The Delay-optimal Number of Hops in Poisson
Multi-hop Networks

Kostas Stamatiou and Martin Haenggi
Department of Electrical Engineering
University of Notre Dame, Notre Dame, IN 46556

kst amati @d. edu, mhaenggi @d. edu

Abstract—We study the delay and throughput in a wireless used, but the focus was the transport capacity and queueing
multihop network WiFh sources that form a Poisson point pro- delays were ignored. Bounds on the propagation speed of
cess and relays which are placed equidistantly on the souree \iqritized packets in Poisson networks were obtained jn [5

destination line. A combined TDMA/ALOHA MAC protocol with L . .
intra-route TDMA and inter-route ALOHA is employed. We give and [6], but this line of work also ignores queueing delays an

bounds on the delay-optimal number of hops and derive the does not provide routing guidelines.
asymptotic delay-throughput tradeoff as the source-destiation

distance R gets large. The delay includes both the service times

and waiting times in the buffers of the typical route. One man A. Network setting

finding is that when the transmission probability and number of K . f infini b f
hops are jointly optimized for minimum delay, the number of ~ 1he network consists of an infinite number of sources at

hops scales ag?®/® while the delay scales as?*/?. locations {z;}, each with a destination at a finite distance
R;, and a random orientation. The locations of the sources
. INTRODUCTION are drawn independently according to a homogeneous PPP
End-to-end throughput and delay are two fundamental p&-= {z;} C R? of density \. Packets are relayed from the
formance metrics in wireless networks. They have beenetudsource to its respective destination B — 1 equidistantly
intensely, in particular in the last decade, but relatiiélje placed relays)V; € Z*. Note that, henceforth, when referring
work has been devoted to multi-hop networks with randomty a typical source and its corresponding route, the indisx
placed nodes. In particular, to the best of our knowledgereth dropped for convenience.
have been no throughput-delay studies that include randonThe sources are backlogged, i.e., they always have packets
node placement, multi-hop routing, and queueing delays. Tio transmit. Each relay has an infinite buffer, where packets
goal of this paper is to make a first step in this direction, ipat are received from the previous node in the route can
deriving concrete end-to-end delay results and an asyioptdie stored in a first-in, first-out fashion. Time is dividedoint
throughput-delay tradeoff for a network model with Poissopacket slots. Within a route oV hops, a TDMA/ALOHA
distributed sources, each with its own destination at ayéjpr protocol is observed: the source transmits with probabilit
distanceR and a dedicated set df — 1 equidistant relays p, then each relay from to N — 1 is allowed, one at a
on the line in between. A TDMA/ALOHA MAC scheme istime, to transmit with probability,., until the TDMA cycle is
employed, where, for each route, a TDMA token is passedmpleted and the source is given its turn again. A packet is
from source to the first relay, the next relay, and so on, theeceived successfully by a node, if the signal-to-intenhee-
back to the source, and the node with the token is alloweatio (SIR) in that slot is above a target threshéldif it is
to transmit with a certain probability. First, we determihe not, the transmitting node is informed via an ideal feedback
number of hopsV that minimizes the delay as a function oftthannel and the packet remains at the head of its queue until
the transmit probability. We then jointly optimize the nuenb the node gets another opportunity to transmit.
of hops and the transmit probability @ — oo and derive  Finally, we assume that routes are synchronized at the slot
scaling laws for the delay and throughput. level but the TDMA schedules need not be aligned in any way,
While the network model with the desired number ofe., a source of one route and a given relay of another route
dedicated relays per route is clearly idealized, we viewsit anight be scheduled in the same slot.
a continuous relaxation of the “real” routing problem, wéer
relays have to be chosen from a discrete set of points. (ﬁrr
analysis yields the optimum number and ideal locations of The channel between two nodes at distamcéncludes
the relays. This information can then be fed into a routingayleigh fading - with a coherence time of one slot - and path-
algorithm that finds actual relay nodes, e.g., from a Poisst$s according to the law=", whereb > 2 is the path-loss
point process (PPP), that are close to the ideal locations. €xponent. We consider an interference-limited settingeneh

Previous analyses of Poisson networks have mostly focusegl - . o
The sourcetransmitswith probability p since it always has a packet to

on the single-hgp case [1]-[3]. EXtenSionS.tol the mum'hqgmsmit. A relayis allowed to transmiwith probability p,-, since its queue
case are nontrivial and rare. In [4], a model similar to ouas wmay be empty.

