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Abstract—Network-wide adoption of a multipacket transmis- (in general multi-) nodéroadcast clustersas shown in Fig.
sion scheme such as Superposition Coding (SC) for local “one 1, Our approach allows us to compare throughputs obtained
to-many” communication results in mutually interfering *b road- \yith SC and FD, averaged over four important sources of
cast” clusters. We analyze the benefits of SC and traditional L
Frequency Division (FD) with this interference via a utility un(.:erta'my'_ node placement (modeled as a h(_)mog_eneous
function that measures the rate of information transfer per unit  Poisson Point Process (PPP)), channel access, link distanc
area. In particular, we study transmitters forming a Poisssm and fading. We quantify the benefit offered by each scheme
EOiné D_fdotfrlleS”S anf_l USiE% AIII_OHA fort'mlediumtacges'sd':o;daeﬁt)l(ed in terms of a utility function that accounts for both the Ibca

andwidth allocation, FD allows spatial reuse to be inde n ; s

optimized for each frequency banpd. On the other handl,owith SyC throughput and the distance of successtul pa}cket transmsss

for a fixed power allocation, the optimal spatial reuse depeds on averaged over all these sources of uncertainty. .

the relative contribution of each link to the utility functi on. Since ~ We present results for a two-user broadcast; extending thes
optimal spatial reuse is a function of the network geometrythe results to a greater number of users is straightforward. Our
gains provided by SC depend on the geometry of the receiver results show that the benefits from SC depend on receiver
node placement. geometry. This is a direct consequence of the medium ac-
cess mechanism. Unlike SC, FD allows independent spatial
use among the non-interfering sub-networks, as noted in

model for packet reception, i.e., a receiver is capable ] Medium access protocols for sr_nall_ link distances per-
decoding only one packet at any given time. As a resu ,'t greater spafial reuse; the oppos!te 1S true for Iargte_ Im.
scheduling at the transmitter requires orthogonality agno |st-ances. In S_C the near-.fa.r disparity in channel ql_Jahty :
transmissions to different users at the physical layer. e optimally exploited to maximize the rate of communication
when receivers are capable of sophisticated physical-li

I. INTRODUCTION
Conventional link-layer abstractions assume a collisidl

20

processing such as successive decoding or receive beam
ing, such an assumption may restrict the design space o
scheduler, whether in a base station or in a relay node ggr
multiple routes.

Indeed, when the one-to-many communication problen
modeled as communication over a (scalar) Gaussian Broac
Channel (BC), multipacket transmission using Superposi
Coding (SC) at the transmitter along with Successive Dexp(
(SD) at the receivers is capacity-achieving [1, Chap.1lbja
at the cost of a large delay). In a network that has many nc
with multipacket capabilities, all the one-to-many “clist’
influence each other through interference. Hence proto
for medium access become important. Note that orthoge
transmission schemes such as Frequency Division (FD) b
this communication problem down into separate point-toHpc
problems at the cost of assigning a smaller bandwidth

each user. In this paper, we present some preliminary ses
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Figure 1. A network consisting of many three-node clust@ransmitters
led circles) are a realization of a homogeneous PoissoimtFProcess.

of our investigation of the implications of using SC as &ach transmitter communicates with two intended receiassshown by the

multipacket transmission scheme in a network. To the best

aHfows. The receivers closer to (resp. farther from) tortlransmitter (resp.
the near and far receivers) are marked »asnarks (resp.4+-marks). The

our knowledge, this is the first such study. We investigai® thypical cluster in this network is highlighted.

problem using a stochastic geometry framework. In pasicul

we study a network consisting of many randomly placed three-

*Corresponding author. The authors are with the Departroéiilectrical
Engineering, University of Notre Dame, Notre Dame, IN 465&6mail:
(svanka, mhaenggi)@nd.edu. The partial support of NSFI{gr&NS 04-

47869 and CCF 728763) and DARPA/IPTO IT-MANET progam (gran

W911NF-07-1-0028) is gratefully acknowledged.

Il. SYSTEM MODEL
A. Network
+ The transmitters using multipacket transmission are point

drawn from a unit intensity marked homogeneous Poisson



Point Process (PPPP £ {Zi,te, 1,tz, 2} On R%, where C. Link Layer

tz,x € {0,1} denotes the transmit decision to ugefdefined 5 packet queues are backlogged. In each cluster, the
below) of the transmitter at; € R?. Signal propagation is yansmitter link layer assigns a transmit power(for SC)
subject to power-law path loss with exponeft> 2 and o phandwidthu (for FD) to the near user. In this paper, we
(frequency-) flat fading. All point-to-point channels aiél i 5rq nterested in distributed random protocols where trans
Rayleigh block fading over unit time slots. Each broadcaglissions may be uncoordinated. In particular, we assume a
cluster consists of a tr?nsm!,ttet; € @ and its two intended g|otaq ALOHA protocol with an attempt rage, for the k"
USErs Or receivers: a ‘near” user at a distamce; and @ jink peing served (i.e., for each, te, is Bernoulli with

far” user at a distance;, ». The sequencéry,1,7z,2} IS & parametep, independent of;). For SC all links at a given

sequence of i_id re_zalizations drawn from a _distributiﬁ,qn. transmitterz; are served (or not served) at the same time (i.e.,
This distribution is known at the transmitters. Denote thle

) - e o 1 =ty 2 = ty,), we denote this common attempt rate by
typical tra}?sml_tter by T centered at the origin communie@ti ,, * benote the success probability at thé typical user by
with its k%" typical user at a distance, at a transmission rate

R ps.k- The local throughpul” on thekt! typical link is defined
ke as
B. Physical Layer Ty = prps.k R (4)
1) Transmission:Unit total available bandwidth is avail-
able. The physical layer uses Gaussian signalling over long
blocklengths in each slot with a unit average power condtrai We find the expected local throughput seen at the typical
per channel use. Suppose single-user communication fram Transmitter T when it communicates with its near and far
its k*I receiver is established using a single-user code of rageeivers R1 and R2 respectively. The throughput is derived
C(6x), whereC(z) = log(1 + z), k = 1,2. Let §, = 1/N}, for the special case of fixed link distances using an extensio
where N| can be viewed as thpresumednoise-variance at of the bipolar model in [4].
receiverk. We assumé; <.91’ €., the transmitter presumeSF?roposition 1. If each transmitter uses SC, the success
that the channel to user 2 is noisier than that to user 1. We V\ﬂlrobability on thekt™ typical link for a fixedry, is
use the superscripte andfd to identify quantities pertaining
to SC and FD. o P = exp(— (Pt} + Nibyry))) (5)
SC is implemented by assigning the near (resp. far) re-
ceiver's packets a power < a < 1 (resp.a = 1 — a) of Wwherey, = 7['(1+6)['(1 —§)#2 for k = 1,2 andd = 2/8.
the transmit power and .simultaneously transmitﬁng both th Proof: We derive the throughput to R2 first. §§ denotes
_encoded mes§age,s during th? same SIOt.’ Rl_ IS ass‘."me_%éochannel gain from T to RZ; the interference power, and
implement _SD. RZS message is decod_ed first, its contnputl%, the noise power, the SINR at R2 is given by
to the received signal subtracted, and its own messagens t 3
decoded. