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Abstract—Gauss-Poisson processes (GPPs) are a class of cluglasses of point processes have been discussed. In [S]péesim
tered point processes, which include the Poisson point press as method for simulating the GPP has been proposed, given its
a special case and have a simpler structure than general PeBn  niangity and pair correlation function, and therein it been

cluster point processes. In this paper, we propose the GPP as .
a model for wireless networks that exhibit clustering behaior. also shown that the GPP can be used to generate stationary

We calculate the success probabilities and provide their honds ~ Point processes with almost arbitrary two-point correlati

for three kinds of GPP networks: (1) the basic model where the function¢ (as long as it is clustered)This makes the GPP a

desired transmitter is independent of the GPP and all nodesni  highly versatile model.

the GPP are interferers; (2) the non-cooperative model wher ; ; ; ; ;

the desired transmitter is one of the nodes in the GPP; (3) the ¢ Th_etcooperat_lon tecdhrllque" c((j)r_ls!d:-:-:ed N t_hls_ pap‘(]a;_t;reéongs

cooperative model where both nodes in a two-node cluster of 0 Joint processing and IS called join ransmlssmn (J19

the GPP serve a receiver cooperatively using non-coherenoipt ~ Coherent and non-coherent JT schemes exist. In [6], coheren

transmission. Our results show that the bounds, especiallyne JT has been studied for cellular networks in which base

upper bounds, provide useful approximations that well fit the  stations cooperate in a pairwise manner. In our cooperative

actual success probability for different operating regime. model, we consider pairwise transmitter cooperation of-non

coherent JT, where the transmitters are modeled as the GPP

. INTRODUCTION and the receiver uses soft-combining [7] (also called delay

A. Motivation diversity combining).

Stochastic geometry tools have been widely used to analyze o
wireless networks; see, e.g., [1]. Most existing works ia the- Contributions
literature model the wireless networks using the Poisséntpo We derive and bound the success probabilities for the
process (PPP) due to its tractability for analysis. But tHellowing three network models: (a) The basic model: the
PPP modeling methodology may be inadequate for certal@sired transmitter is independent of the GPP. (b) The non-
scenarios where the spatial distribution of transceivegdess cooperative model: the desired transmitter is a point of the
likely to be independent from each other. GPP, and the other point in the same cluster acts as an
In some circumstances, the transmitters form clusters, dierferer. (c) The cooperative model: the desired tratiemi
to geographical factors (e.g. access points inside a bgjdi is a point of the GPP, and the other point in the same cluster
or population factors (e.g. base stations in urban regjongf any) acts as a cooperator.
or MAC protocols. Cluster point processes are thus suitableFrom a broader perspective, the contribution of the paper
for modeling transmitter locations in those circumstancekes in the investigation of the benefits of cooperative com-
A few prior studies have treated models of cluster poimaunications in the context of a larger network, i.e., in the
processes, for example the Neyman-Scott process [2] [3]. Rresence of interference from other nodes.
those works dealing with cluster point process models, the
system performance indicators, such as success propaiitit [l. SYSTEM MODELS

mean achievable rate, are usually in complex form involvinefinition 1 (Gauss-Poisson process [1, Example 3.8)
multiple integrals. _ GPP is a Poisson cluster process with homogeneous indepen-
In this paper, we focus on the Gauss-Poisson process (GRRht clustering. The intensity of the parent process is denoted
which is a relatively simple cluster point process with eith py p. Each cluster has one or two points, with probabilities
one or two points in a cluster. As such, it retains a good lefel 1 _ , and p, respectively. If a cluster has one point, it is
tractability and constitutes a definitive improvement otfe¥  |gcated exactly at the location of the parent. If a cluster has
PPP in cases where “attraction” exists between node lotzatiop points, one of them is at the location of the parent, and
the other is uniformly distributed within the circle with radius

B. Related Work u centered at the location of the parent.

The GPP has been prlmarlly studied in mathematical Statls-lThe function¢ quantifies the two-point correlation in excess of the Paisso

tics. In [4], stationarity, ergOdi(_:iWi and infinite diyb;'lity Pf distributed points, and is related to the second momentitgep& (r) [1,
the GPP have been characterized, and connections with otber 6.5] by¢(r) £ p(2) (1) /A2 — 1.