Il. SYSTEM MODEL

Physical layer



thermal noise at the receiver is assumed to be negligibledan be considered independent. The effect is also accedtuat
comparison to the transmit power, which is normalized tconeby fading [8].
The SIR over a given hop is defined as A necessary condition for the second assumption to hold
A b is thatp < p,.. We can see this as follows: Denote the hop
(B/N) It
— (1) success probability in a route by, (due to symmetry, the
ZZGH\{y} ext:B.d; success probability is the same across hops of the samg.route
According to [9], the relay queues will be stable providealtth
. . - - he packet arrival probability to the first relgyps, is smaller
» Ais the_ fading co_efﬁment_ Igetween t.h_e 'Fransm|tt|ng NO0%an the packet departure probability from the first and all
a’_[ Io_catlony _and |t_s receiving node; it is exponennallySubsequent relaysy.p., Of p < pr. Under this condition,
distributed with unit mean. packet arrivals to all relays are iid geometric with parsnet

¢ g}ésgticgnp;:;t process of nodes which are scheduled Zl)r}])s. Moreover, the probability that a relay at location

— .. transmits a packet is simp(t. = 1,e, = 1) = p.
* 271 d:e 1 nge;;r;?v\z:gel ﬁthlgzit('joeni'ss ;!?)V:fcdet?&nsi"t Since only one node is allowed to transmit per route @nd
1) — z __.f it lav. therP(e. — 1) — ».. Th Zd_ is a PPP, it follows from the displacement theorem [7] that th
) =pi if itis arelay, thenP(e. = 1) = p,. The random point process of potential interferelisis a PPP. Based on our
variables{e.} are independent.

. L revious assumptions, the point process of actual intener
o t, = 1 when the node at location has packets in its P P P P

d. — 0 otherwise. If th dei th " ={z:e, = 1,t, = 1} is thus also a PPP with density
]?Dl;qu ?;]jl_ Otherwise. € node 15 a source, er}\p. By Corollary 3.2 in [2], the hop success probability is

SIR =

where

; . : therefore
e d. is the distance between and the location of the _ ape(R/N)? 2
receiver; B, is the respective fading coefficient, expo- ps =¢ ’ 2
nentially distributed with unit mean. wherec = T'(1+2/b)T'(1—2/b)76%/? is thespatial contention
C. Metrics parameter{3] andI'(z), = > 0, is the gamma function.

Following the analysis in [10], the service time for the head
We define the mean end-to-end delBycorresponding to of-line packet at the source is

the typical source as the mean total time (in slots) thakisa
a packet to travel from the head of the source queue to its H=
destination. Assuming negligible propagation timésjs the pps
sum of the mearwaiting timesand service timesalong the and, similarly, the service time for the head-of-line packe
queues of the route. The waiting time at a node is measurgdelay is
starting from the moment a packet arrives at that node’s gueu N
L ; . : H, = - N+1.
until it becomes the head-of-line packet, i.e., all packats DrPs
front of it have been successfully transmitted to the ne@ reover. the waiting time at the queue of a relay is
node. The service time is measured from the moment a pac et ’ 9 q y
reaches the head of the queue until it is successfully redeiv p 1—prps
: . . Q, =N—— "5
by the next node and includes the access delay associated wit pr (pr — P)Ds

the MAC protocol. . .
We also define the route throughput (RT) as the expectgge end-to-end delay is therefore given by

~N4+1,

number of packets successfully delivered to the destingtéy D = H+(N-1)(H +Q,)
slot. N 1 — pops
= + N(N - 1)—LrPs 3)
[1l. EVALUATION OF THE DELAY AND THROUGHPUT PPs (pr = p)ps

The objective of this section is the evaluationfandRT. Civen that for small values of,, 1 —p,ps ~ 1, the simpler

We begin by making the following assumptions. expression
« Packet successes are independent across hops of the same N N(N-1)
route. D= T o= pips )
o The network reaches a stationary regime, i.e., it is dy-
namically stable. provides a satisfactorily tight upper bound.

The first assumption is based on the observation that, forSlnce a p_a_cket is received by the destmanon everglots
sufficiently smallp and p,, the point processes of nodedVith probability pp;, the route throughput i®T = pp,/N.
which are allowed to transmit can be considered approxigate
independent across slots. As a result, the SIRs across hops,

hence the corresponding outcomes of packet transmissiond! this section, we first optimiz& over N keepingp fixed,
and then ovelV andp jointly. We first relax the requirement

2Thermal noise can be incorporated in the analysis. See [79%q N € Z* and letN € (0, +0).

IV. DELAY OPTIMIZATION



A. Fixed source transmission probability

Proposition 1 Let p < Z*. The number of hopsV, that
minimizesD satisfies the inequality

VApcR < N, < \/2ApcR.

= %T, N, = v/ ApcR2.

)
Moreover, forp

Proof: We rewrite (4) as
D= (1_ : )NeAPC(§)2+
p Pr—Pp

The functionsf(N) 2 Ne**<(#)” and g(V) 2 N2 ve(#)”
are continuous, differentiable and strictly convex(in+oo).
D(N) is a linear combination off (N) and g(N); for p <
Pr
h2enceD(N) is also strictly convex. Moreover, fav — 0 or

N — oo, D — oo. This implies thatD has a unique global
minimum in (0, +o0), which satisfiesD’(N,) = 0, or, after

some algebra,

——N2e(R)" ()
Dr—D

No(N2 — ApcR?) + <§—; - 1) (N2 —2X\pcR*) =0. (7)

For ’2’—; > 1, it follows that NV, must satisfy (5). Forg—; =1,
we obtainN, = \/ApcR. [ |
Proposition 2 Let p € (%,pr). There existsi, > 0, such
that, for R > R,, the number of hop#V, that minimizesD
satisfies

<1 — p£> ApcR < N, < v/ ApcR.

T

Proof: D(N) is twice-differentiable in(0, +co); after
some algebra, we find that

621_) ApcR2 4(ApCR2)2 1— 1/N 1
_— = e N2 + -
ON? N4 pr—p  Np
2\pcR?) (1—-1/N 1 2
_ A e ) ( N, —) + } :
N pr—p  Np Dr — P

Forp € (p./2,p,) and N > 1, the coefficient of \pcR?)? is
positive, which means that there exigt§ such that (s.t.), for
R> R, D"(N) >0, i.e.,, D(N) is strictly convex in[1, co).
Moreover, we can show that there exid®§ > 0 s.t., for
R >R/, D'(1) < 0. As a result, taking?, = max{R/, R},
there existsR,, s.t., forR > R,, D(N) has a unique global
minimum N, > 1 in [1, c0) which is given by the solution of
(7).

Since £z < 1, it follows that, eitherN, < /ApcR or

N, > +/2ApcR. We prove via contradiction that the latter

is not possible. SettindV, = v/a\pcR, a > 2, in (7)

vVapcR(a — 1) — (1— g—;) (a—2)=0. (8)

the coefficients of this linear combination are positive,

Sincev/aApcR > 1 and 2 € (0,1), the left hand side (LHS)
is greater tham — 1 —a + 2 = 1, hence there is ne > 1 s.t.
(8) is satisfied. Now assume that< 1 — p%. The LHS of (8)

is smaller than(l —5)(2-a)—1+a <0, hence there is

noa<1-— ﬁ s.t. (8) is satisfied. ]

Remarks on Propositions 1 and 2:

« It is straightforward to show that settiny = /2A\pcR
maximizes RT. Hence, the delay-optimal number of hops
is always smaller than the throughput-optimal number of
hops.

« D = ©(R?). The square at the exponent Bfis a result
of the fact that there are approximately relays, which
are allowed to transmit only every slots.

« Asymptotic results can also be derived by keepihfixed
and lettingA — oo. In fact, the scaling laws are the
same with\/\ in place of R, i.e., N, = ©(v/)) and
D = ©()\). Note that such a limiting regime results in an
interference-limited network so the high-SNR assumption
of Section Il is not required.

We now prove the following exact scaling.

Proposition 3 For R — oo, N, — /ApcR.

Proof: Note that (7) is a cubic equation ové¥. We
rewrite it as follows

pr
N3+ (£ —
°+<2p

Denoting the coefficients of each poweras...,a3(= 1),
the discriminant of the polynomial is given by = 32 + ~2,
where3 = (3a; — a3)/9 andy = (9a1az — 2a3 — 27ag)/54.
For R — oo, 8 — —ApcR?/3 and~y — % (g—p — 1) ApcR?,
hence A — —(\pcR?/3)3. SinceA is negative, (9) has three
real roots. The only positive root is given by the formula

1) N2 — \pcR2N — 2\pcR? (g—; - 1) . (9)

v

/_53
ﬁ — 0, therefore the argument of the cosine
|

_ 82
3

N, =2+/—0cos (% cos™! <

ForR — oo,

is /6, which leads tdimg_,, N, = v/ApcR.

Remarks on Proposition 3:

« An intuitive explanation for the limiting behavior @¥,, is
that, asRk grows larger, the second term in (6) dominates
the delay, thus the optimal number of hops tends to
Vv ApcR. The convergence t¢/ApcR is slower for smaller
values ofp as the first term has a substantial contribution
to the delay for a wider range at.

« The limit of the optimal success probabilityss — e~*.

« The limit of the optimal distance per hop {§ — %R,
where R = 1/(2,/)p) is the expected closest neighbor
distance in the PPH’.

