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Abstract—The local delay, defined as the mean time it takes
a node to connect to its nearest neighbor, is a fundamental
performance metric in a wireless network. For a network with
Poisson distributed nodes, we find its scaling behavior (as a
function of the rate of transmission) for different types ofnearest-
neighbor and the two extreme cases of mobility (infinite mobility
and no mobility). Remarkably, it turns out that the level of
mobility has hardly any effect on the scaling behavior of the
local delay; it affects the pre-constant only.

I. I NTRODUCTION

The delay it takes a node to successfully communicate to its
nearest neighbor, denotes as thelocal delay, lower bounds all
other types of delays such as single-hop, end-to-end, or round-
trip delays, which makes it a fundamental quantity to study.
If it is infinite, there is little hope that the network provides
any useful service to its users. Furthermore, the local delay
is a sensitive indicator of the diversity present in a network
model; in particular, it measures the interference correlation
in network models with interference.

Focusing on the case where nodes are distributed on the two-
dimensional plane as a homogeneous Poisson point process
(PPP), we analyze the scaling behavior of the local delay in
the high- and low-rate regime for the cases of infinite mobility
(where a new realization of the PPP is drawn in each time slot)
and no mobility (where only a single realization is drawn and
the nodes stay fixed forever).

A mathematical framework for the analysis of the local
delay in Poisson networks is provided in [1, Sect. 17.5] and
[2]. We build on this framework and our earlier work in [3]
to obtain concrete results for the scaling of the local delay
for all four basic types of nearest-neighbor transmission in
the interference-limited case. Complete proofs are available in
[4].

II. N ETWORK MODEL

We consider a marked Poisson point process (PPP)Φ̂ =
{(xi, txi

)} ⊂ R
2 ×{0, 1}, whereΦ = {xi} is a homogeneous

PPP of intensityλ, and the markstxi
are iid Bernoulli with

P(t = 1) = p = 1 − q. A mark of 1 indicates that the node
transmits whereas a0 indicates listening. The large-scale path
loss is assumed to berα over distancer. A transmission from
a nodex to a nodey is successful if the signal-to-interference
ratio (SIR) exceeds a thresholdθ. For a transmission from
x ∈ Φ to y ∈ Φ, the SIR is

SIRxy ,
Sxy

Ixy
,

whereSxy , txhxy‖x − y‖−α and

Ixy ,
∑

(z,tz)∈Φ̂\{(x,tx)}

tzhzy‖z − y‖−α .

This definition implies that the transmit powers are normalized
to 1, that I = ∞ if ty = 1 (y is itself transmitting), and
SIR = 0 if tx = 0. The power fading coefficientshxy are
exponential with mean1 and iid for all x, y ∈ Φ and over
time (block Rayleigh fading). Time is slotted, and transmission
attempts are synchronized.

The (normalized) rate of transmission (or spectral effi-
ciency) R is, slightly optimistically, assumed to be related
to the thresholdθ by R = log2(1 + θ).

We consider the two extremes cases of mobility,infinite
mobility, where a new realization of̂Φ is drawn in each time
slot, and thestatic case, whereΦ (the node locations) stays
fixed forever. The main event of interest is the event that
the typical node, situated at the origino , (0, 0) ∈ R

2,
successfully connects to its nearest neighbor in a single time
slot. In the infinite mobility case, we denote this event byC. In
the static case, we first focus on the success eventconditioned
on the point processΦ, which we callCΦ. Success events in
different time slots are independent, so there is no need to add
a time index to this event. Conditioning onΦ having a point
at the origino implies that the relevant probability measure
is the Palm probabilityPo, and that expectations that involve
the point process are taken with respect toP

o and denoted
by E

o [5]. The partner nodey of the origin will be chosen
according to one of the four basic cases of nearest-neighbor
communication: nearest-receiver transmission (NRT), nearest-
neighbor transmission (NNT), nearest-transmitter reception
(NTR), and nearest-neighbor reception (NNR).

