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Abstract—Channel coding alone is not sufficient to reliably
transmit a message of finite length from a source to one or
more destinations as in, e.g., file transfer. To ensure that no
data is lost, it must be combined with rateless erasure correcting
schemes on a higher layer, such as a time-division multiple access
(TDMA) system paired with automatic repeat request (ARQ)
or random linear network coding (RLNC). We consider binary
channel coding on a binary symmetric channel (BSC) and q-
ary RLNC for erasure correction in a star network, where Y
sources send messages to each other with the help of a central
relay. We focus on finite block lengths and compare the expected
throughputs of RLNC and TDMA. For a total message length
of K bits, which can be subdivided into blocks of smaller size
prior to channel coding, we obtain the channel coding rate and
the number of blocks that maximize the expected throughput
of both RLNC and TDMA, and we find that TDMA is more
throughput-efficient for small K and small q.

I. INTRODUCTION

Random linear network coding (RLNC) has recently been

shown to improve network performance in several broadcast

and multicast scenarios. For example, considering packet era-

sure channels on the link layer, RLNC is known to improve

throughput and reduce delay for wireless broadcast [1]–[4].

In contrast, we consider the joint design of channel and

network coding. We assume that the size of a block is not

predetermined and, for a finite message length, the sources

in a network may choose the number of data blocks so that

the throughput of the overall system is maximized. Joint error

and erasure correcting coding for finite message lengths was

analyzed in [5]–[7]. In [5] the authors bound the performance

of random coding on the physical and link layer using error

exponents to trade off system throughput and delay. In [6]

the combination of RLNC and continuous-time orthogonal

waveform channels was investigated. Both papers aim to

maximize throughput given a maximum delay constraint. By

contrast, in this paper we do not enforce a maximum delay

constraint, but focus instead on the expected throughput for

reliable communication, assuming the senders continue to

transmit until the receivers have correctly received the entire

message as in, e.g., file transfer. By maximizing the expected

throughput, we also minimize the expected delay.

In this paper, we extend the results of [7] which considered

broadcast from one source to multiple destinations to a star

network as depicted in Fig. 1. With the help of a central relay,
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Fig. 1. Star network in which Y sources communicate over noisy BSCs
with the help of a central relay.

Y sources, S1, . . . , SY , communicate with each other over

noisy binary symmetric channels (BSCs). We assume there is

no direct path between any of the sources, i.e., they are only

connected to the central relay, which receives transmissions

from all sources and can broadcast to all sources. We consider

the case where each source Si has a message of finite length

K bits that is intended for all the other Y − 1 sources Sj ,

j = 1, . . . , Y , j 6= i. In this setting, channel coding alone is

not sufficient to guarantee reliable communication and it must

be combined with rateless erasure correcting schemes, such as

a time-division multiple access (TDMA) system paired with

automatic repeat request (ARQ) [8] or q-ary RLNC.

We define the time that it takes to transmit one bit as a

time unit and, when maximizing the expected throughput,

we minimize the expected number of time units it takes to

successfully transmit messages from Y sources to the other

Y − 1 sources. Our goal is to jointly find the number of

blocks m and the channel coding rate R that maximize

system throughput. Choosing a star network as a model allows

us to combine several prominent features of more general

networks. In the RLNC case, the star network model includes a

multiple-access channel (MAC) phase followed by a broadcast

(BC) phase. We first analyze these two phases separately

before combining them to maximize the throughput of the star

network.

II. SYSTEM MODEL

A. Star Network Setup

As shown in Fig. 2, a source Si, i = 1, . . . , Y , splits its

message of length K bits into m binary data blocks Dij , j =
1, . . . ,m, of length K/m bits, or equivalently m q-ary data

blocks D̃ij , j = 1, . . . ,m, of length K/(ml) q-ary symbols.

We assume that q is a power of two, i.e., q = 2l and that K



Fig. 2. Combined channel and network coding at source Si.

is divisible by ml. A source Si then performs RLNC on its m
data blocks to create a network coded block B̃ib by choosing

a vector ãib of length m of coefficients from GF(q), where the

index b does not have a fixed range, since as many blocks are

created as are necessary to achieve reliable communication.