Example:Consider a network with the parameter values
1074, p, = 0.05, p = 0.01, # = 6 dB andb = 4. In Fig. 1,
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Fig. 1. Delay-optimal number of hops v& with related upper and lower Fig. 3. Delay-optimal number of hops v& with related upper and lower
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Fig. 2. Optimal end-to-end dela® and upper-boundd vs. R. The two

curves are virtually identical (= 104, p, = 0.05, p = 0.01, § = 6 dB
andb = 4)

the number of hops that minimizd3 is plotted vs.R and we
can see that it lies between the predicted bound3apcR|

and [/ ApcR]. The optimizedD and D are plotted in Fig. 2.

B. Variable source transmission probability

We now explore the scenario where, for a given route
distance,N andp € (0, p,) are both optimization parameters.

We have the following result.

Proposition 4 The jointly delay-optimalV and p follow the
scaling lawsN, = ©(R?/3) andp, = O(R™%/3).

Proof: D is continuous, differentiable and strictly convex

overp € (0,p,) andlim, .o D = lim,_., D = oco. As a
result, D has a unique global minimum, € (0,p;), given by
the solution ofD’(p,) = 0, or

AcR?> (N, N,(N,-1 N, No(N,—-1
C_2<_+¥> :_2_(72). (10)
No Po DPr — Po bo (pr - po)

bounds. The scaling lawk2/3 can be verified. X = 10~4, p, = 0.05,
6 = 6 dB, b = 4, variablep)

Note that we can rewrite (7) as

AR? (N, N,(N,—1)\ N, (1 2N,—1
P— + :

Ng Po Pr — Do Po Pr — Do
(11)
Combining (10) and (11), we obtain
2N,—1  2N,—-2
T = 1) =1 (12)
Po Po

Note that, forR — oo, (12) requires thap, — 0, since, by
Propositions 1 and 2V = ©(+/p,(R)R). As a result, in the
limit of large R, (12) results in

O(vPoR)(po +p2) = O(1), (13)

which implies thap, = © (R~%/3), and, consequentlyy, =
O(R?/3), [ ]
Remarks on Proposition 4:

« In contrast to the fixeg-scenario, the optimal number of
hops scales sublinearly witR.

« Sincep, — 0, Proposition 1 requires that, asymptotically,
N, satisfies (5), and thus the optimal success probability
is bounded as~ ! < p, < e /2,

« D = O(R*?), i.e., the delay scales superlinearly i
with exponent4/3. Moreover, R/N = R'/3, i.e., the
optimal hopping distance increases willy which is a
consequence of the absence of noise.

« As in the fixedp case, these scaling laws may be ex-
pressed in terms of for a fixed R, i.e.,p, = O(A~1/3),

RT = ©(A~%/3) and D = ©(\?/3). Note that the scaling
of RT is worse thar®(\~1/2), asN andp are optimized
for minimum delay and not for maximum throughput.

Example:Consider a network with the same parameter val-

ues as in Section IV-A ang € (0, 0.05). Fig. 3 demonstrates
the sublinear scaling @V, with R and Fig. 4 shows the jointly
optimal p,. The optimal delay is plotted in Fig. 5.
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Fig. 4. Delay-optimal source transmission probabifitys. R. The scaling Fig. 5.
fixedp case, the two curves are virtually identicak € 10~4, p,. = 0.05,

law R—2/3 can be verified. X = 104, p,, = 0.05, 6 = 6 dB, b = 4)

Optimal end-to-end delai and upper-bound vs. R. As in the

6 = 6 dB, b = 4, variablep)

V. DELAY-THROUGHPUT TRADEOFF

The relation between the end-to-end delay and throughput
merits special consideration. Lpt= ¢R~", ¢ € (0,p,) and
k > 0 and define thalelay and throughput exponents

.. logD(R)
0 = ngnoo log R

~ jm log RT(R)
T R—oo log R '

Since N = O(y/p(R)R) = ©(R'~*/?), from the definitions
of D in (3), and RT, it follows that (k) = max{1 +x/2,2 —
k} and 7(k) = —1 — k/2. The plots of these exponents as
functions ofx are shown in Fig. 6. Fok = 0, i.e., constant
p, the delay scales a3(R?) and the throughput a®(R1).
As « increases, botli(x) and (k) decrease, indicating that
reducingp improves the performance in terms of delay but
results in a throughput penalty. Increasingeyond the delay- [5]
optimal value2/3 - derived in Section IV-B - results in a delay
penalty asi(x) starts to increase.

An interesting open question is how the scaling laws derivetfl
in this paper are modified when intra-route spatial reuse is
allowed.
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