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Abstract—Gauss-Poisson processes (GPPs) are a class of clus-
tered point processes, which include the Poisson point process as
a special case and have a simpler structure than general Poisson
cluster point processes. In this paper, we propose the GPP as
a model for wireless networks that exhibit clustering behavior.
We calculate the success probabilities and provide their bounds
for three kinds of GPP networks: (1) the basic model where the
desired transmitter is independent of the GPP and all nodes in
the GPP are interferers; (2) the non-cooperative model where
the desired transmitter is one of the nodes in the GPP; (3) the
cooperative model where both nodes in a two-node cluster of
the GPP serve a receiver cooperatively using non-coherent joint
transmission. Our results show that the bounds, especiallythe
upper bounds, provide useful approximations that well fit the
actual success probability for different operating regimes.

I. I NTRODUCTION

A. Motivation

Stochastic geometry tools have been widely used to analyze
wireless networks; see, e.g., [1]. Most existing works in the
literature model the wireless networks using the Poisson point
process (PPP) due to its tractability for analysis. But the
PPP modeling methodology may be inadequate for certain
scenarios where the spatial distribution of transceivers are less
likely to be independent from each other.

In some circumstances, the transmitters form clusters, due
to geographical factors (e.g. access points inside a building),
or population factors (e.g. base stations in urban regions),
or MAC protocols. Cluster point processes are thus suitable
for modeling transmitter locations in those circumstances.
A few prior studies have treated models of cluster point
processes, for example the Neyman-Scott process [2] [3]. In
those works dealing with cluster point process models, the
system performance indicators, such as success probability and
mean achievable rate, are usually in complex form involving
multiple integrals.

In this paper, we focus on the Gauss-Poisson process (GPP),
which is a relatively simple cluster point process with either
one or two points in a cluster. As such, it retains a good levelof
tractability and constitutes a definitive improvement overthe
PPP in cases where “attraction” exists between node locations.

B. Related Work

The GPP has been primarily studied in mathematical statis-
tics. In [4], stationarity, ergodicity, and infinite divisibility of
the GPP have been characterized, and connections with other

classes of point processes have been discussed. In [5], a simple
method for simulating the GPP has been proposed, given its
intensity and pair correlation function, and therein it hasbeen
also shown that the GPP can be used to generate stationary
point processes with almost arbitrary two-point correlation
function ξ (as long as it is clustered).1 This makes the GPP a
highly versatile model.

The cooperation technique considered in this paper belongs
to joint processing and is called joint transmission (JT). Both
coherent and non-coherent JT schemes exist. In [6], coherent
JT has been studied for cellular networks in which base
stations cooperate in a pairwise manner. In our cooperative
model, we consider pairwise transmitter cooperation of non-
coherent JT, where the transmitters are modeled as the GPP
and the receiver uses soft-combining [7] (also called delay-
diversity combining).

C. Contributions

We derive and bound the success probabilities for the
following three network models: (a) The basic model: the
desired transmitter is independent of the GPP. (b) The non-
cooperative model: the desired transmitter is a point of the
GPP, and the other point in the same cluster acts as an
interferer. (c) The cooperative model: the desired transmitter
is a point of the GPP, and the other point in the same cluster
(if any) acts as a cooperator.

From a broader perspective, the contribution of the paper
lies in the investigation of the benefits of cooperative com-
munications in the context of a larger network, i.e., in the
presence of interference from other nodes.

II. SYSTEM MODELS

Definition 1 (Gauss-Poisson process [1, Example 3.8]). A
GPP is a Poisson cluster process with homogeneous indepen-
dent clustering. The intensity of the parent process is denoted
by λp. Each cluster has one or two points, with probabilities
1 − p and p, respectively. If a cluster has one point, it is
located exactly at the location of the parent. If a cluster has
two points, one of them is at the location of the parent, and
the other is uniformly distributed within the circle with radius
u centered at the location of the parent.

1The functionξ quantifies the two-point correlation in excess of the Poisson
distributed points, and is related to the second moment density ρ(2)(r) [1,
Def. 6.5] byξ(r) , ρ(2)(r)/λ2 − 1.
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We model the locations of the transmitters as a GPP onR
2.