We model the locations of the transmitters as a GPRan IIl. SUCCESSPROBABILITY

Without loss of generality, we set= 1, while the results can e assume that the receiver can decode its signal success-
be readily extended to the case wheres a random variable. fy|ly if its SIR exceeds a threshold. The interference is

In asymptotic analysis, we also consider the regime ¢ 0.  denoted byZ, which is the denominator of the SIR expression
Denote the parent point process By = {x1,22,...}. Let iy (2), (3) and (4) for the three models, respectively. Irsthi

{®;,i € N} be the daughter processes, denoted by section, we derive the success probabilities of the threB GP
o, { {0} wp.1—p ) network models.
fo.z} wp.p A. Basic Model

wherez; is independently and uniformly distributed within thq_emma 1. Let v : R2
circle centered at the origin= (0,0) with radiusu. The GPP , '
is the union of the translated clusters:

— [0,1] be a measurable function
such that 1 — v has bounded support. Then the probability
generating functional (PGFL) of the GPP is

Hp G[v] = exp (/\p/ {(1 —p)v(z)
(2 P RZ
Our analysis is focused on a typical receiver located at the 2
origin o with desired transmitter at, = (b, 0) with b # 0. +pv(z)%/0 v +w(y))dy — 1} dr ), (5

We adopt a path loss modélr) = ||z||~%, wherez € R? T
anda > 2, and assume the é|:§IO\)/ver |l‘a!ling coefficients to bvghere w(®) = (cosp, sine).
spatially independent with exponential distribution of ane Proof: The PGFL of Poisson cluster processes is (see,
unity (i.e., Rayleigh fading). Denote by, the power fading €.g., [1, Cor. 4.12])
coefficient between the transmitterand the receiver at. We POP (2]
set all transmit powers to unity and focus on the interfegenc G [v] = exp ()‘P /R2(G0 [v] = 1)dx)’ (6)
limited regime thus omitting the thermal noise.

whereG™[v] is the PGFL of the clusteb!! that is centered

. atz, given b G =K 21 U .
A. Basic Model In t%e GPI)DI, t?le[rel are gig17!e€r¢([)r]1e(g2)two points in a cluster.
The desired transmitter, is independent of the GPP, andaccording to its definition, we have
all points in the GPP are considered as interferers. In teg,c o 1
the signal-to-interference-ratio (SIR) at the receivealed at G([f] [v] = (1 — p)v(x) —|—p/ v(z)v(r +w())=—dy. (7)
the origino is 0 2

hep—a Substituting (7) into (6), we obtain (5). [ |
0

> pea hallz] = () Theorem 1. In the basic model, the success probability is the

) ) o . Laplace transform of the interference I at 6b%, i.e.,
whereh, is the power fading coefficient between the desired

transmitter and the receiver. Ps(0,b, \p, a, p) = L1(6b%), (8)

oo 1 _
Lr(s) =exp (27r)\p/ ( L P !
0

1+ sr—« 1+ sr—« o

SIR =

B. Non-cooperative Model

27
In this case, the desired transmittey is taken as a parent / > ! — 5 - 1) Tdr). 9)
point from the GPP. All points except, in the GPP are o 1+s(r?+1+2rcostp)=

interferers. Therefore, there is an interferer near therekbs

transmitter with probabilityp, and the SIR at the receiver is Proof: The success probability?, is a function of
B b~ 0,b, \p, v andp, and
SIR = o h - (3) h b—a
2w ooy Pl Ps(9,b,/\p,a,p)—P< 7 '>9) @), (10)
C. Cooperative Model where (a) follows becauser, ~ exp(1). The Laplace trans-

In this case, the desired transmitigris taken from a cluster form of I'is derived by the PGFL as follows:

d, of the GPP, and if there is another pointdg, it acts as a r _E L o
cooperator. We assume that if there is a cooperator, thavegce 1(s) = Eg gy ( exp ( o Z sha||]| )

uses soft-combining [7], which combines the signals from th ved
two transmitters by accumulating the power. In this way, the - E@( H Eh(exp(—sh|x||_o‘)))
receiver is served by both transmitters in a cluster, and all ced
points from other clusters of the GPP act as interferers.
The SIR at the receiver is = exp (/\p /2 [(1 —p)o(z)
Dwew, Mallzl "

2m 1
SIR = : v(x v(r +w —dip — 1|dzx
B ey Palel @ 0o [ ol + wl)) s~ 1)as). @



where
—any 1
o(w) = Bn(exp(shllel] ™) = ;s (42)
Substitute (12) into (11), we obtain (9). |

co-located at: and the typical receiver. The Laplace transform
of the interference is then given by

L1, (s) = E(exp (—sh — SIQ)) ,

Though the success probability is not in closed form, it haghich evaluates to (16). From (10), we get the success

bounds in closed form fow = 4.