The coded block B̃ib is then the linear combination of the m
data blocks multiplied by the corresponding components of

the coefficient vector ãib, i.e., B̃ib =
∑m

j=1 ãib(j)D̃ij , which

can also be represented as a binary block of length K/m bits

using the notation Bib. A header of constant size h bits is

then appended to each coded block Bib to form a channel

input block B̂ib of length k = K/m + h bits. The header

can, for example, contain a cyclic redundancy check (CRC)

to detect decoding failures. Finally, each channel input block

B̂ib is protected by a binary channel code of rate R, forming

the channel coded block vib.

a) MAC phase: During the MAC phase, all sources

transmit to the relay simultaneously. We model the channel

from the sources to the relay as a binary adder channel [9],

[10], so that the relay receives a value equal to the (real)

sum of the bits sent by the sources plus a noise term. The

relay then quantizes each received value to the nearest integer

and makes a hard decision. If the quantized value is even, it

decides a received zero, and if the quantized value is odd, it

decides a received one, so that the resulting received bit can

be modeled as the modulo-2 superposition of the bits sent

by all the sources plus a noise bit. Equivalently, the received

superimposed vector at the relay is given by

rb = vb ⊕ e = v1b ⊕ v2b ⊕ . . .⊕ vY b ⊕ e, (1)

where ⊕ symbolizes modulo-2 addition and e is a binary

vector whose elements are Bernoulli i.i.d. random variables

that are one with probability pMAC. If the relay is able to

decode vb, it broadcasts vb to the sources. Should the relay not

be able to decode, it does not transmit. We assume the sources

can sense the channel, so if the relay fails to decode and does

not transmit, the sources immediately transmit another channel

coded block and we have another MAC phase.

b) BC phase: During the BC phase we assume that the

relay is connected to each of the destinations via independent

BSCs. We also assume that the sources are at about the same

distance from the relay, and thus experience the same path loss,

so that they share a common channel crossover probability

pBC.

Each channel coded block vb sent by the relay during

the BC phase is a linear combination of Y m data blocks,

multiplied by a corresponding set of Y m network coding

coefficients. We assume that the sources and the receivers

use Y synchronized pseudo-random number generators, each

source with a different seed, to generate the sequences for ãb,

so that any source knows the network coding coefficients of

all sources.

The column vector of Y m network coding coefficients

ãb = [a1b, . . . ,aY b]
′ corresponding to a block b is the bth

column in the generator matrix G employed by the RLNC in

the star network, and B̃b =
∑Y

i=1 B̃ib, the superposition of the

network coded blocks, can be viewed as a code symbol of the

RLNC. When a source Si receives a vb from the relay, it first

decodes the binary channel code to obtain B̂b =
∑Y

i=1 B̂ib.

If decoding is successful, the header is removed and, after

binary to q-ary conversion, we obtain B̃b. Source Si then

subtracts its own contribution to B̃b, which is B̃ib, and stores

the superposition of the other Y − 1 network coded blocks

B̃jb, j = 1, . . . , Y , j 6= i, as an element in a vector of received

RLNC symbols. It also stores the subset of (Y −1)m network

coding coefficients in ãb involved in creating the superposition

B̃jb as a column in its coefficient matrix Gi, the perceived

generator matrix of the RLNC from the point of view of source

Si. After the end of the BC phase, another MAC phase begins.

Once a source Si has received enough blocks from the relay

to form a matrix Gi with (Y − 1)m linearly independent

columns, it can recover the (Y − 1)m data blocks from the

other sources by inverting the matrix Gi and multiplying it

by its vector of received RLNC symbols. Then it sends a

single acknowledgment (ACK) to the relay. Once the relay has

collected Y ACKs from the Y sources, it broadcasts an ACK to

the sources, terminating transmission. All sources continue to

transmit until they receive an ACK from the relay. We assume

that the transmission of an ACK is instantaneous and reliable,

i.e., it does not consume any resources and it is never received

erroneously.

As a reference scheme we consider TDMA transmission of

the sources, paired with ARQ. We also assume a source splits

its message into m data blocks, but no network coding is used.

The MAC phase in Fig. 1 is replaced by a TDMA phase,

where only one source transmits to the relay at a given time

and the individual data blocks are again protected by a binary

channel code of rate R. The transmitting source Si repeats

the transmission of a channel coded block as many times as is

necessary for the relay to receive the data block correctly, at

which point the relay transmits an ACK. After the relay has

received the data block correctly it broadcasts it to all sources.