Without loss of generality, we setu = 1, while the results can
be readily extended to the case whereu is a random variable.
In asymptotic analysis, we also consider the regime ofu→ 0.
Denote the parent point process byΦp = {x1, x2, ...}. Let
{Φi, i ∈ N} be the daughter processes, denoted by

Φi =

{

{o} w.p. 1 − p
{o, zi} w.p. p

, (1)

wherezi is independently and uniformly distributed within the
circle centered at the origino = (0, 0) with radiusu. The GPP
is the union of the translated clusters:

Φ =
⋃

i:xi∈Φp

(Φi + xi).

Our analysis is focused on a typical receiver located at the
origin o with desired transmitter atx0 = (b, 0) with b 6= 0.

We adopt a path loss modelℓ(x) = ‖x‖−α, wherex ∈ R
2

andα > 2, and assume the power fading coefficients to be
spatially independent with exponential distribution of mean
unity (i.e., Rayleigh fading). Denote byhx the power fading
coefficient between the transmitterx and the receiver ato. We
set all transmit powers to unity and focus on the interference-
limited regime thus omitting the thermal noise.

A. Basic Model

The desired transmitterx0 is independent of the GPP, and
all points in the GPP are considered as interferers. In this case,
the signal-to-interference-ratio (SIR) at the receiver located at
the origino is

SIR =
h0b

−α

∑

x∈Φ hx‖x‖−α
, (2)

whereh0 is the power fading coefficient between the desired
transmitter and the receiver.

B. Non-cooperative Model

In this case, the desired transmitterx0 is taken as a parent
point from the GPP. All points exceptx0 in the GPP are
interferers. Therefore, there is an interferer near the desired
transmitter with probabilityp, and the SIR at the receiver is

SIR =
hx0b

−α

∑

x∈Φ\{x0}
hx‖x‖−α

. (3)

C. Cooperative Model

In this case, the desired transmitterx0 is taken from a cluster
Φ0 of the GPP, and if there is another point inΦ0, it acts as a
cooperator. We assume that if there is a cooperator, the receiver
uses soft-combining [7], which combines the signals from the
two transmitters by accumulating the power. In this way, the
receiver is served by both transmitters in a cluster, and all
points from other clusters of the GPP act as interferers.

The SIR at the receiver is

SIR =

∑

x∈Φ0
hx‖x‖−α

∑

x∈Φ\Φ0
hx‖x‖−α

. (4)

III. SUCCESSPROBABILITY

We assume that the receiver can decode its signal success-
fully if its SIR exceeds a thresholdθ. The interference is
denoted byI, which is the denominator of the SIR expression
in (2), (3) and (4) for the three models, respectively. In this
section, we derive the success probabilities of the three GPP
network models.

A. Basic Model

Lemma 1. Let v : R
2 7→ [0, 1] be a measurable function

such that 1 − v has bounded support. Then the probability
generating functional (PGFL) of the GPP is

G[v] = exp

(

λp

∫

R2

[

(1 − p)v(x)

+ pv(x)
1

2π

∫ 2π

0

v(x + w(ψ))dψ − 1
]

dx

)

, (5)

where w(ψ) = (cosψ, sinψ).

Proof: The PGFL of Poisson cluster processes is (see,
e.g., [1, Cor. 4.12])

GPCP[v] = exp
(

λp

∫

R2

(G
[x]
0 [v] − 1)dx

)

, (6)

whereG[x]
0 [v] is the PGFL of the clusterΦ[x] that is centered

at x, given byG[x]
0 [v] = E

(
∏

y∈Φ[x] v(y)
)

.
In the GPP, there are either one or two points in a cluster.

According to its definition, we have

G
[x]
0 [v] = (1 − p)v(x) + p

∫ 2π

0

v(x)v(x + w(ψ))
1

2π
dψ. (7)

Substituting (7) into (6), we obtain (5).

Theorem 1. In the basic model, the success probability is the
Laplace transform of the interference I at θbα, i.e.,

Ps(θ, b, λp, α, p) = LI(θb
α), (8)

LI(s) = exp

(

2πλp

∫ ∞

0

(

1 − p

1 + sr−α
+

p

1 + sr−α

1

2π

·
∫ 2π

0

1

1 + s(r2 + 1 + 2r cosψ)−α/2
dψ − 1

)

rdr

)

. (9)

Proof: The success probabilityPs is a function of
θ, b, λp, α andp, and

Ps(θ, b, λp, α, p) = P

(

h0b
−α

I
> θ

)

(a)
= LI(θb

α), (10)

where(a) follows becauseh0 ∼ exp(1). The Laplace trans-
form of I is derived by the PGFL as follows:

