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Abstract—We study the delay and throughput in a wireless
multihop network with sources that form a Poisson point pro-
cess and relays which are placed equidistantly on the source-
destination line. A combined TDMA/ALOHA MAC protocol with
intra-route TDMA and inter-route ALOHA is employed. We give
bounds on the delay-optimal number of hops and derive the
asymptotic delay-throughput tradeoff as the source-destination
distanceR gets large. The delay includes both the service times
and waiting times in the buffers of the typical route. One main
finding is that when the transmission probability and number of
hops are jointly optimized for minimum delay, the number of
hops scales asR2/3 while the delay scales asR4/3.

I. I NTRODUCTION

End-to-end throughput and delay are two fundamental per-
formance metrics in wireless networks. They have been studied
intensely, in particular in the last decade, but relativelylittle
work has been devoted to multi-hop networks with randomly
placed nodes. In particular, to the best of our knowledge, there
have been no throughput-delay studies that include random
node placement, multi-hop routing, and queueing delays. The
goal of this paper is to make a first step in this direction, by
deriving concrete end-to-end delay results and an asymptotic
throughput-delay tradeoff for a network model with Poisson
distributed sources, each with its own destination at a (large)
distanceR and a dedicated set ofN − 1 equidistant relays
on the line in between. A TDMA/ALOHA MAC scheme is
employed, where, for each route, a TDMA token is passed
from source to the first relay, the next relay, and so on, then
back to the source, and the node with the token is allowed
to transmit with a certain probability. First, we determinethe
number of hopsN that minimizes the delay as a function of
the transmit probability. We then jointly optimize the number
of hops and the transmit probability asR → ∞ and derive
scaling laws for the delay and throughput.

While the network model with the desired number of
dedicated relays per route is clearly idealized, we view it as
a continuous relaxation of the “real” routing problem, where
relays have to be chosen from a discrete set of points. Our
analysis yields the optimum number and ideal locations of
the relays. This information can then be fed into a routing
algorithm that finds actual relay nodes, e.g., from a Poisson
point process (PPP), that are close to the ideal locations.

Previous analyses of Poisson networks have mostly focused
on the single-hop case [1]–[3]. Extensions to the multi-hop
case are nontrivial and rare. In [4], a model similar to ours was

used, but the focus was the transport capacity and queueing
delays were ignored. Bounds on the propagation speed of
prioritized packets in Poisson networks were obtained in [5]
and [6], but this line of work also ignores queueing delays and
does not provide routing guidelines.

II. SYSTEM MODEL

A. Network setting

The network consists of an infinite number of sources at
locations{xi}, each with a destination at a finite distance
Ri, and a random orientation. The locations of the sources
are drawn independently according to a homogeneous PPP
Φ = {xi} ⊂ R

2 of densityλ. Packets are relayed from the
source to its respective destination byNi − 1 equidistantly
placed relays,Ni ∈ Z

+. Note that, henceforth, when referring
to a typical source and its corresponding route, the indexi is
dropped for convenience.

The sources are backlogged, i.e., they always have packets
to transmit. Each relay has an infinite buffer, where packets
that are received from the previous node in the route can
be stored in a first-in, first-out fashion. Time is divided into
packet slots. Within a route ofN hops, a TDMA/ALOHA
protocol is observed: the source transmits with probability
p, then each relay from1 to N − 1 is allowed1, one at a
time, to transmit with probabilitypr, until the TDMA cycle is
completed and the source is given its turn again. A packet is
received successfully by a node, if the signal-to-interference-
ratio (SIR) in that slot is above a target thresholdθ. If it is
not, the transmitting node is informed via an ideal feedback
channel and the packet remains at the head of its queue until
the node gets another opportunity to transmit.

Finally, we assume that routes are synchronized at the slot
level but the TDMA schedules need not be aligned in any way,
i.e., a source of one route and a given relay of another route
might be scheduled in the same slot.

B. Physical layer

The channel between two nodes at distancer includes
Rayleigh fading - with a coherence time of one slot - and path-
loss according to the lawr−b, whereb > 2 is the path-loss
exponent. We consider an interference-limited setting, where

1The sourcetransmitswith probability p since it always has a packet to
transmit. A relayis allowed to transmitwith probability pr, since its queue
may be empty.



thermal noise at the receiver is assumed to be negligible in
comparison to the transmit power, which is normalized to one2.
The SIR over a given hop is defined as

SIR =
A(R/N)−b

∑

z∈Π\{y} eztzBzd
−b
z

(1)

where

• A is the fading coefficient between the transmitting node
at locationy and its receiving node; it is exponentially
distributed with unit mean.

• Π is the point process of nodes which are scheduled in
the given slot.

• ez = 1 when the node at locationz is allowed to transmit
andez = 0 otherwise. If the node is a source, thenP(ez =
1) = p; if it is a relay, thenP(ez = 1) = pr. The random
variables{ez} are independent.