When a source receives the data block correctly, it sends an

ACK to the relay. The relay repeats the BC transmission

as many times as is necessary until all Y − 1 sources Sj ,

i = 1, . . . , Y , j 6= i, receive the data block correctly. After

the steps described above have been successfully completed

for source Si, it is the turn of the next source to transmit

a data block to the relay, and the sources are scheduled in

a round robin fashion with m rounds. After each source has

successfully transmitted m data blocks, the transmission ends.



B. Channel Coding

The block error probability ǫ of random coding on the BSC

with code rate R can be bounded above as a function of the

random coding error exponent E(R). Using the union bound,

we have E(R) = R0 − R, where R0, the cutoff rate of the

channel, depends on the crossover probability p of the BSC

[11]. Then we obtain

ǫ ≤ 2−n (R0−R), (2)

where n = k/R is the block length of the code and k =
K/m+h bits. Using the union bound to bound channel coding

performance allows us to obtain analytical expressions for the

optimum channel coding rate and optimum number of data

blocks in Sections III–V.

C. The Expected Overhead of RLNC

Considering a single source on its own and RLNC over

GF(q), the probability that m+x independently created column

vectors of network coding coefficients ã form an m× (m+x)
matrix of rank m, i.e., the probability that m + x network

coded blocks are sufficient to decode the RLNC of that source

is given by Psuccess(m,x, q) =
∏m

i=1

(

1− q−x−i
)

[12]. In

the star network, a block broadcast by the relay is a linear

combination of Y m data blocks and, since the network coding

coefficients are chosen independently at all sources, the prob-

ability that all Y sources can construct an invertible matrix of

rank (Y −1)m from (Y −1)m+x correctly received blocks is

given by P ∗

success(m,x, q, Y ) = (Psuccess((Y − 1)m,x, q))
Y

.

We can now make use of a result from [12] to derive the

following upper and lower bounds on the expected overhead

X∗(q, Y ) of RLNC in the star network (see [13] for details):

Y
∑

j=1

(

Y

j

)

(−1)j+1 (q2 − q)j − qj

(q − 1)j(qj − 1)2
<

X∗(q, Y ) <

Y
∑

j=1

(

Y

j

)

(−1)j+1 q2j − (q − 1)j

(q − 1)j(qj − 1)2
,

(3)

where both bounds are independent of the number of data

blocks m and tend to zero as q gets large.

Modeling the expected coding overhead of RLNC as a

constant fractional number of blocks leads to opposing op-

timization criteria for channel coding and RLNC when a

message of finite size K bits is divided into m data blocks:

• More data blocks, and thus shorter channel coded blocks,

lead to a smaller coding overhead of RLNC in bits.

• Longer channel coded blocks, and thus fewer data blocks,

lead to more powerful channel codes.

III. THE MAC PHASE

To optimize throughput for the MAC phase, we assume that

the channels from the relay to the sources are error-free, i.e.,

pBC = 0, so that the relay does not need a channel code, and

that the relay removes the h header bits prior to broadcasting.

Modeling the expected coding overhead X∗(q, Y ) of RLNC as

a constant fractional number of blocks, on average each source

must collect (Y − 1)m +X∗(q, Y ) network coded blocks to

be able to decode. Using (2) and letting n = k/R = (K/m+
h)/R, we obtain (see [13])

NMAC
RLNC ≈

k ((Y − 1)m+X∗(q, Y ))

R
(

1− 2−k(R0/R−1)
) (4)

for the expected number of bits that must be sent by the

sources. For TDMA, a total of Y m blocks must be transmitted

to the relay by the Y sources, and we obtain (see [13])

NMAC
TDMA ≤

Y (K +mh)

R
(

1− 2−(
K
m

+h)(R0
R

−1)
) (5)

for the expected total number of transmitted bits. (4) and (5)

depend on the BSC crossover proability pMAC through the

channel cutoff rate R0.

A. The Optimum Channel Coding Rate

Taking the partial derivative of (4) with respect to R and

setting it to zero, we obtain (see [13])

R

R0
=

− ln(2)k

W−1

(

−e−(ln(2)k+1)
)

+ 1
(6)

for the optimum channel coding rate as a fraction of the

cutoff rate of the channel, where W−1(x) represents the lower

branch of the Lambert-W function. From (6) we see that the

optimum channel coding rate ratio R/R0 is only a function

of the channel input block length k and is independent of

the expected overhead X∗(q, Y ) of RLNC and the number of

sources Y . It is thus also the optimum channel coding rate for

a scheme employing TDMA.