LI(s) = EΦ,{h}

(

exp
(

−
∑

x∈Φ

shx‖x‖−α
)

)

= EΦ

(

∏

x∈Φ

Eh

(

exp(−sh‖x‖−α)
)

)

= exp

(

λp

∫

R2

[

(1 − p)v(x)

+ pv(x)

∫ 2π

0

v(x+ w(ψ))
1

2π
dψ − 1

]

dx

)

, (11)
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where

v(x) = Eh

(

exp(−sh‖x‖−α)
)

=
1

1 + s‖x‖−α
. (12)

Substitute (12) into (11), we obtain (9).
Though the success probability is not in closed form, it has

bounds in closed form forα = 4.

Corollary 1. For α = 4, Ps(θ, b, λp, 4, p) has upper and lower
bounds in closed form, as follows:

Ps(θ, b, λp, 4, p) ≤ exp

(

− π2

2
λp(1 − p)

√
s+ λppWu(s)

)

,

and

Ps(θ, b, λp, 4, p) ≥ exp

(

− π2

2
λp(1 − p)

√
s+ λppWl(s)

)

,

where s = θb4,

Wu(s) =
π
√
s

4(9s2 + 40s+ 16)

(

8s
3
2 ln

s

s+ 4
+ (−3s2 + 24s

+ 16) arctan
2√
s
− π(

21

2
s2 + 48s+ 24)

)

+
π
√
s

2(4s+ 1)

·
(

s
3
2 ln

s

s+ 1
+ (3s+ 1)(arctan

1√
s
− π)

)

, (13)

and

Wl(s) = −π
2
√
s

4
− πs

1
4

8

(

2
√

2π −
√

2 ln
1 +

√
s−

√
2s

1
4

1 +
√
s+

√
2s

1
4

− 2(
√

2 + 2s
1
4 ) arctan

−
√

2 − s
1
4

s
1
4

− 2(
√

2 − 2s
1
4 )

· arctan
−
√

2 + s
1
4

s
1
4

)

+
2πs

3
2 + π

√
s

2(4s+ 1)
arctan

1√
s

+
πs2

4s+ 1
ln

s

s+ 1
− 2π2s

3
2 + π2√s

2(4s+ 1)
. (14)

Proof: Omitted due to space constraints.
The following corollary gives the success probability in the

asymptotic regimeu→ 0.

Corollary 2. In the basic model, the success probability in the
asymptotic regime u→ 0 is equal to the Laplace transform of
the interference I0 at θbα, i.e.,

Ps(θ, b, λp, α, p) = LI0(s), (15)

where s = θbα and

LI0(s) = exp

(

− 2π2λps
2
α

α sin
(

2π
α

)

(

1 +
2p

α

) )

. (16)

Proof: Let Φ1 ∈ Φp be the set of parent points of the
clusters with only one point in the GPP andΦ2 = Φp\Φ1

be the set of parent points of the clusters with co-located two
points in the GPP. Therefore,Φ1 andΦ2 are two independent
PPPs with intensities(1−p)λp andpλp respectively. LetI1 =
∑

x∈Φ1
hx‖x‖−α andI2 =

∑

x∈Φ2
(hx,1 +hx,2)‖x‖−α be the

interference fromΦ1 andΦ2 respectively, wherehx,1 andhx,2

are the power fading coefficients between the two transmitters

co-located atx and the typical receiver. The Laplace transform
of the interference is then given by

LI0(s) = E

(

exp
(

− sI1 − sI2
)

)

,

which evaluates to (16). From (10), we get the success
probability for the GPP in the limit ofu→ 0.

B. Non-cooperative Model

Lemma 2. Conditioned on a point of the parent process being
located at y, the conditional PGFL of the GPP excluding y is

Gy[v] = G[v]

(

1 − p+ p
1

2π

∫ 2π

0

v(y + w(ψ))dψ

)

, (17)

where w(ψ) = (cosψ, sinψ).