• tz = 1 when the node at locationz has packets in its
queue andtz = 0 otherwise. If the node is a source, then
P(tz = 1) = 1.

• dz is the distance betweenz and the location of the
receiver;Bz is the respective fading coefficient, expo-
nentially distributed with unit mean.

C. Metrics

We define the mean end-to-end delayD corresponding to
the typical source as the mean total time (in slots) that it takes
a packet to travel from the head of the source queue to its
destination. Assuming negligible propagation times,D is the
sum of the meanwaiting timesand service timesalong the
queues of the route. The waiting time at a node is measured
starting from the moment a packet arrives at that node’s queue
until it becomes the head-of-line packet, i.e., all packetsin
front of it have been successfully transmitted to the next
node. The service time is measured from the moment a packet
reaches the head of the queue until it is successfully received
by the next node and includes the access delay associated with
the MAC protocol.

We also define the route throughput (RT) as the expected
number of packets successfully delivered to the destination per
slot.

III. E VALUATION OF THE DELAY AND THROUGHPUT

The objective of this section is the evaluation ofD andRT.
We begin by making the following assumptions.

• Packet successes are independent across hops of the same
route.

• The network reaches a stationary regime, i.e., it is dy-
namically stable.

The first assumption is based on the observation that, for
sufficiently small p and pr, the point processes of nodes
which are allowed to transmit can be considered approximately
independent across slots. As a result, the SIRs across hops,
hence the corresponding outcomes of packet transmissions,

2Thermal noise can be incorporated in the analysis. See [7, eq. (9)].

can be considered independent. The effect is also accentuated
by fading [8].

A necessary condition for the second assumption to hold
is that p < pr. We can see this as follows: Denote the hop
success probability in a route byps (due to symmetry, the
success probability is the same across hops of the same route).
According to [9], the relay queues will be stable provided that
the packet arrival probability to the first relay,pps, is smaller
than the packet departure probability from the first and all
subsequent relays,prps, or p < pr. Under this condition,
packet arrivals to all relays are iid geometric with parameter
pps. Moreover, the probability that a relay at locationz
transmits a packet is simplyP(tz = 1, ez = 1) = p.

Since only one node is allowed to transmit per route andΦ
is a PPP, it follows from the displacement theorem [7] that the
point process of potential interferersΠ is a PPP. Based on our
previous assumptions, the point process of actual interferers
Π′ = {z : ez = 1, tz = 1} is thus also a PPP with density
λp. By Corollary 3.2 in [2], the hop success probability is
therefore

ps = e−λpc(R/N)2 , (2)

wherec = Γ(1+2/b)Γ(1−2/b)πθ2/b is thespatial contention
parameter[3] and Γ(x), x > 0, is the gamma function.

Following the analysis in [10], the service time for the head-
of-line packet at the source is

H =
N

pps
− N + 1,

and, similarly, the service time for the head-of-line packet at
a relay is

Hr =
N

prps
− N + 1.

Moreover, the waiting time at the queue of a relay is

Qr = N
p

pr

1 − prps

(pr − p)ps
.

The end-to-end delay is therefore given by

D = H + (N − 1)(Hr + Qr)

=
N

pps
+ N(N − 1)

1 − prps

(pr − p)ps
. (3)

Given that for small values ofpr, 1 − prps ≈ 1, the simpler
expression

D̄ =
N

pps
+

N(N − 1)

(pr − p)ps
(4)

provides a satisfactorily tight upper bound.
Since a packet is received by the destination everyN slots

with probability pps, the route throughput isRT = pps/N .

IV. D ELAY OPTIMIZATION

In this section, we first optimizēD overN keepingp fixed,
and then overN andp jointly. We first relax the requirement
N ∈ Z

+ and letN ∈ (0, +∞).



A. Fixed source transmission probabilityp

Proposition 1 Let p < pr

2 . The number of hopsNo that
minimizesD̄ satisfies the inequality

√

λpcR < No <
√

2λpcR. (5)

Moreover, forp = pr

2 , No =
√

λpcR2.

Proof: We rewrite (4) as

D̄ =

(

1

p
− 1

pr − p

)

Neλpc( R
N )2

+
1

pr − p
N2eλpc( R

N )2

. (6)

The functionsf(N) , Neλpc( R
N )2

andg(N) , N2eλpc( R
N )2

are continuous, differentiable and strictly convex in(0, +∞).
D̄(N) is a linear combination off(N) and g(N); for p <
pr

2 , the coefficients of this linear combination are positive,
henceD̄(N) is also strictly convex. Moreover, forN → 0 or
N → ∞, D̄ → ∞. This implies thatD̄ has a unique global
minimum in (0, +∞), which satisfiesD̄′(No) = 0, or, after
some algebra,

No(N
2
o − λpcR2) +

(

pr

2p
− 1

)

(

N2
o − 2λpcR2

)

= 0. (7)

For pr

2p > 1, it follows that No must satisfy (5). Forpr

2p = 1,
we obtainNo =

√
λpcR.

Proposition 2 Let p ∈
(

pr

2 , pr

)

. There existsRo > 0, such
that, for R > Ro, the number of hopsNo that minimizesD̄
satisfies

√

(

1 − p

pr

)

λpcR < No <
√

λpcR.

Proof: D̄(N) is twice-differentiable in(0, +∞); after
some algebra, we find that

∂2D̄

∂N2
= e

λpcR2

N2

[

4(λpcR2)2

N4

(

1 − 1/N

pr − p
+

1

Np

)

− 2(λpcR2)

N2

(

1 − 1/N

pr − p
+

1

Np

)

+
2

pr − p

]

.

For p ∈ (pr/2, pr) andN ≥ 1, the coefficient of(λpcR2)2 is
positive, which means that there existsR′

o such that (s.t.), for
R > R′

o, D̄′′(N) > 0, i.e., D̄(N) is strictly convex in[1,∞).
Moreover, we can show that there existsR′′

o > 0 s.t., for
R > R′′

o , D̄′(1) < 0. As a result, takingRo = max{R′
o, R

′′
o},

there existsRo, s.t., forR > Ro, D̄(N) has a unique global
minimumNo > 1 in [1,∞) which is given by the solution of
(7).

Since pr

2p < 1, it follows that, eitherNo <
√

λpcR or
No >

√
2λpcR. We prove via contradiction that the latter

is not possible. SettingNo =
√

aλpcR, a > 2, in (7)

√

aλpcR(a − 1) −
(

1 − pr

2p

)

(a − 2) = 0. (8)

Since
√

aλpcR > 1 and pr

2p ∈ (0, 1), the left hand side (LHS)
is greater thana− 1− a + 2 = 1, hence there is noa > 1 s.t.
(8) is satisfied. Now assume thata ≤ 1− p

pr
. The LHS of (8)

is smaller than
(

1 − pr

2p

)

(2 − a) − 1 + a ≤ 0, hence there is

no a ≤ 1 − p
pr

s.t. (8) is satisfied.
Remarks on Propositions 1 and 2:

• It is straightforward to show that settingN =
√

2λpcR
maximizes RT. Hence, the delay-optimal number of hops
is always smaller than the throughput-optimal number of
hops.

• D̄ = Θ(R2). The square at the exponent ofR is a result
of the fact that there are approximatelyN relays, which
are allowed to transmit only everyN slots.

• Asymptotic results can also be derived by keepingR fixed
and lettingλ → ∞. In fact, the scaling laws are the
same with

√
λ in place of R, i.e., No = Θ(

√
λ) and

D = Θ(λ). Note that such a limiting regime results in an
interference-limited network so the high-SNR assumption
of Section II is not required.

We now prove the following exact scaling.

Proposition 3 For R → ∞, No →
√

λpcR.

Proof: Note that (7) is a cubic equation overN . We
rewrite it as follows

N3
o +

(

pr

2p
− 1

)

N2
o − λpcR2N − 2λpcR2

(

pr

2p
− 1

)

. (9)

Denoting the coefficients of each power asa0, . . . , a3(= 1),
the discriminant of the polynomial is given by∆ = β3 + γ2,
whereβ = (3a1 − a2

2)/9 andγ = (9a1a2 − 2a3
2 − 27a0)/54.

For R → ∞, β → −λpcR2/3 andγ → 45
54

(

pr

2p − 1
)

λpcR2,

hence,∆ → −(λpcR2/3)3. Since∆ is negative, (9) has three
real roots. The only positive root is given by the formula

No = 2
√

−β cos

(

1

3
cos−1

(

γ
√

−β3

))

− a2

3
.

ForR → ∞, γ√
−β3

→ 0, therefore the argument of the cosine

is π/6, which leads tolimR→∞ No =
√

λpcR.
Remarks on Proposition 3:

• An intuitive explanation for the limiting behavior ofNo is
that, asR grows larger, the second term in (6) dominates
the delay, thus the optimal number of hops tends to√

λpcR. The convergence to
√

λpcR is slower for smaller
values ofp as the first term has a substantial contribution
to the delay for a wider range ofR.

• The limit of the optimal success probability isps → e−1.
• The limit of the optimal distance per hop isRNo

→ 2√
c
R̄,

where R̄ = 1/(2
√

λp) is the expected closest neighbor
distance in the PPPΠ′.

