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Abstract—The feasibility of successive interference cancellation
(SIC) depends on the received power ordering from different
users, which, in turn, depends on the fading distribution, path
loss function and network geometry. Using a framework based on
stochastic geometry, this paper studies the aggregate throughput
in d-dimensional random wireless networks with SIC capability.
We consider networks with arbitrary fading distribution, power-
law path loss; the network geometry is governed by a non-
uniform Poisson point process (PPP). Our results demonstrate
how the performance of SIC changes as a function of the
network geometry, fading distribution, and the path loss law.
An important observation is that, in interference-limited net-
works, lower per-user information rate always results in higher
aggregate throughput, while in noisy networks, there exists a
positive optimal per-user rate at which the aggregate throughput
is maximized.

I. INTRODUCTION

Successive interference cancellation (SIC) is a promising

technique to significantly improve the efficiency of wireless

networks. While known to be suboptimal in general, SIC is

more amenable to implementation compared with the capacity-

achieving scheme (joint decoding) [1]–[3]. However, in a

network without centralized power control, the use of SIC

hinges on the ordering of the received power from different

users (active transmitters) [4], which further depends on the

spatial distribution of the users as well as many other network

parameters.

Focusing on the aggregate throughput and assuming that all

the transmitters use the same rate and the same power, this

paper investigates the performance of SIC in d-dimensional

random wireless networks with general fading distribution,

power law path loss and Poisson distributed users. We pro-

vide upper and lower bounds on the aggregate throughput.

Our results suggest that, in interference-limited networks, the

aggregate throughput always increases as the per-user rate

decreases. We also derive a closed-form upper bound on the

asymptotic throughput which is shown by simulation to be

tight. On the other hand, with noise, there exists an optimal

positive per-user rate that maximizes the aggregate throughput.

Existing works studying SIC in similar contexts, e.g., [1],

are typically based on a guard zone approximation and con-

sider exclusively uniform network and Rayleigh fading. In

contrast, this paper uses an exact approach to tackle the

problem in a more general type of networks with arbitrary

fading distribution.
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Fig. 1: Realizations of two non-uniform PPP with intensity function
λ(x) = 3‖x‖b with different b, where x denotes an active transmitter
and o denotes the receiver at the origin.

II. SYSTEM MODEL AND THE AGGREGATE THROUGHPUT

A. The Power-law Poisson Network with Fading (PPNF)

Let the receiver be at the origin o and the active transmitters

be represented by a marked Poisson point process (PPP) Φ̂ =
{(xi, hxi

)} ⊂ R
d × R

+, where x is the location of the users,

hx is the iid fading coefficient associated with the link from

x to o, and d is the number of dimensions of the space. When

the density function of the ground process Φ ⊂ R
d is λ(x) =

a‖x‖b, a > 0, b ∈ (−d, α − d), where ‖x‖ is the distance

from x ∈ R
d to the origin and α is the path-loss exponent,

we refer this network as a power-law Poisson network with

fading (PPNF). The condition b ∈ (−d, α − d) is needed in

order to maintain a finite received power at o.

Fig. 1 shows realizations of two 2-d PPNFs with different

b; Fig. 1a represents a network clustered around o whereas

the network in Fig. 1b is sparse around the receiver at o. In

general, the smaller b, the more clustered the network is at the

origin, and b = 0 refers to uniform networks.

B. SIC Model and the Aggregate Throughput

Consider the case where all the nodes (users) transmit with

unit power. Then, with an SINR model, a particular user at

x ∈ Φ can be successfully decoded (without SIC) iff

SINRx =
hx‖x‖

−α

∑

y∈Φ\{x} hy‖y‖−α +W
> θ,



where W is the noise power and θ is the SINR decoding

threshold.

In the case of perfect interference cancellation, once a

user is successfully decoded, its signal component can be

completely subtracted from the received signal. Assuming the

decoding order is always from the stronger users to the weaker

users1, we can generalize the SINR model above to the case

with SIC. More precisely, a user x can be decoded if all

the users in Ic = {y ∈ Φ : hy‖y‖
−α > hx‖x‖

−α} are

successfully decoded and

hx‖x‖
−α

∑

y∈Φ\{x}\Ic
hy‖y‖−α +W

> θ.

Consequently, consider the ordering of all nodes in Φ such

that hxi
‖xi‖

−α > hxj
‖xj‖

−α, ∀i < j. The number of

users that can be successively decoded is N iff hxi
‖xi‖

−α >
θ
∑∞

j=i+1 hxj
‖xj‖

−α+θW, ∀i ≤ N and hxN+1
‖xN+1‖

−α ≤
θ
∑∞

j=N+2 hxj
‖xj‖

−α + θW .