Corollary 1. For o = 4, P,(6, b, \p, 4, p) has upper and lower
bounds in closed form, as follows:

2
Ps(97ba /\pa47p) S eXp ( - %/\P(l _p)\/§+ /\Pqu(S))7

and
7T2
Ps(eabv )\p74ap) Z exp (_ 7)\])(1 —p)\/§—|— )\ple(S))?
where s = 6b*,
- 7T\/§ 3 S . 2
Wuls) = 1052+ 105 7 16) (882 ISy T8+ 2

2 21 /s
16) arctan —= — (s> + 48s + 24 PP
F16) arctan 72 —m(s” + 485 + ))+2(4s+1)
1
. <53 In sj—l + (35—|— 1)(arctanﬁ —7T)>, (13)
and
9 1
1
Wl(s)__wﬁ_w@f o LA Vst
4 1+ /5 + V257
—v/2—35
—2(\/§+23%)arctan\/_71—2(\/_—25%)
sS4
/24 st Orss
- arctan \/_1+S4 =+ 7TS2+7T\/§a]rctan—
st 2(4s +1) Vs
AN i L (14)
As+1 s+1 2(4s+1)

Proof: Omitted due to space constraints.

The following corollary gives the success probability i th

asymptotic regime: — 0.

Corollary 2. In the basic model, the success probability in the
asymptotic regime u — 0 is equal to the Laplace transform of
the interference I, at 6b%, i.e.,

PS(97 b7 )\pv Oz,p)
where s = 6b* and

=

=Ly, (S),

2m2\, sa 2p
R (1+ )) (16)

(15)

probability for the GPP in the limit ofi — 0. ]

B. Non-cooperative Model

Lemma 2. Conditioned on a point of the parent process being
located at y, the conditional PGFL of the GPP excluding y is

27
Golil = Glol(1-p+pg [ ol wav). @)
where w(1)) = (cos 1, sin ).

Proof: Denote the points in the cluster whose center is
the desired transmitter as®,, and all points in other clusters
as®. = ®\d,. From Slivnyak’s theorem [1], conditioning on
®, does not change the distribution of other clusters, and the
distribution of the points excluding@, remains the same as
the original GPP®. Thus, the conditional PGFL excluding

is
v(a:))

ze(®c UPo)\{y}

B E(zg U(iv))E(ze%\{y} U(CC))
— E( 1T v(x))E( 11 v(x))

zeP z€Po\{y}
2 1
—ctl(1-ptp [ ot u)gnae). a8)

G, [v] _E<

Theorem 2. In the non-cooperative model, the success prob-
ability is the Laplace transform of the interference I at 66

Py(6,b, \p, ct,p) = L1(s), (29)
where s = 0b* and
Li(s)=Lr(s)- (1—p
27
p 1
21 Jo 1+ s(b2 + 1+ 2bcose))—a/2 dv). (20)

Proof: The proof is similar to that of Theorem 1, with
the conditional PGFLG, [v] instead ofG[v] used. [ |
Similar to the basic modeF;(0,b, Ay, «, p) is not in closed
form. For « = 4, however, closed-form lower and upper
bounds are available.

Proof: Let ®; € ¢, be the set of parent points of the

clusters with only one point in the GPP add = ©,\®,

Corollary 3. For a = 4, P(6, b, A\, 4, p) hasupper and lower

be the set of parent points of the clusters with co-locates tvibounds in closed form, as follows:
points in the GPP. Therefor®, and®, are two independent
PPPs with intensitiesl —p) A, andp),, respectively. Let; =
S rea, hallz]| = andl = Y-, g (Aot +ha )|~ be the
interference fromb; and®, respectively, wheré, ; andh, o> . (11— p+ Q( 1 + 1

are the power fading coefficients between the two transmitte 2 \1+5(02+1+20)"2  1+s0*+1)"

2
Ps(ovba A12)747p) < exp < - %Ap(l _p)\/§+ Apqu(S))

D)




and Proof: The SIR at the receiver i8,,/I. We have

7T2 P
Ps(0,b,\p, 4,p) > exp < - 7&)(1 —p)Vs + Apsz(s)) Py(0,b,\p, 0, p) = EpwP(Tw > 9)
p 1 1 hb—« hib=% + hoc™ @
(1-p+2 =(1-pP >0) 42 T2 g
( p+2(1+s(b2+1—2b)—2+1+s(b2+1)—2))’ (1=p) ( )”’ ( T )
where s = 6b*. = (1 —p)Ls(0b%) + pQ, (25)