Example:Consider a network with the parameter valuesλ =
10−4, pr = 0.05, p = 0.01, θ = 6 dB andb = 4. In Fig. 1,
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Fig. 1. Delay-optimal number of hops vs.R with related upper and lower
bounds. (λ = 10

−4, pr = 0.05, p = 0.01, θ = 6 dB andb = 4)
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Fig. 2. Optimal end-to-end delayD and upper-bound̄D vs. R. The two
curves are virtually identical. (λ = 10−4, pr = 0.05, p = 0.01, θ = 6 dB
andb = 4)

the number of hops that minimizes̄D is plotted vs.R and we
can see that it lies between the predicted bounds⌊

√
λpcR⌋

and⌈
√

λpcR⌉. The optimizedD andD̄ are plotted in Fig. 2.

B. Variable source transmission probabilityp

We now explore the scenario where, for a given route
distance,N andp ∈ (0, pr) are both optimization parameters.
We have the following result.

Proposition 4 The jointly delay-optimalN and p follow the
scaling lawsNo = Θ(R2/3) and po = Θ(R−2/3).

Proof: D̄ is continuous, differentiable and strictly convex
over p ∈ (0, pr) and limp→0 D̄ = limp→pr

D̄ = ∞. As a
result,D̄ has a unique global minimumpo ∈ (0, pr), given by
the solution ofD̄′(po) = 0, or

λcR2

N2
o

(

No

po
+

No(No − 1)

pr − po

)

=
No

p2
o

− No(No − 1)

(pr − po)2
. (10)
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Fig. 3. Delay-optimal number of hops vs.R with related upper and lower
bounds. The scaling lawR2/3 can be verified. (λ = 10−4, pr = 0.05,
θ = 6 dB, b = 4, variablep)

Note that we can rewrite (7) as

λcR2

N2
o

(

No

po
+

No(No − 1)

pr − po

)

=
No

2po

(

1

po
+

2No − 1

pr − po

)

.

(11)
Combining (10) and (11), we obtain

2No − 1
pr

po
− 1

+
2No − 2

(pr

po
− 1)2

= 1. (12)

Note that, forR → ∞, (12) requires thatpo → 0, since, by
Propositions 1 and 2,N = Θ(

√

po(R)R). As a result, in the
limit of large R, (12) results in

Θ(
√

poR)(po + p2
o) = Θ(1), (13)

which implies thatpo = Θ
(

R−2/3
)

, and, consequently,No =
Θ(R2/3).
Remarks on Proposition 4:

• In contrast to the fixed-p scenario, the optimal number of
hops scales sublinearly withR.

• Sincepo → 0, Proposition 1 requires that, asymptotically,
No satisfies (5), and thus the optimal success probability
is bounded ase−1 < ps < e−1/2.

• D̄ = Θ(R4/3), i.e., the delay scales superlinearly inR
with exponent4/3. Moreover,R/N = R1/3, i.e., the
optimal hopping distance increases withR, which is a
consequence of the absence of noise.

• As in the fixed-p case, these scaling laws may be ex-
pressed in terms ofλ for a fixedR, i.e.,po = Θ(λ−1/3),
RT = Θ(λ−2/3) andD̄ = Θ(λ2/3). Note that the scaling
of RT is worse thanΘ(λ−1/2), asN andp are optimized
for minimum delay and not for maximum throughput.

Example:Consider a network with the same parameter val-
ues as in Section IV-A andp ∈ (0, 0.05). Fig. 3 demonstrates
the sublinear scaling ofNo with R and Fig. 4 shows the jointly
optimal po. The optimal delay is plotted in Fig. 5.
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Fig. 4. Delay-optimal source transmission probabilityp vs. R. The scaling
law R−2/3 can be verified. (λ = 10−4, pr = 0.05, θ = 6 dB, b = 4)

V. DELAY-THROUGHPUT TRADE-OFF

The relation between the end-to-end delay and throughput
merits special consideration. Letp = qR−κ, q ∈ (0, pr) and
κ ≥ 0 and define thedelay and throughput exponents

δ = lim
R→∞

log D(R)

log R

τ = lim
R→∞

log RT(R)

log R
.

SinceN = Θ(
√

p(R)R) = Θ(R1−κ/2), from the definitions
of D in (3), and RT, it follows thatδ(κ) = max{1+κ/2, 2−
κ} and τ(κ) = −1 − κ/2. The plots of these exponents as
functions ofκ are shown in Fig. 6. Forκ = 0, i.e., constant
p, the delay scales asΘ(R2) and the throughput asΘ(R−1).
As κ increases, bothδ(κ) and τ(κ) decrease, indicating that
reducingp improves the performance in terms of delay but
results in a throughput penalty. Increasingκ beyond the delay-
optimal value2/3 - derived in Section IV-B - results in a delay
penalty asδ(κ) starts to increase.

An interesting open question is how the scaling laws derived
in this paper are modified when intra-route spatial reuse is
allowed.
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