The aggregate throughput (or, sum rate) is the total infor-

mation rate received at the receiver o. Since all the users in

the system transmit at the same rate log(1 + θ), the sum rate

is

R = E[log(1 + θ)N ] = log(1 + θ)E[N ]. (1)

The goal of this paper is to evaluate R as a function of different

system parameters.

C. The Path Loss Process with Fading (PLPF)

In order to address the randomness from fading and random

location of the nodes more concisely, we use the unified

framework introduced in [5] which has been shown to be quite

convenient in understanding the behavior of SIC in [6]. In

particular, we define the path loss process with fading (PLPF)

as Ξ , {ξi = ‖x‖α

hx
}, where the index i is introduced in

the way such that ξi < ξj for all i < j. Then, we have the

following lemma whose proof is provided in [6].

Lemma 1. The PLPF Ξ, corresponding to a PPNF, is a one-

dimensional PPP on R
+ with intensity measure Λ([0, r]) =

aδcdr
β
E[hβ ]/β, where δ , d/α, β , δ + b/α ∈ (0, 1) and h

is a fading coefficient.

Since ξ−1
i is, by definition, the received power from the ith

strongest users in the network, it suffices to only consider the

PLPF Ξ to study the aggregate throughput.

III. INTERFERENCE-LIMITED NETWORKS

In interference-limited networks, the noise power is negligi-

ble in comparison with interference and thus can be ignored,

i.e., W = 0. In this case, to study the statistics of N
(and thus R), it suffices to consider only the standard PLPF

(SPLPF) Ξβ , i.e., the PLPF with normalized intensity measure

Λ([0, r]) = rβ [6, Fact 1].

1It is straightforward to show that this stronger-to-weaker decoding order
maximizes the aggregate throughput despite the fact that it is not necessarily
the only optimal decoding order.
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Fig. 2: Aggregate throughput at o in a 2-d uniform network with
with path loss exponent α = 4, i.e., β = δ = 2/α = 1/2. The
upper bound, lower bound and low-rate lower bound are based on
the bounds Propositions 4, 2 and 3 in [6], respectively.

A. Bounds on the Aggregate Throughput

Due to the definition of the aggregate throughput in (1), we

can directly estimate R by the bounds on E[N ] provided in

[6]. More precisely, based on the bounds on E[N ] in Proposi-

tions 2, 3 and 4 of [6], we can produce the corresponding

bounds on R and plot these bounds in Fig. 2. Here, we

only show the low-rate lower bound [6, Proposition 3] for

θ < −10dB as it is only informative in the small θ regime.

From the figure, we see that, just like the upper bound, the

lower bound of the aggregate throughput becomes a non-

zero constant when θ → 0. This indicates that while the

aggregate throughput diminishes when θ → ∞, it converges

to a finite positive constant when θ → 0. Furthermore, Fig. 2

suggests that when W = 0, the aggregate throughput is a

monotonically decreasing function of θ, which is also verified

by other simulations.

B. The Asymptotic Aggregate Throughput

Since the small θ regime is the regime where SIC is

particularly useful [1], [3], [6], it is of interest to estimate

the asymptotic aggregate throughput as θ → 0. One way of

doing this is to use Proposition 4 of [6] and let θ → 0. This

gives us 2
β −2 as an upper bound which turns out to be loose.

Fortunately, it is possible to construct a better bound which

improves (reduces) the bound by a factor of 2 and is numer-

ically shown to be tight. To show this better bound, we need

the following lemma.

Lemma 2. The Laplace transform of ξkIk is

LξkIk(s) =
1

(c(s) + 1)k
, (2)

where Ik ,
∑∞

j=k+1 ξ
−1
j and c(s) = sβγ(1− β, s)− 1+ e−s

and γ(·, ·) is the lower incomplete gamma function.

Proof: For a non-fading 1-d network, the Laplace trans-

form of the total interference from [ρ,∞) can be calculated



by the probability generating functional (PGFL) of the PPP

[7]. Similarly, the Laplace transform of Iρ , Ik | {ξk = ρ} is

LIρ(s) = exp

(

−

∫ ∞

ρ

(1− e−sr−1

)Λ(dr)

)

= exp

(

−
(

sβ
∫ sρ−1

0

r−βerdr − ρβ(1− e−sρ−1

)
)

)

, (3)

where Λ([0, r]) = rβ is the intensity measure of the SPLPF

Ξβ .

Then, considering the random variable ρIρ , ξkIk | {ξk =
ρ}, we have

LρIρ(s) = E[e−sξkIk | ξk = ρ]

= LIρ(sρ) = exp(−c(s)ρβ),

where c(s) = sβγ(1−β, s)−1+ e−s. Using the results in [6,

Lemma 3], we can calculate the Laplace transform of ξkIk,

LξkIk(s) = Eξk [LρIρ(s) | ξk = ρ]

=

∫ ∞

0

βxkβ−1

Γ(k)
e−(1+c(s))xβ

dx =
1

(1 + c(s))k
.

Then, we have the following bound on the asymptotic

aggregate throughput, which is numerically shown to be tight.

Proposition 1. The aggregate throughput R = log(1+θ)E[N ]
is (asymptotically) upper bounded by

lim
θ→0

R ≤
1

β
− 1.

Proof: First, letting pk = P(N ≥ k) = P(ξ−1
i >

θIi, ∀i ≤ k), we have

E[N ] =

∞
∑

k=1

pk ≤

∞
∑

k=1

P(ξkIk < 1/θ) (4)

=

∞
∑

k=1

∫ 1/θ

0

fξkIk(x)dx =

∫ 1/θ

0

∞
∑

k=1

fξkIk(x)dx. (5)

In general, the RHS of (5) is not available in closed form since

fξkIk , the pdf of ξkIk, is unknown. However, when θ → 0,

this quantity can be evaluated in the Laplace domain. To see

this, consider a sequence of functions (fn)
∞
n=1, where fn(x) =

1
n

∑n
k=1 fξkIk(x), ∀x > 0 and, obviously,

∫∞

0
fn(x)dx = 1

for all n. Thus, ∀n ∈ N, we have

1 = lim
θ→0

∫ 1/θ

0
fn(x)dx

∫∞

0
e−θxfn(x)dx

= lim
θ→0

∫ 1/θ

0

∑∞
k=1 fξkIk(x)dx

∫∞

0
e−θx

∑∞
k=1 fξkIk(x)dx

,

(6)

where
∫ ∞

0

e−θx
∞
∑

k=1

fξkIk(x)dx =

∞
∑

k=1

LξkIk(s)|s=θ.

Comparing (5) and (6) yields that

lim
θ→0

E[N ]
∑∞

k=1 LξkIk(s)|s=θ
≤ 1,

where LξkIk(s) is given by Lemma 2. Therefore, we have

lim
θ→0

log(1 + θ)E[N ] ≤ lim
θ→0

θ

∞
∑

k=1

LξkIk(θ) = lim
θ→0

θ

c(θ)
.

The proof is completed by noticing that limθ→0
θ

c(θ) = 1−β
β .

In the example considered in Fig. 2, we see the bound in

Proposition 1 matches the simulation exactly. Along with this

example, we tested β = 1/3 and β = 2/3, and the bound is

tight in both cases. The tightness of the bound is not surprising.

Because, in the proof of Proposition 1, the only slackness

we introduced while deriving the bound is due to putting

P(ξ−1
k > θIk) in the place of pk, and it is conceivable that,

for every given k, this slackness diminishes in the limit, since

limθ→0 P(ξ
−1
k > θIk) = limθ→0 pk = 1. Thus, estimating

E[N ] by
∑∞

k=1 P(ξ
−1
k > θIk) is exact in the limit.

As many simulation results (including the one in Fig. 2)

suggest that the aggregate throughput monotonically increases

with decreasing θ, Proposition 1 provides an upper bound on

the aggregate throughput in the network for all θ. We also

conjecture that this upper bound is tight and thus can be

achieved by driving the code rate at every user to 0, which is

also backed by simulations (e.g., see Fig. 2).

Since the upper bound is a monotonically decreasing func-

tion of β we can design system parameters to maximize

the maximum achievable aggregate throughput provided that

we can manipulate β to some extent. For example, since

β = δ + b/α and δ = d/α, one can try to reduce b to

increase the upper bound. Note that b is a part of the density

function of the active transmitters in the network and can be

changed by independent thinning of the transmitter process

[8], and a smaller b means the active transmitters are more

clustered around the receiver. This shows that MAC schemes

which introduce clustering have the potential to achieve higher

aggregate throughput in the presence of SIC.

