Delay Scaling in Poisson Networks

Martin Haenggi
Dept. of Electrical Engineering.
University of Notre Dame
Notre Dame, IN USA
E-mail: mhaenggi @d. edu

Abstract—The local delay, defined as the mean time it takes whereS,, £ t,h,, ||z —y||~* and
a node to connect to its nearest neighbor, is a fundamental

performance metric in a wireless network. For a network with Iy S Z tzhzsz —y||7*.
Poisson distributed nodes, we find its scaling behavior (as a -
function of the rate of transmission) for different types of nearest- (tz) e\ (@ ta) }

neighbor and the two extreme cases of mobility (infinite moBity  Thjs definition implies that the transmit powers are norzeai

and no mobility). Remarkably, it turns out that the level of - . . . L
mobility has hardly any effect on the scaling behavior of the to 1, that.I =ocoif t, =1(yis |t-self trangmlttlng), and
local delay; it affects the pre-constant only. SIR = 0 if ¢, = 0. The power fading coefficients,, are

exponential with mearl and iid for all z,y € ® and over

|. INTRODUCTION time (block Rayleigh fading). Time is slotted, and transita
The delay it takes a node to successfully communicate to §gempts are synchronized.

nearest neighbor, denotes as theal delay lower bounds all  The (normalized) rate of transmission (or spectral effi-
other types of delays such as single-hop, end-to-end, @idFouciency) R is, slightly optimistically, assumed to be related
trip delays, which makes it a fundamental quantity to study the threshold by R = log, (1 + ).
If it is infinite, there is little hope that the network proeis  \we consider the two extremes cases of mobilinfinite
any useful service to its users. Furthermore, the Iocalydelﬁ,lobi"ty, where a new realization @b is drawn in each time
is a sensitive indicator of the diversity present in a nelwokot, and thestatic case where® (the node locations) stays
model; in particular, it measures the interference cofi®a fixed forever. The main event of interest is the event that
in netwo_rk models with interference. o the typical node, situated at the origin 2 (0,0) € R2,

Focusing on the case where nodes are distributed on the tWWQecessfully connects to its nearest neighbor in a singie i
dimensional plane as a homogeneous Poisson point procgss |n the infinite mobility case, we denote this eventbyn
(PPP), we analyze the scaling behavior of the local delay #e static case, we first focus on the success exemtitioned
the high- and low-rate regime for the cases of infinite mopili 5, the point proces®, which we callCs. Success events in
(where a new realization of the PPP is drawn in each time slgf}erent time slots are independent, so there is no needdo a
and no mobility (_where only a single realization is drawn ang time index to this event. Conditioning @ having a point
the nodes stay fixed forever). . at the origino implies that the relevant probability measure

A mathematical framework for the analysis of the locgl the paim probability, and that expectations that involve
delay in Poisson networks is provided in [1, Sect. 17.5] anfe point process are taken with respectPto and denoted
[2]. We Dbuild on this framework and our earlier work in [3]by E° [5]. The partner nodey of the origin will be chosen
to obtain concrete results for the scaling of the local de'%)ﬁcording to one of the four basic cases of nearest-neighbor
for all four basic types of nearest-neighbor transmission ¢, mmuynication: nearest-receiver transmission (NRT)resta
the interference-limited case. Complete proofs are dvlailin neighbor transmission (NNT), nearest-transmitter reoapt
[4]- (NTR), and nearest-neighbor reception (NNR).

Il. NETWORK MODEL In the infinitely mobile case, we ha®® (C) = P°(SIR,, >

We consider a marked Poisson point process (RPR) f) and in the static cas€’(Cy) = P*(SIR., > ¢ | @), where
{(xi,tz,)} C R2x {0,1}, whered = {z,} is a homogeneous ¢ = ¢, v =y for NRT and NNT, and: =y, v = o for NTR
PPP of intensity), and the marks,, are iid Bernoulli with and NNR. The link distanc& = [[u—v| is itself a (Rayleigh
P(t =1) = p= 1 —q. A mark of 1 indicates that the node distributed) random variable. The local delayis the mean
transmits whereas @indicates listening. The large-scale patflumber of slots needed until success. Formally,
loss is assumed to be¢* over distance. A transmission from Ao (.