Proof: Denote the points in the cluster whose center is
the desired transmittery asΦ0, and all points in other clusters
asΦc = Φ\Φ0. From Slivnyak’s theorem [1], conditioning on
Φ0 does not change the distribution of other clusters, and the
distribution of the points excludingΦ0 remains the same as
the original GPPΦ. Thus, the conditional PGFL excludingy
is

Gy[v] = E

(

∏

x∈(Φc

S

Φ0)\{y}

v(x)

)

= E

(

∏

x∈Φc

v(x)

)

E

(

∏

x∈Φ0\{y}

v(x)

)

= E

(

∏

x∈Φ

v(x)

)

E

(

∏

x∈Φ0\{y}

v(x)

)

= G[v]

(

1 − p+ p

∫ 2π

0

v(y + w(ψ))
1

2π
dψ

)

. (18)

Theorem 2. In the non-cooperative model, the success prob-
ability is the Laplace transform of the interference I at θbα

Ps(θ, b, λp, α, p) = L̄I(s), (19)

where s = θbα and

L̄I(s) = LI(s) ·
(

1 − p

+
p

2π

∫ 2π

0

1

1 + s(b2 + 1 + 2b cosψ)−α/2
dψ

)

. (20)

Proof: The proof is similar to that of Theorem 1, with
the conditional PGFLGy[v] instead ofG[v] used.

Similar to the basic model,Ps(θ, b, λp, α, p) is not in closed
form. For α = 4, however, closed-form lower and upper
bounds are available.

Corollary 3. For α = 4, Ps(θ, b, λp, 4, p) has upper and lower
bounds in closed form, as follows:

Ps(θ, b, λp, 4, p) ≤ exp

(

− π2

2
λp(1 − p)

√
s+ λppWu(s)

)

·
(

1 − p+
p

2

( 1

1 + s(b2 + 1 + 2b)−2
+

1

1 + s(b2 + 1)−2

)

)

,
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and

Ps(θ, b, λp, 4, p) ≥ exp

(

− π2

2
λp(1 − p)

√
s+ λppWl(s)

)

·
(

1 − p+
p

2

( 1

1 + s(b2 + 1 − 2b)−2
+

1

1 + s(b2 + 1)−2

)

)

,

where s = θb4.

Proof: The proof is based on Corollary 1 and utilizes
the property of0 ≤ cosψ ≤ 1 for ψ ∈ [−π/2, π/2] and
−1 ≤ cosψ ≤ 0 for ψ ∈ [π/2, 3π/2].

The success probability in the asymptotic regimeu→ 0 is
given by the following corollary.

Corollary 4. In the non-cooperative model, the success prob-
ability as u → 0 is equal to the Laplace transform of the
interference I0 at θbα, i.e.,

Ps(θ, b, λp, α, p) = L̄I0(s), (21)

where s = θbα and

L̄I0 (s) =
bα + (1 − p)s

bα + s
exp

(

− 2π2λps
2
α

α sin
(

2π
α

)

(

1 +
2p

α

) )

.

Proof: The proof follows the same line as that of Corol-
lary 2 except for the conditional PGFL of the GPP asu→ 0.

C. Cooperative Model

In the cooperative model, the cooperator transmits the same
infomation as the desired transmitter simultaneously. In this
case, the received power, denoted byPw, is the sum of the
received signal power from the desired transmitter and the
cooperator, i.e.,

Pw =

{

hb−α w.p. 1 − p,
h1b

−α + h2c
−α w.p. p,

(22)

whereh, h1, h2 ∼ exp(1) are mutually independent, andc =
√

b2 + 1 + 2b cosψ, ψ ∼ unif(0, 2π).
The exponential distribution has the property that ifh ∼

exp(1), then lh ∼ exp(1/l), for l > 0. Thus, conditioned
on c, for the case wherePw = h1b

−α, Pw ∼ exp(bα); for
the case wherePw = h1b

−α + h2c
−α, if b 6= c, Pw follows

the hypoexponential distribution Hypo(bα, cα) and the PDF of
Pw is fP (x) = bαcα

bα−cα

(

exp(−cαx)− exp(−bαx)
)

, otherwise,
Pw ∼ Erlang(2, bα) andfP (x) = b2αx exp(−bαx).

Conditioned on that the center of a cluster is located aty,
the conditional PGFL of the GPP, excluding that cluster is

G̃y[v] = G[v]. (23)

This can be readily proved using Slivnyak’s theorem.

Theorem 3. In the cooperative model, the success probability
is

Ps(θ, b, λp, α, p) = (1 − p)LI(θb
α) + pEc

(

H(c)
)

(24)

where H(c) = bα

bα−cα LI(θc
α) − cα

bα−cα LI(θb
α) and the PDF

of c is fc(x) = 2x

π
√

(x2−(b−1)2)((b+1)2−x2)
over the interval

[|b− 1|, b+ 1].