In the infinitely mobile case, we havePo(C) = P
o(SIRuv >

θ) and in the static case,P
o(CΦ) = P

o(SIRuv > θ | Φ), where
u = o, v = y for NRT and NNT, andu = y, v = o for NTR
and NNR. The link distanceR = ‖u−v‖ is itself a (Rayleigh
distributed) random variable. The local delayD is the mean
number of slots needed until success. Formally,

NRT, NNT: D , E
o
(

min
{

k ∈ N : 1k

(

o → NN(o)
)

})

NTR, NNR: D , E
o
(

min
{

k ∈ N : 1k

(

NN(o) → o
)

})

,

where1k(x → y) = 1 if SIRxy > θ in time slot k, and 0
otherwise.NN(o) denotes the origin’s nearest node (for NNT



and NNR), its nearest receiver (NRT), or its nearest transmitter
(NTR).

In the high-mobility case, the local delay is simplyP
o(C)−1;

in the static case, the success events are only conditionally
independent, hence the conditional local delay is geometric
with meanP

o(CΦ)−1, and the expectation with respect to the
point process yields the local delay:

Infinite mobility: D = P
o(C)−1 (1)

Static: D = E
o
Φ

(

1

Po(CΦ)

)

(2)

In our approach for the static case, we will decondition on
Φ in two steps, first with respect to the interferers and then
with respect to the link distance. This method can be used
whenever conditioning onΦ also fixes the link distance. The
static NRT and NTR cases as described above do not meet this
requirement, as the link distance would also depend on who
is transmitting. So we will make a small amendment to the
network model in these cases, namely a fixed partitioning of
the point process into point processes of potential transmitters
and receivers of the appropriate densities.

ConsideringD as a function of the transmit probabilityp,
we define theminimum delayas

Dmin , min
p

{D(p)}.

An important parameter that will be used throughout the paper
is thespatial contentionγ, introduced in [6] and generalized
in [7], [8], which measures a network’s capability of spatial
reuse by quantifying how quickly the success probability ofa
transmission (over fixed distance) decreases when the density
of interfering nodes is increased. It is defined as the slope of
the outage probability of a transmission over unit distanceas
a function of the interferer density at density zero [7, Def.2].
It depends on the path loss exponentα, the SIR thresholdθ,
and the network geometry. For a transmission over distance
R in a Poisson field of interferers with Rayleigh fading, the
success probability is [5]

ps|R = exp(−C(α)θ2/αpλR2) , (3)

where C(α) , 2π2/(α sin(2π/α)). Asymptotically, as the
transmitter densityλp → 0, ps|1 ∼ 1 − C(α)θ2/αpλ, thus
the spatial contention is

γ = θδC(α) = θδπ
πδ

sin(πδ)
= θδπΓ(1 + δ)Γ(1 − δ) , (4)

whereδ , 2/α. For α = 4, γ =
√

θπ2/2, and for α = 3,
γ = θ2/34π2/(3

√
3). As α ↓ 2, γ → ∞, since the interference

is infinite a.s. forα ≤ 2.
The asymptotic regimes considered areθ → 0 andθ → ∞,

or, equivalently,R → 0 and R → ∞. Since γ increases
monotonically withθ, we may also writeγ → 0 andγ → ∞.

III. I NFINITELY MOBILE NETWORKS

The analysis of the four cases of nearest-neighbor transmis-
sion is based on [4, Lemma 1].

A. Nearest-receiver transmission (NRT)

In this case, the destination node is always listening, so

P
o(CNRT | R) = p exp(−γpλR2) .

Since the point process of receivers has intensityλq, the link
distanceR is is Rayleigh distributed with mean1/(2

√
qλ) [9],

i.e., fR(r) = 2qλπr exp(−qλπr2). Hence

P
o(CNRT) = E

(

P
o(CNRT | R)

)

=
pπ

π + γpq−1

and

DNRT =
1

Po(CNRT)
=

1

p
+

γ

πq
. (5)

Hence the minimum delay only depends on the spatial con-
tention:

DNRT
min = 1 + 2

√

γ

π
+

γ

π
. (6)

B. Nearest-neighbor transmission (NNT)

Let y be the typical node’s nearest neighbor andR = ‖y‖. In
this caseR is distributed asfR(r) = 2λπr exp(−λπr2), and
having the nearest neighbor at distanceR implies thatthere
is no interferer in the ballBo(R) centered ato with radius
R. So y sees the conditional interference, conditioned on the
disk Bo(R) being empty, and the interference observed at the
receiver is smaller than at a typical node,i.e., γNNT < γ.