C. A Laplace-transform Based Approximation

Lemma 2 gives the Laplace transform of ξkIk, which

completely characterizes P(ξ−1
k > θIk), an important quantity

in bounding pk, E[N ] and thus R. As analytically inverting

(2) seems hopeless, a numerical inverse Laplace transform

naturally becomes an interesting alternative to provide more

accurate system performance estimate. However, the numerical

inverse Laplace transform (numerical integration in complex

domain) is generally difficult to interpret and offers limited

insights on the system performance.

On the other hand, LξkIk(s)|s=θ = P(H > θξkIk), for an

independent unit-mean exponential random variable H . This

suggests to use LξkIk(s)|s=θ to approximate P(ξ−1
k > θIk),

and we would expect such an approximation to work for

(at least) small θ. Because, first, it is obvious that for each

k, this approximation is exact as θ → 0 since in that case

both probabilities go to 1; second and more importantly,

Proposition 1 shows that the approximated R based on this

idea is asymptotically exact.
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Fig. 3: Simulated and approximated aggregate throughput at o in a
2-d uniform network.

According to this approximation, we have

R ≈
log(1 + θ)

c(θ)
=

log(1 + θ)

θβγ(1− β, θ)− 1 + e−θ
.

This approximation is compared with simulation results in

Fig. 3, where we consider β = 1
3 , 1

2 and 2
3 . As shown in the

figure, the approximation performs quite well from -20dB to

20dB which covers the typical values of θ. Also, as expected,

the approximation is most accurate in the small θ regime2,

which is known to be the regime where SIC is most useful

[1], [3], [6].

IV. THE EFFECT OF NOISE

In many wireless network outage analyses, the consideration

of noise is neglected mainly due to the argument that most

networks are interference-limited (without SIC). However, this

is not necessarily the case for a receiver with SIC capability,

especially when a large number of transmitters are expected

to be successively decoded. Since the users to be decoded

in the later stages have significantly weaker signal power

than the users decoded earlier, even if for the first a few

users interference dominates noise, after decoding a number

of users, the effect of noise cannot be neglected.

In this section, taking an aggregate throughput perspective

and considering non-zero noise power, we show quite different

phenomena from the ones shown in Section III.

Defining pWk , P(N ≥ k) to be the probability of

successively decoding at least k users in the presence of noise

of power W , we can rewrite pWk as

pWk , P
(

ξ−1
i > θ(Ii +W ), ∀i ≤ k

)

,

and we have the following lemma.

Lemma 3. In a PPNF, the probability of successively decoding

at least k users is bounded as follows:

2The fact that the approximation seems also accurate for very large θ

is more of a coincidence, as the construction of the approximation ignores
ordering requirement within the strongest (decodable) k users and is expected
to be fairly inaccurate when θ → ∞ [6, Lemma 2].

• pWk ≥ (1 + θ)−
βk(k−1)

2 P(ξ−1
k > θ (Ik +W ))

• pWk ≤ θ−
βk(k−1)

2 P(ξ−1
k > θ(Ik +W ))

where Ξβ = {ξi} is the corresponding SPLPF and Ik ,
∑∞

j=k+1 ξ
−1
j .

Proof: The proof is analogous to the proof of Lemma 2

in [6] with two major distinctions: First, we need to redefine

the event Ai to be {ξ−1
i > θ(Ii + W )}. Second, we need

to consider the (original) PLPF instead of the SPLPF as the

scale-invariance property [6, Proposition 1] does not hold in

the noisy case. However, this does not introduce any difference

in the order statistics of the k − 1 smallest elements in Ξ
conditioned on the ξk, and thus the proof follows exactly the

same as that of Lemma 2 in [6] otherwise.

Thanks to Lemma 3, bounding pWk reduces to bounding

P(ξ−1
k > θ (Ik +W )). Ideally, we can bound P(ξ−1

k >
θ (Ik +W )) by reusing the bounds we have on P(ξ−1

k > θIk).
Yet, this method does not yield a closed-form expression.

Thus, we turn to a very simple bound which can still illustrate

the distinction between the noisy case and the noiseless case.

Lemma 4. In a noisy PPNF, we have

P(ξ−1
k > θ (Ik +W )) ≤

γ(k, ā
θβWβ )

Γ(k)
, (7)

where ā = aδcdE[h
β ]/β, β = δ + b/α, and δ = d/α.

Proof: First, note that P(ξ−1
k > θ (Ik +W )) ≤ P(ξk <

1
θW ) which equals the probability that there are no fewer than

k elements of the PLPF smaller than 1/θW . By Lemma 1,

the number of elements of the PLPF in (0, 1/θW ) is Poisson

distributed with mean ā/θβW β , and the result follows.