Proof: The proof is based on Corollary 1 and utilizedvhere @ £ P(!1t—Ft2c= > ¢). Since the case of = b
the property of0 < cosv < 1 for ¢ € [—m/2,7/2] and has a vanishing probability thus contributing zero(o we

—1 < costp < 0 for o € [r/2,3m/2). m haveQ = Er (50 exp(—0cT) — oz exp(—00°1)) =
The success probability in the asymptotic regimes 0 is  Ec (H(C))-
given by the following corollary. As ¢ = /b%> 4+ 14 2bcost), wherey ~ unif(0,2r), the
. CDF and the PDF of can be obtained directly. |
Corollary 4. In the non-cooperative model, the success prob- For a — 4, upper and lower bounds of the success

ability as « — 0 is equal to the Laplace transform of the
interference I at 0b<, i.e,

Ps(eabv )\pvavp) - Elo(s)v (21)
where s = #b% and

probability can be derived.

Corollary 5. For o = 4 and b # 1/2, P,(6,b, \p,4,p) has
upper and lower bounds, as follows:

2 Py(0,b, )y, 4 )<(1— —M)ﬁ(%‘*)
E_ (S)_ba+(1_p)8 (_QWQAPSQ ( +2_p)) s\, 0, Ap, &, D) = p b4—|b—1|4 I
T2 = e g asin(%”) ' pb* ool 114 26
m I( | - | )1 ( )
Proof: The proof follows the same line as that of Corolypq
lary 2 except for the conditional PGFL of the GPPuas- 0. 4
B ROb N> (1-p- M)L‘](Gb“)
» Yy APy = b4_(b+1)4
C. Cooperative Model pb* Li00b+1)%Y.  (27)
4 _ 4 '
In the cooperative model, the cooperator transmits the same bt —(b+1)
infomation as the desired transmitter simultaneously.his t
case, the received power, denoted By, is the sum of the Proof: The proof is based on Theorem 3 and the property
received signal power from the desired transmitter and the|b — 1| <c < b+ 1. ]
cooperator, i.e., To get the bounds in closed form, we may apply (8) and
o hbh—c w.p.1—p, 22) Corollary 1 to (26) a_m_d (27). In (26), we use the upper bound
W= b 4 hoc™®  w.p. p, of L;(-) if the coefficient of £;(-) is larger than0, and use

. the lower bound ofZ;(-) otherwise. While in (27), we use the
whereh, hi, hy ~ exp(1) are mutually independent, and= |ower bound ofz;(-) if the coefficient of£;(-) is larger than
Vb2 +14+2b costh, ¥ ~ _unlf_(O, 2m). ) 0, and use the upper bound 6f (-) otherwise.

The exponential distribution has the property thatif~ It is worth noting that ifp = 0, the GPP reduces to the PPP
exp(1), thenih ~ exp(1/l), for I > 0. Thus, conditioned \yit intensity A — \p. Substitutingp = 0 into Theorems 1-3,
on ¢, for the case wherd, = h1b™%, P, ~ exp(b®); for \ye obtain the same result
the case wherd, = h1b~% + hyoc™ @, if b # ¢, P, follows

the hypoexponential distribution Hyfig*, ¢*) and the PDF of Py(0) = exp (— mA0°0*T (1L +6)I(1 - 8)),  (28)
P, is fp(x) = biaf; (exp(—c®z) —exp(—b®z)), otherwise,

A . . . .
P, ~ Erlang2, %) and fp(z) = b2z exp(—bz). whered = 2/«. The result coincides with that in [1, Ch. 5.2].

Conditioned on that the center of a cluster is locateg,at
the conditional PGFL of the GPP, excluding that cluster is IV. NUMERICAL RESULTS
~ The numerical results are obtained according to the analyt-
Gylv] = G[v]. (23) ical results we have derived. ’ ’
This can be readily proved using Slivnyak’s theorem. Figure 1 shows the success probability and closed-form
bounds of the basic model as a function of the distance
between the receiver and the desired transmitter. We observ
that the success probability decreases with increasirgratie
Pi(0,b, Ay, a,p) = (1 — p)L1(6b%) + pE.(H(c))  (24) b. We also observe that the upper bounds are satisfactorily

wh be o oo oY and th tight for the basic model.
ere H(c) = ga—m L1(0¢%) — = L1(66*) and the PDF Figure 2 shows the success probability and closed-form

) K - :
of cis fe(z) = e O the interval 5 nds of the non-cooperative model as a function of the

[1b—1],b+1]. distance between the receiver and the desired transnwiter.

Theorem 3. In the cooperative model, the success probability
is
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