a noder to a nodey is successful if the signal—to—interferenceNRT’ NNT: D=E (mm {k € N: 1 (0 — NN(0)) })
ratio (SIR) exceeds a thresho&j For a transmission from NTR, NNR: D 2 E° (mm {k € N: 1,(NN(o) — 0)}) 7
redtoy e b, the SIR is

Szy wherel,(x — y) = 1 if SIR;, > 6 in time slotk, and0

A Py
SRy = Ly’ otherwise NN (o) denotes the origin’s nearest node (for NNT



and NNR), its nearest receiver (NRT), or its nearest trattemi A. Nearest-receiver transmission (NRT)
(NTR).

In the high-mobility case, the local delay is simi§(C)~!;
in the static case, the success events are only conditjonall Po(CNRT | R) = pexp(—ypAR?).

independent, hence the conditional local delay is geometri

: o _ ; ; i the point process of receivers has intensitythe link
with meanP?(Cs)~!, and the expectation with respect to théInce o ) o .
point process yields the local delay: _dlstanceR is is Rayleigh dlstr|b2uted with mealy (21/q)) [9],
i.e, fr(r) = 2gArrexp(—gAnr?). Hence

In this case, the destination node is always listening, so

Infinite mobility: D =P°(C)™* 1
y © ) (1) Pe(CNRT) = E(P°(CNET | R)) = pm —
Static: D =ES <—) @) T+ Pg
Po(Ca) and
In our approach for the static case, we will decondition on DNRT _ _ 1 N (5)
® in two steps, first with respect to the interferers and then Po(CNRT)  p - mq

with reSpeCt to the link distance. This method can be Us%nce the minimum de|ay on|y depends on the Spatia| con-
whenever conditioning o® also fixes the link distance. Thetention:

static NRT and NTR cases as described above do not meet this DNRT _ o0 |77
requirement, as the link distance would also depend on who =1+ T t
is transmitting. So we will make a small amendment to t
network model in these cases, namely a fixed partitioning
the point process into point processes of potential trattsrai  Lety be the typical node’s nearest neighbor @hek ||y|. In

min T . (6)

rgf Nearest-neighbor transmission (NNT)

and receivers of the appropriate densities. this caseR is distributed asfr(r) = 2Amr exp(—Anr?), and
ConsideringD as a function of the transmit probabilipy having the nearest neighbor at distani@émplies thatthere
we define theminimum delayas is no interferer in the ballB,(R) centered ato with radius
" R. Soy sees the conditional interference, conditioned on the
Drin = IT;}H{D(P)}- disk B, (R) being empty, and the interference observed at the

. _ receiver is smaller than at a typical node,, Y~NN7' < 4.
An important parameter that will be used throughout the pape yp 7 7

1S the spatial contentiory, introduced "} [6] and_generahze_d_rheorem 1 The success probability of nearest-neighbor
in [7], [8], which measures a network’s capability of Sphtlatransmission giverR is

reuse by quantifying how quickly the success probabilityaof
tra!ﬂsmissipn (over figeq distance) dgcreases when thetdensi P°(C | R) = pqexp(—/""NTpAR?), 7

of interfering nodes is increased. It is defined as the sldpe o

the outage probability of a transmission over unit distaase With /""" denoting the spatial contention for nearest-
a function of the interferer density at density zero [7, CR}f. neighbor transmissiony™ ™" is bounded as follows:

It depends on the path loss exponentthe SIR threshold, (a) v > ANNT > ~ — 7, where~ is the unconditioned spatial
and the network geometry. For a transmission over distance contention given ir@). Also,limg_,oc v — YN T = 7.