Although being a very simple bound, Lemma 4 directly

leads to the following proposition which contrasts what we

observed in the interference-limited networks.

Proposition 2. In a noisy PPNF, the aggregate throughput

goes to 0 as θ → 0.

Proof: Combining Lemma 3 and Lemma 4, we have

E[N ] =

∞
∑

k=1

pWk ≤

∞
∑

k=1

P(ξ−1
k > θ (Ik +W ))

≤

∞
∑

k=1

γ(k, ā
θβWβ )

Γ(k)
= ā/θβW β .

In other words, E[N ] is upper bounded by the mean number of

elements of the PLPF in (0, 1/θW ). Then, it is straightforward

to show that limθ→0 R ≤ limθ→0 āθ
1−β/W β , and the RHS

equals zero since β ∈ (0, 1).
Since it is obvious that limθ→∞ R = 0, we immediately

obtain the following corollary.

Corollary 1. There exists at least one optimal θ > 0 that

maximizes the aggregate throughput in a noisy PPNF.

As is shown in the proof of Proposition 2, ā/θβW β is

an upper bound on E[N ]. We can obtain an upper bound

on the aggregate throughput by taking the minimum of
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Fig. 4: Aggregate throughput at o in a 2-d uniform network with
noise. where α = 4, a = 1, b = 0 and fading is not (explictly)
simulated. Three levels of noise are considered: W = 0.1, W = 1
and W = 10. W = 0 refers to the interference-limited case.

ā log(1 + θ)/θβW β and the upper bound shown in Fig. 2.

Fig. 4 compares the upper bounds with simulation results,

considering different noise power levels. This figure shows that

the noisy bound becomes tighter and the interference bound

becomes looser as θ → 0. This is because as θ decreases the

receiver is expected to successively decode a larger number

of users. The large amount of interference canceled makes

the residual interference (and thus the aggregate throughput)

dominated by noise. In this sense, the optimal per-user rate

mentioned in Corollary 1 provides the right balance between

interference and noise in noisy networks.

In [6], we showed that the absolute density of the network

does not affect the performance of SIC in interference-limited

networks. Thanks to Lemma 4, we see that the same result

clearly does not hold for noisy networks. Nevertheless, there

is still a monotonicity property in noisy networks, analogous to

the scale-invariance property in noiseless networks, as stated

by the following proposition.

Proposition 3 (Scale-monotonicity). For two PLPF Ξ and

Ξ̄ with intensity measure Λ1([0, r]) = a1r
β and Λ2([0, r]) =

a2r
β , where a1 and a2 are positive real numbers and a1 ≤ a2,

we have pWk (Ξ) ≤ pWk (Ξ̄), ∀k ∈ N.

Due to the space limitation, the proof of Proposition 3 is

omitted from the paper. Combining Lemma 1 and Proposi-

tion 3 yields the following corollary since E[hβ ] ≤ 1 given

that E[h] = 1.

Corollary 2. In a noisy PPNF, fading reduces pWk , the mean

number of users that can be successively decoded and the

aggregate throughput.

Since random power control, i.e., randomly varying the

transmit power at each transmitter under some mean and

peak power constraint [9], can be considered as a way of

manipulating the fading distribution, Corollary 2 also indicates

that (distributed) random power control cannot increase the

network throughput in a noisy PPNF.

V. CONCLUSIONS

This paper investigates the aggregate throughput of SIC

in d-dimensional power-law Poisson networks with arbitrary

fading distribution. We observe that, in interference-limited

networks, the aggregate throughput (or, sum rate) is a mono-

tonically decreasing function of the per-user information rate.

This suggests low-rate/wideband transmission has the potential

to improve the aggregate throughput given the SIC capability

at the receiver.

Furthermore, the asymptotic sum rate is shown to be 1
β − 1

as the per-user information rate goes to 0, where β = b+d
α , α is

the pathloss exponent and b determines the network geometry

(clustering). Since b can be manipulated by distance-dependent

access control or power control, the result shows that properly

designed MAC or power control schemes can significantly

increase the network performance when combined with low

rate codes and SIC.

On the other hand, in noisy networks, there exists at

least one positive optimal per-user rate which maximizes the

aggregate throughput. Moreover, different from interference-

limited networks where fading does not affect the performance

of SIC [6], we proved fading to be harmful in noisy networks.

This suggests communication schemes that eliminate (average

out) the channel randomness are desirable in noisy networks

with SIC capability.
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