Theorem 1 The success probability of nearest-neighbor
transmission givenR is

P
o(C | R) = pq exp(−γNNTpλR2) , (7)

with γNNT denoting the spatial contention for nearest-
neighbor transmission.γNNT is bounded as follows:

(a) γ > γNNT > γ − π, whereγ is the unconditioned spatial
contention given in(4). Also, limθ→∞ γ − γNNT = π.

(b) Letting δ = 2/α and denoting byHδ(x) the Gauss
hypergeometric function

Hδ(x) , 2F1(1, δ; 1 + δ; x) ,

we have

γ − γNNT <
2π

3
Hδ(−2α/θ) +

π

4
Hδ(−3α/2/θ)+

π

6
Hδ(−2α/2/θ) +

π

6
Hδ(−1/θ) (8)

γ − γNNT >
π

2
Hδ(−3α/2/θ) +

π

6
Hδ(−2α/2/θ)+

π

12
Hδ(−1/θ) (9)

The proof is omitted due to space constraints—see [4]. Es-
sentially it requires careful bounding of the Laplace transform
of the interference at the origino stemming from transmitters
outsideBo(R).

While the absolute gain in the spatial contention increases
with θ, therelative gaindecreases withθ and approaches1 as
θ → ∞. In fact, the upper bound on the difference (8) results
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Fig. 1. Spatial contention in the infinitely mobility case for α = 4. The
bounds are obtained from (8) and (9).

in a lower bound on the ratioγNNT/γ that approaches1/2 as
θ → 0. This follows from

Hδ(−x) ∼ x−δ πδ

sin(πδ)
, x → ∞ . (10)

In particular, forα = 4 (δ = 1/2),

lim
θ↓0

H1/2(−t/θ)√
θ

=
π

2
√

t
.

Using this limit in (8) yieldsγNNT/γ = γNNT/(
√

θπ2/2) >
1/2. Applied to (9), we obtainγNNT/γ < 2/3.

The local delay follows from integration with respect toR,
which is Rayleigh with mean1/(2

√
λ) in this case:

DNNT =
pγNNT + π

πpq
=

1

pq
+

γNNT

πq
(11)

The delay is composed of two parts, theaccess delay1/(pq),
which is the time it takes for the transmitter to transmit andthe
receiver to listen, and theservice time, which is proportional
to the spatial contentionγNNT. Compared with the nearest-
receiver case, we observe the following:

Corollary 1 For a fixed p and finite θ, DNRT < DNNT.
Asymptotically, the delays are identical,i.e., DNRT ↑
DNNT as θ → ∞.

Proof: The maximum differenceγ−γNNT is π, achieved
as θ → ∞. Sincep(γ − π) = pγ + πq, the two delays are
then identical. For finiteθ, the difference is smaller and thus
DNRT < DNNT.
So at high rates, the gain in the spatial contention in the NNT
case is exactly offset by the fact that the nearest neighbor is
only listening with probabilityq. The minimum delay is

DNNT
min =

g2

g + 2(1 −√
1 + g)

, (12)
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Fig. 2. Minimum achievable local delay in the infinite-mobility case for
α = 4.

whereg = γNNT/π. As θ → 0,

DNNT
min ∼ 4 +

2γNNT

π
∼ 4 + cγ/π , (13)

where c ∈ (1, 4/3). Fig. 2 shows the optimum transmit
probabilityp and the minimum delay. Asθ → 0, the optimum
transmit probability for NRT approaches1, whereas for NNT,
it approaches1/2. The difference is due to the fact that the
receiverdensity is less critical in NRT. In the delay plot, it is
observed thatDNNT > 4, since1/(pq) is at least4.

C. Nearest-transmitter reception (NTR)

Next we consider the case where the typical node ato
receives from its nearest transmitter, sayy. This implies that
there are no interferers in the disk of radiusR = ‖y‖ around
the receiver. Using the hypergeometric function defined in
Thm. 1, we obtainγNTR = γ − πHδ(−1/θ) and

P
o(CNTR | R) = q exp

(

−λpπR2(γ − πHδ(−1/θ))
)

.

As θ → ∞, the gain in the spatial contention approachesπ,
as in the NNT case, henceγNTR ∼ γ − π ∼ γ. This is to
be expected, since for largeθ, an area much larger than the
disk of radiusR needs to be free of interferers, so it does not
matter whether the disk is centered at the receiver or translated
by R. As θ → 0, it follows from (10) thatπHδ(−1/δ) → γ,
which indicates that the spatial contention vanishes faster than
θδ. In fact,

γNTR ∼ 2π

α − 2
θ =

δπ

1 − δ
, θ → 0 . (14)

The two asymptotic regimes are clearly visible in Fig. 1. For
θ < 1, the slope is about one (or 10dB/decade), whereas for
θ > 1 it is about 5dB/decade.