B. The Optimum Number of Blocks

Now taking the partial derivative of (4) with respect to m
and setting it to zero, we obtain

2z(
K
m

+h) =
(

1 +
ln(2)zK

(

K
m + h

)

(X∗(q, Y ) +m(Y − 1))

KX∗(q, Y )− hm2(Y − 1)

)

,
(7)

where z = (R0/R) − 1. In general, a closed form solution

of (7) cannot be found. However, for h = 0 and Y = 2 we

can again use the Lambert-W function to solve for m, and the

optimum number of blocks m, given a constant R/R0 and the

message length K, is

m =
− ln(2)zK

1 + ln(2) zK
X(q,2) +W−1

(

−e−(1+ln(2) zK
X(q,2)

)
) . (8)

For other values of h and Y we solve (7) and (6) jointly

using numerical methods to obtain the optimum number of

blocks m that minimizes the expected number of transmissions

and maximizes the throughput. For h = 16, Fig. 3 shows

the optimum number of blocks m given the total message

length K, the number of sources Y , and RLNC over GF(q).

As K increases, we observe that the maximum throughput is

achieved for a larger number of blocks m. Since the expected

coding overhead X∗(q, Y ) in blocks increases with the number

of sources in the star network, the optimum number of blocks

m increases with Y for a fixed message length K. On the other
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Fig. 3. Optimum number of blocks m given the message length K, the
number of sources Y , and header size h = 16 for RLNC over different
Galois field sizes q.

hand, since the expected coding overhead X∗(q, Y ) decreases

with increasing Galois field size, the optimum number of

blocks decreases with q.

IV. THE BC PHASE

To optimize throughput for the BC phase, we assume that

the channels to the relay are error free, i.e., pMAC = 0. Further,

since pMAC = 0, we assume that during the MAC phase the

sources transmit to the relay uncoded, i.e., R = 1, and that

no header is used. A header of length h is then appended to

each block at the relay, and the relay uses a channel code of

rate R < 1 to protect the blocks.

A. TDMA BC Paired With ARQ

Consider the TDMA scheme, where the expected number

of blocks that the relay must broadcast, MBC
TDMA, is given in

[3]. Using (2) and NBC
TDMA = kMBC

TDMA/R, we obtain for the

expected number of bit transmissions by the relay (see [13])

NBC
TDMA =

Y (K +mh)

R

∞
∑

i=0

1−
(

1− 2−i(K
m

+h)(R0
R

−1)
)Y−1

,

(9)

where R0 is the cutoff rate of a BSC with crossover probability

pBC. For any fixed coding rate R, the factor Y (K+mh)/R in

(9) as well as the BC channel block error probability ǫBC are

strictly increasing with increasing m. So the throughput for

the TDMA system paired with ARQ is maximized for m = 1
and a channel input block of size k = K + h.

To obtain the channel coding rate that maximizes through-

put, we transform (9) into a finite sum and use the partial

derivative w.r.t. R to obtain (see [13])

Y
∑

i=1

(−1)i
(

Y

i

)

1− 2−izk − ik ln(2)R0

R 2−izk

(1− 2−izk)
2 = 0, (10)

where z = (R0/R)− 1.

For TDMA and Y = 2, the channel coding rate that

maximizes throughput (10) in the BC phase is the same as

the rate that maximizes throughput for transmission to the

relay (6), obtained in Section III. In both cases, messages

are transmitted from one sender to one intended receiver. For
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Fig. 5. Optimum number of blocks for BC from the relay for h = 16.

broadcast to a larger number of sources Y , we can numerically

find the solution of (10), and the optimum rate ratios R/R0

for different numbers are destinations are shown as the solid

lines in Fig. 4. We see that, while (6) does not depend on the

number of sources transmitting to the relay, during the BC

phase the optimum channel coding rate R for TDMA as a

fraction of the cutoff rate R0 decreases as the number of BC

destinations increases and, for Y > 2, is smaller than (6). The

optimum number of blocks for the TDMA scheme, however,

is m = 1 for both transmission to the relay, considered in

Section III, and the BC phase.