R in a Poisson field of interferers with Rayleigh fading, th¢b) Letting 6 = 2/a and denoting byH;s(x) the Gauss
success probability is [5] hypergeometric function

psir = exp(—C(a)0? “pAR?), ®) Hs(x) 2 2F1(1,8;1 + 6;2),

where C(a) £ 272/(asin(27/a)). Asymptotically, as the we have

transmitter density\p — 0, py1 ~ 1 — C(@)0?/*p), thus

27 s
the spatial contention is v — NN <5 Hs(=27/0) + ZH(;(—3°‘/2/9)+
™ o Y
N =6°C(a) = 90— 7255) — °7D(1 + 0)L(1—6), (4) & Hs(=2°72/0) + S Hs(=1/9) (8)
S ™
NNT T a/2 T a/2
- ST Hs(~3972)0) + T Hy(—29/2 /0)+
wheres £ 2/a. Fora = 4, v = v07?/2, and fora = 3, 7 2 ol /%) 6 ol /9)
v = 6%3472/(3V/3). Asa | 2,y — oo, since the interference — Hs(—1/0) 9)

is infinite a.s. fora < 2. 12

The asymptotic regimes considered éires 0 andd — oo, The proof is omitted due to space constraints—see [4]. Es-
or, equivalently,R — 0 and R — oo. Since~ increases sentially it requires careful bounding of the Laplace tfans
monotonically withd, we may also writey — 0 andy — oco.  Of the interference at the origin stemming from transmitters
outside B,(R).

While the absolute gain in the spatial contention increases

The analysis of the four cases of nearest-neighbor transmisth 6, therelative gaindecreases witfh and approachekas
sion is based on [4, Lemma 1]. 6 — oo. In fact, the upper bound on the differenE® (8) results

IIl. I NFINITELY MOBILE NETWORKS
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Fig. 1. Spatial contention in the infinitely mobility caserfa = 4. The

bounds are obtained frorfil (8) arld (9).

in a lower bound on the ratig™NT /~ that approaches/2 as
6 — 0. This follows from

IR S I
Hs(—z)~x Sn(m0) T — 00. (10)
In particular, fora =4 (§ = 1/2),
i 20w
o0 o 2Vt

Using this limit in [8) yieldsy"NT /v = 4NNT /(\/f72 /2) >
1/2. Applied to [@), we obtaimy™NT /v < 2/3.

The local delay follows from integration with respectit
which is Rayleigh with mean /(2v/)) in this case:

NNT_|_7.r

pDNNT _ PY 1 T

el

= — (11)
™™g pq ™q

The delay is composed of two parts, thecess delay /(pq),

which is the time it takes for the transmitter to transmit émel
receiver to listen, and theervice time which is proportional

to the spatial contention™ ™. Compared with the nearest-

receiver case, we observe the following:

Corollary 1 For a fixed p and finite §, DNRT < DNNT,
Asymptotically, the delays are identical,e, DYET 1
DNNT as ) — oo.

Proof: The maximum difference —y"NT is 7, achieved
asf — oo. Sincep(y — m) = py + mq, the two delays are
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a=4.

Minimum achievable local delay in the infinite-matyil case for

whereg = ANNT /7. As 6 — 0,

2’7NNT
T

DNNT

min ~4+ N4+C’Y/7Ta (13)

where ¢ € (1,4/3). Figl2 shows the optimum transmit
probability p and the minimum delay. A& — 0, the optimum
transmit probability for NRT approachéswhereas for NNT,

it approached /2. The difference is due to the fact that the
receiverdensity is less critical in NRT. In the delay plot, it is
observed thaD™NT > 4, sincel/(pq) is at leastd.

C. Nearest-transmitter reception (NTR)

Next we consider the case where the typical node at
receives from its nearest transmitter, sayThis implies that
there are no interferers in the disk of radilis= ||y|| around
the receiver. Using the hypergeometric function defined in
Thm.[, we obtaim™® =~ — 7Hs(—1/6) and

P°(CNT™® | R) = gexp (—ApmR*(y — mHs(—1/0))) .

As § — oo, the gain in the spatial contention approaches
as in the NNT case, hencg"™ ~ v — 7 ~ ~. This is to

be expected, since for largk an area much larger than the
disk of radiusR needs to be free of interferers, so it does not
matter whether the disk is centered at the receiver or tiset|
by R. As § — 0, it follows from (@0) thatrHs(—1/5) — ~,
which indicates that the spatial contention vanishes fakstn

°. In fact,

o

1-6"

2T

NTR
v a—2

0—0.