In the NTR case, R is distributed as fR(r) =
2πpλr exp(−pλπr2). It follows that

DNTR =
1

q
+

γNTR

πq
, (15)



which is monotonically decreasing asp ↓ 0. This indicates
that, without noise, the benefit of reducing the interferer
density compensates for the increased transmission distance.
(For p = 0, the delay is undefined since there is no nearest
transmitter in this case.) For smallθ, we have the particularly
simple result

DNTR
min ∼ 1 +

2

α − 2
θ = 1 +

δ

1 − δ
θ , θ → 0 .

D. Nearest-neighbor reception (NNR)

This case is quite similar to NTR, with the difference that
the nearest neighbor is at distance1/(2

√
λ) on average and

that the delay increases by a factor1/p since the nearest
neighbor only transmits with probabilityp. SoγNNR = γNTR,
and

DNNR =
1

pq
+

γNNR

πq
.

The expression has the same form as the one for NNT, the only
difference being the spatial contention. So the minimum delay
follows from (12), withγNNR instead ofγNNT. As θ → 0,

DNNR
min ∼ 4 +

4

α − 2
θ = 4 +

2δ

1 − δ
θ . (16)

The results for all four cases are shown in Fig. 2.

IV. STATIC NETWORKS

In the static case, only a single realization of the point
process is drawn. Comparing (1) and (2), we obtain a bound
on the local delay in the static case by Jensen’s inequality:
D > P(C)−1. Not surprisingly, this bound is often very
loose. In particular, the actual delay may be infinite while the
lower bound is always finite. The reason is the correlation
of the interference in the static case [10]. The analysis of
the static case makes use of [4, Lemma 2], which provides
the expected inverse conditional Laplace transform of the
interferenceEo

(

1
LI(s|Φ)

)

that is needed to calculate (2).

A. Nearest-receiver transmission (NRT)

Here we consider the case where the partitioning into poten-
tial transmitters and receivers is fixed,i.e., the transmitters are
chosen fromΦ with probability p, as before, but there exists
another, independent PPP of receiversΦr of intensityλr = qλ.
So, in this model, the nodes inΦ that do not transmit are not
available as receivers.

In this case, the local delay as a function of the transmit
probabilityp is [4, Thm. 2]

DNRT =
1

p

π

π − γpqδ−2
, pqδ−2 < π/γ. (17)

At pqδ−2 = π/γ, the local delay undergoes aphase transition,
i.e., the local delay becomes infinite, as first observed in [2].

Eqn. (17) cannot be minimized in closed form. However, it
can be shown that asymptotically,

DNRT
min ∼ 4

(

1 − 1

α
+

γ

π

)

, γ → ∞ . (18)
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Fig. 3. The minimum local delay for the static NNT and NNR cases as a
function of the SIR thresholdθ for α = 4. The curves are very close; at small
θ, the delay for NNT is slightly larger. The asymptote is4γ/π, per (20), in
both cases. It is quite tight as soon asθ > 1.

On the other hand, asγ → 0, a careful examination of the
asymptotic behavior of upper and lower bound yields

DNRT
min = 1 + O(γmax{1/3,1/α}) , γ → 0 . (19)

More precisely,

lim
θ→0

(DNRT
min − 1)γ−1/α < π1/α

lim
θ→0

(DNRT
min − 1)γ−1/3 < (2π)1/3.

B. Nearest-neighbor transmission (NNT)

Using similar techniques for the integration of the inverse
conditional Laplace transform of the interference as in the
infinitely mobile NNT case, we find

DNNT
min ∼ 4γ

π
, γ → ∞ . (20)

As γ → 0, DNNT
min = 4 + Θ(γ). The numerically obtained

DNNT
min and its asymptotic behavior are shown in Fig. 3.
Generally, asγ → ∞, there is no difference between

the NRT and NNT in terms of interference, but only in the
availability of the destination node as a receiver and in the
link distance distribution.