Proof: The SIR at the receiver isPw/I. We have

Ps(θ, b, λp, α, p) = EPw
P

(Pw

I
> θ

)

= (1 − p)P
(hb−α

I
> θ

)

+ pP
(h1b

−α + h2c
−α

I
> θ

)

= (1 − p)LI(θb
α) + pQ, (25)

whereQ , P(h1b−α+h2c−α

I > θ). Since the case ofc = b
has a vanishing probability thus contributing zero toQ, we
haveQ = EI,c

(

bα

bα−cα exp(−θcαI) − cα

bα−cα exp(−θbαI)
)

=

Ec

(

H(c)
)

.
As c =

√

b2 + 1 + 2b cosψ, whereψ ∼ unif(0, 2π), the
CDF and the PDF ofc can be obtained directly.

For α = 4, upper and lower bounds of the success
probability can be derived.

Corollary 5. For α = 4 and b 6= 1/2, Ps(θ, b, λp, 4, p) has
upper and lower bounds, as follows:

Ps(θ, b, λp, 4, p) ≤
(

1 − p− p|b− 1|4
b4 − |b− 1|4

)

LI(θb
4)

+
pb4

b4 − |b− 1|4LI(θ|b − 1|4), (26)

and

Ps(θ, b, λp, 4, p) ≥
(

1 − p− p(b+ 1)4

b4 − (b + 1)4

)

LI(θb
4)

+
pb4

b4 − (b + 1)4
LI(θ(b + 1)4). (27)

Proof: The proof is based on Theorem 3 and the property
of |b− 1| ≤ c ≤ b+ 1.

To get the bounds in closed form, we may apply (8) and
Corollary 1 to (26) and (27). In (26), we use the upper bound
of LI(·) if the coefficient ofLI(·) is larger than0, and use
the lower bound ofLI(·) otherwise. While in (27), we use the
lower bound ofLI(·) if the coefficient ofLI(·) is larger than
0, and use the upper bound ofLI(·) otherwise.

It is worth noting that ifp = 0, the GPP reduces to the PPP
with intensityλ = λp. Substitutingp = 0 into Theorems 1-3,
we obtain the same result

Ps(θ) = exp
(

− πλpθ
δb2Γ(1 + δ)Γ(1 − δ)

)

, (28)

whereδ , 2/α. The result coincides with that in [1, Ch. 5.2].

IV. N UMERICAL RESULTS

The numerical results are obtained according to the analyt-
ical results we have derived.

Figure 1 shows the success probability and closed-form
bounds of the basic model as a function of the distance
between the receiver and the desired transmitter. We observe
that the success probability decreases with increasing distance
b. We also observe that the upper bounds are satisfactorily
tight for the basic model.

Figure 2 shows the success probability and closed-form
bounds of the non-cooperative model as a function of the
distance between the receiver and the desired transmitter.We
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Fig. 1. The success probability and closed-form bounds withvarying distance
between the receiver and the desired transmitter for the basic model (λp =
0.1, p = 0.5, α = 4).

observe that the upper bounds are tight for both large and
small values ofb. However, whenb approaches1, which is
the distance between two points in a two-point cluster, the
bounds become loose.
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Fig. 2. The success probability and closed-form bounds withvarying distance
between the receiver and the desired transmitter for the non-cooperative model
(λp = 0.1, p = 0.5, α = 4).

Figure 3 shows the success probability and closed-form
bounds of the cooperative model as a function of the distance
between the receiver and the desired transmitter. We also
observe that the bounds are tight for both large and small
values ofb, while they become loose whenb is close to1.

Figure 4 compares the success probability curves of the
three models. We observe that the performance of the non-
cooperative model is the worst while that of the cooperative
model is the best, with a gap of4 ∼ 5 dB.

V. CONCLUSION

In this paper, we proposed the application of the GPP
in several different wireless network models, and derived
the success probabilities and their bounds for the considered
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Fig. 3. The success probability and closed-form bounds withvarying distance
between the receiver and the desired transmitter for the cooperative model
(λp = 0.1, p = 0.5, α = 4).
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Fig. 4. The success probabilities of the basic model, the non-cooperative
model, and the cooperative model (λp = 0.1, p = 0.5, b = 1.5, α = 4).

models. The results indicate that the bounds, especially the
upper bounds, provide useful approximations that well fit the
actual success probability for different operating regimes.
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