vol. 63, pp. 962–
976, March 2015.

[4] M. Haenggi, “The Mean Interference-to-Signal Ratio and its Key Role
in Cellular and Amorphous Networks,” IEEE Wireless Communications
Letters, vol. 3, pp. 597–600, Dec. 2014.

[5] M. Haenggi, “ASAPPP: A Simple Approximative Analysis Framework
for Heterogeneous Cellular Networks.” Keynote presentation at the 2014
Workshop on Heterogeneous and Small Cell Networks (HetSNets’14).
Available at http://www.nd.edu/∼mhaenggi/talks/hetsnets14.pdf.

[6] M. Haenggi, Stochastic Geometry for Wireless Networks. Cambridge
University Press, 2012.

[7] M. Haenggi and R. K. Ganti, “Interference in Large Wireless Networks”,
Foundations and Trends in Networking (NOW Publishers), vol. 3, issue
2, pp. 127–248, 2008.

[8] G. Folland, Real analysis: modern techniques and their applications,”
John Wiley & Sons, 2013

[9] D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic Geometry and
its Applications, 2nd ed., Wiley series in probability and mathematical
statistics. New York: Wiley, 1995.

[10] J. B. Hough, M. Krishnapur, Y. Peres, and B. Virag, Zeros of Gaussian
analytic functions and determinantal point processes, American Math-
ematical Soc., vol. 51, 2009.

[11] N. Deng, W. Zhou, and M. Haenggi, “The Ginibre Point Process as a
Model for Wireless Networks With Repulsion,” IEEE Transactions on
Wireless Communications, vol.14, pp. 107–121, Jan. 2015.

[12] R. Giacomelli, R. K. Ganti, and M. Haenggi, “Outage Probability of
General Ad Hoc Networks in the High-Reliability Regime,” IEEE/ACM
Transactions on Networking, vol. 19, pp. 1151–1163, Aug. 2011

5

http://www.nd.edu/~mhaenggi/talks/hetsnets14.pdf

	Introduction
	Motivation
	Asymptotic SIR gains and the MISR
	Prior work
	Contributions

	System Model
	Asymptotics of SIR Distribution
	The expected fading-to-interference ratio (EFIR)
	Main result
	Relation to the SIR distribution for max-SIR BS association

	Examples
	Determinantal point processes
	Square lattice point processes

	Conclusions
	References