C. Nearest-transmitter reception (NTR)

Similarly to the static NRT case, we pre-partition transmit-
ters and receivers. In this case, receivers do not matter (except
for the typical receiver considered). We take a fixed point
process of transmitters of intensityλp, which implies there
is no actual ALOHA involved, or, in terms of the marked
point procesŝΦ, we take the marks to be fixed also.

Following similar steps as in the previous cases, we obtain

DNTR =
1

q

π

π − γ/q1−δ + κNTR
, γ/q1−δ − κNTR < π,

(21)



whereκNTR = π
q Hδ(−1/(θq)). Since the delay is monotoni-

cally decreasing asp ↓ 0 (and thusq ↑ 1),

DNTR
min =

π

π − γ + κNTR
=

1

1 + Hδ(−1/θ) − γ/π
. (22)

What is interesting about this case is that there is ahard
phase transition in the sense that a finite local delay cannotbe
achieved for anyp as soon asθ exceeds some critical value
θc, determined by1+Hδ(−1/θc)−γ/π = 0. While reducing
p reduces the interference, it also increases the link distance
in proportion top−1/2, and the net gain is negative ifθ is
larger thanθc. For α = 4, θc ≈ 1.351. So, the maximum rate
that can be supported for finite local delay isRmax ≈ 1.2333.
As α decreases,θc decreases also. Sinceα < 4.95 in most
environments, the rate supported by NTR cannot exceed 4/3
bits/s/Hz. Therefore the high-θ asymptotics do not exist. For
small θ, it follows from (22) that

DNTR
min ∼ 1 +

2

α − 2
θ = 1 +

δ

1 − δ
θ , θ → 0 . (23)

D. Nearest-neighbor reception (NNR)

In this case, it is not difficult to see that the optimum
transmit probability tends to1/2 asθ → 0, since the limiting
factor is not interference but the availability of transmit-receive
pairs. It follows that

DNNR
min ∼ 4

(

1 +
δ/2

1 − δ
θ

)

, θ → 0. (24)

The minimum delay is plotted in Fig. 3.

V. A SYMPTOTIC DELAYS

We first summarize the results on the asymptotic delay.

Theorem 2 As θ → ∞, the minimum local delay in all four
infinitely mobile cases scales asγ/π or

Dmin ∼ θδ πδ

sin(πδ)
.

In the static NRT, NNT, and NNR cases, the scaling behavior
is 4γ/π or

Dmin ∼ 4θδ πδ

sin(πδ)
.

The exception is the static NTR case, where the delay becomes
infinite for all values ofp as soon asθ exceeds some critical
valueθc.

As θ → 0, the scaling laws of the minimum local delay are
listed in Table I.

Expressed in terms of the transmission rate, the scaling be-
havior can be summarized as follows.

Corollary 2 Irrespective of the level of mobility in the net-
work and the choice of the nearest-neighbor transmission
scheme, the minimum local delay scales at high rates as

Dmin = Θ(2δR) , R → ∞ .

Infinite mobility Static
NRT 1 + 2

p

γ/π; 1 + Θ(θ1/α) 1 + O(γmax{1/3,1/α})

NNT 4 + cγ/π; 4 + Θ(θδ) 4 + Θ(γ); 4 + Θ(θδ)

NTR 1 + δ
1−δ

θ 1 + δ
1−δ

θ

NNR 4 + 2δ
1−δ

θ 4 + 2δ
1−δ

θ

TABLE I
SCALING BEHAVIOR OF THE MINIMUM LOCAL DELAY AS θ → 0.

WITHOUT A O OR Θ SYMBOL, THE ASYMPTOTIC RESULTS ARE SHARP,
i.e., “∼”. T HE CONSTANTc DEPENDS ONα AND ASSUMES VALUES

c ∈ (1, 4/3).

Again the exception is the staticNTR case. AsR → 0,

Dmin = K + O(R1/α) and Dmin = K + Ω(R) ,

whereK = 1 for NRT and NTR andK = 4 for NNT and
NNR.

The constantK is the minimum achievable access delay. If one
of the nodes is known to be transmitting or listening,K = 1.

VI. CONCLUSIONS

We have provided a detailed analysis of the asymptotic
behavior of the local delay in Poisson networks. The main
conclusion is that at high rates, its scalingis the same for all
levels of mobility, while for low rates, the scaling behavior
depends slightly on the communication scheme. In all cases,
however, the delay goes to zero faster thanR but at most as
fast asR1/α.
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