~

(14)

then identical. For finite, the difference is smaller and thusThe two asymptotic regimes are clearly visible in Elg. 1. For

DNRT < DNNT_ ]

6 < 1, the slope is about one (or 10dB/decade), whereas for

So at high rates, the gain in the spatial contention in the NNJT~. 1 it is about 5dB/decade.

case is exactly offset by the fact that the nearest neigtdor i |n the NTR case, R is distributed as fr(r)

only listening with probabilityg. The minimum delay is

2
NNT __ g

" g2l VTEg)]

(12)

2mpAr exp(—pAnr?). It follows that

DNTR _ 1 NTR

q q

: (15)



which is monotonically decreasing as| 0. This indicates e R
that, without noise, the benefit of reducing the interfere  180!| —— numeric NNT i
density compensates for the increased transmission déstar | —asymptote |
(For p = 0, the delay is undefined since there is no neare
transmitter in this case.) For small we have the particularly ~_ 140; .
H D
simple result = 120 |
NTR 2 5 ZD.E 100+ il
Dmin N1+a_29:1+—1_597 60— 0. m@
Z £ 80F i
D. Nearest-neighbor reception (NNR) 5
. . o . . 60+ ]
This case is quite similar to NTR, with the difference tha
the nearest neighbor is at distanl:ﬁ(2\/X) on average and 40 ]
that the delay increases by a factbfp since the nearest 20l i
neighbor only transmits with probabilify. SoyNNR = A NTR |
and L F—— 0 5 10 15 20 25 30
DNNR _ 1 n ANNR 6 [dB]

pq mq
. Fig. 3.  The minimum local delay for the static NNT and NNR cass a
The expression has the same form as the one for NNT, the Ofﬂl[(‘;k:tion of the SIR threshold for oo = 4. The curves are very close; at small

difference being the spatial contention. So the minimumyjelg, fﬁe delay IfO_f NNT is S::ghtly |af9<2£ The asymptotedis/, per [2D), in
follows from {I2), with+™ R instead ofy™NT. As 6 — 0, oth cases. [tis quite tight as soonas- 1.

4 26
NNR _
Diyin” ~ 4+ a— 2‘9 =4+ 1— 59' (16) On the other hand, as — 0, a careful examination of the

asymptotic behavior of upper and lower bound yields

DNRT =1 + O(,ymax{l/&l/a}) , vy — 0. (19)

The results for all four cases are shown in Elg. 2.

IV. STATIC NETWORKS min
In the static case, only a single realization of the poiffiore precisely,
process is drawn. Qomparinﬂ_(l) amdl (2), we obtail_’l a bou_nd lim (DNET — 1)y~1/e < gl/a
on the local delay in the static case by Jensen’s inequality: 6—0
D > P(C)~'. Not surprisingly, this bound is often very elin%)(DrliiF;T— 1)y~ 13 < (2m)V/3,

loose. In particular, the actual delay may be infinite whiie t i o

lower bound is always finite. The reason is the correlatids Nearest-neighbor transmission (NNT)

of the interference in the static case [10]. The analysis ofUsing similar techniques for the integration of the inverse
the static case makes use of [4, Lemma 2], which providesnditional Laplace transform of the interference as in the
the expected inverse conditional Laplace transform of thmfinitely mobile NNT case, we find

. Y 1 .
interferencekl (W) that is needed to calculatg] (2). DNNT 4y s (20)
A. Nearest-receiver transmission (NRT) T

. o As 0, DNNT — 4 4+ O(y). The numerically obtained
Here we consider the case where the partitioning into pote NQT_’and its mn +O0) y

tial t it q ; is fixdce, the t i min asymptotic behavior are shown in Eg. 3.
1al ranSmitiers and receivers Is fixad, the transmitiers are Generally, asy — oo, there is no difference between
chosen from® with probability p, as before, but there exists

ther. ind dent PPP of vBrof intensity A — o) the NRT and NNT in terms of interference, but only in the
another, independen OF TECEIVEEDT INTENSITY Ar = gA. availability of the destination node as a receiver and in the
So, in this model, the nodes i that do not transmit are not

. X link distance distribution.
available as receivers.