B. BC Using RLNC

Using RLNC, the expected number of network coded blocks

MBC
RLNC that the relay must broadcast is given in [3], and the

expected number of bits that the relay must transmit is given

by NBC
RLNC = kMBC

RLNC/R. We solve the resulting multidimen-

sional optimization problem using numerical methods. For the

BC scenario using RLNC, Fig. 5 shows the optimum number

of data blocks m for h = 16. Comparing the optimum number

of blocks in Fig. 5 to the MAC phase displayed in Fig. 3,

the number of blocks that maximizes throughput is generally

smaller for the BC phase. The most prominent difference

between Figs. 5 and 3 is that, while for the MAC phase the

optimum number of data blocks increases with the number

of sources, for the BC phase the optimum number of blocks

decreases with an increase in the number of BC destinations
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Y , thus putting more emphasis on the channel coding being

able to provide more reliable individual blocks.

V. JOINT OPTIMIZATION FOR THE STAR NETWORK

From Sections III and IV, we see that the number of data

blocks and the channel coding rate that maximize throughput

differ for transmission from the sources to the relay and for

BC from the relay. In a practical system, however, it would be

desirable to have the same channel coding rate and the same

block size for transmission to and from the relay so we now

jointly optimize the throughput of the star network, keeping

m and R constant. We refer to the time it takes to transmit

one block as a time slot.

For the RLNC scheme, the expected number of time slots

that are occupied by transmissions in the star network is given

by M∗

RLNC = MBC
RLNC (1 + 1/(1− ǫMAC)), which relies on

the fact that, for every block that the relay broadcasts, on

average 1/(1− ǫMAC) transmissions from the sources to the

relay are necessary, for MAC block error probability ǫMAC.

Similarly, for the TDMA scheme, the expected number

of time slots that are occupied by transmissions is given

by M∗

TDMA = MMAC
TDMA + MBC

TDMA. In this case, since the

throughput for both the transmission phase to the relay and

the BC phase from the relay is maximized for m = 1, one

channel input block of length k = K + h bits for each source

Si is also optimum when considering both phases jointly.

In the following, we consider the symmetric case, where

ǫMAC = ǫBC. In this case, the channel coding rate that

maximizes the throughput for TDMA can be obtained by

taking the derivative of N∗

TDMA = kM∗

TDMA w.r.t. the channel

coding rate R (see [13] for details), and the optimum channel

coding rate that jointly maximizes throughput for the TDMA

scheme is also depicted in Fig. 4. For Y > 2, the optimum

channel coding rate for the star network decreases with the

number of sources, similar to the TDMA BC case. However,

comparing the optimum rate for the BC phase alone to the

jointly optimum rate for the same number of sources Y ,

we find that the channel coding rate that jointly maximizes

throughput for the star network is higher than the one that

gives the maximum throughput for the BC phase alone.

Fig. 6 shows the average throughput ratio

TRLNC/TTDMA = M∗

TDMA/M
∗

RLNC of RLNC over GF(4)

to TDMA and the asymptotic throughput ratios are plotted

as horizontal black lines. For small message lengths K, we

see that the average throughput ratio rises steeply before the

curves flatten out and slowly approach their asymptotic value

given by TRLNC/TTDMA = Y/(Y − 1). As the header size

h increases, the average throughput ratio decreases, and a

larger message length K is needed to obtain a given average

throughput ratio. For small message lengths K and large

header sizes h, TDMA is more throughput-efficient. For

example, for h = 32 and Y = 6 sources, we require K > 900
bits for RLNC to be more throughput-efficient than TDMA.

VI. CONCLUSIONS

We analyzed the joint design of channel coding on the

physical layer and random linear network coding on the link

layer for a star network where Y outer sources send fixed

length messages to each other with the help of a central relay.

For RLNC over a finite Galois field of size q and a message

of total length K at each source, we obtain the number of

data blocks and the channel coding rate that should be used

to maximize the throughput of the star network using RLNC,

assuming binary symmetric channels between the sources and

relay and a binary adder channel model at the relay. We also

obtain the optimum number of blocks and the optimum rate

for a reference TDMA system and compare the throughputs of

the two transmission schemes. We find that, for small message

lengths K and RLNC over small Galois fields q, TDMA is

more throughput-efficient than RLNC, while RLNC is more

throughput-efficient when the message length K gets large.
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