In this case, the local delay as a function of the transni. Nearest-transmitter reception (NTR)

probability p is [4, Thm. 2] Similarly to the static NRT case, we pre-partition transmit
ters and receivers. In this case, receivers do not matteepéx
for the typical receiver considered). We take a fixed point
- process of transmitters of intensifyp, which implies there
At pq°~? = /7, the local delay undergoesphase transition is no actual ALOHA involved, or, in terms of the marked
i.e., the local delay becomes infinite, as first observed in [Zboint processb, we take the marks to be fixed also.

Eqn. [IT) cannot be minimized in closed form. However, It Fo|iowing similar steps as in the previous cases, we obtain
can be shown that asymptotically,

1
DNRT — — LH , p” P <7w/y. (17)
p T™—=pq

1
DNTR _ 2 T 7/q175 _ gNTR o o

DNRT 4 1—l—|—1 , Y —00. (18) qm—7/q" 7% + KNTR”
a 7 (21)

min



wherex™"" = ZH;(~1/(6q)). Since the delay is monotoni-

cally decreasing ag | 0 (and thusg T 1),
DNt = T = - (22)

T+ AR 1+ Hy(—1/0) — 7 /x

What is interesting about this case is that there ikaad
phase transition in the sense that a finite local delay cammot
achieved for anyp as soon a® exceeds some critical value
0., determined byl + Hs(—1/6.) — /7 = 0. While reducing

p reduces the interference, it also increases the link distan
in proportion top—'/2, and the net gain is negative 6f is
larger thanf.. Fora = 4, 6. =~ 1.351. So, the maximum rate
that can be supported for finite local delayR$,.x ~ 1.2333.
As o decreases]. decreases also. Sinee < 4.95 in most
environments, the rate supported by NTR cannot exceed 4/3

Infinite mobility Static
NRT | 1+2\//m 1+0(8Y) | 1+ 0(ymax{l/3.1/a}y
NNT 44 cy/m; 4+ 6(0°) 44 0(7); 4+ 6(0%)
L) )
NTR 1+ ?9 1+ ?9
NNR 44 7250 44 7250
TABLE |

SCALING BEHAVIOR OF THE MINIMUM LOCAL DELAY AS 6 — 0.

WITHOUT A O ORO SYMBOL, THE ASYMPTOTIC RESULTS ARE SHARP
i.e., “~". THE CONSTANTc DEPENDS ONax AND ASSUMES VALUES

ce (1,4/3).

Again the exception is the statéTR case. AsR — 0,
Dyin = K + O(RY)

and Dpin = K+ Q(R),

bits/s/Hz. Therefore the high-asymptotics do not exist. Forwhere K = 1 for NRT and NTR andy = 4 for NNT and

small 9, it follows from {22) that

2
DNTR~1+ﬁ9:1+L9 0—0.

min 1-6 ’
D. Nearest-neighbor reception (NNR)

(23)

In this case, it is not difficult to see that the optimum
transmit probability tends ta/2 asf — 0, since the limiting
factor is not interference but the availability of transmdteive

+ PR —

pairs. It follows that
5/2
4 (1 T3 > , 6—-0.

DNNR

min

(24)

NNR.

The constank is the minimum achievable access delay. If one
of the nodes is known to be transmitting or listenidg,= 1.

VI. CONCLUSIONS

We have provided a detailed analysis of the asymptotic
behavior of the local delay in Poisson networks. The main
conclusion is that at high rates, its scaliilsgthe same for all

levels of mobility while for low rates, the scaling behavior
depends slightly on the communication scheme. In all cases,
however, the delay goes to zero faster tifarbut at most as

fast asR/e.

The minimum delay is plotted in Figl 3.

V. ASYMPTOTIC DELAYS

The partial support of the NSF through grants CNS-1016742
and CCF-1216407 is gratefully acknowledged.

We first summarize the results on the asymptotic delay.

Theorem 2 As 6 — oo, the minimum local delay in all four
infinitely mobile cases scales agr or

)
sin(md)
In the static NRT, NNT, and NNR cases, the scaling behavi%]
is 4/ or

(1]

1
Dmin ~ 0 [2]

)

~ 46° :
sin(7d)

Dmin

(4
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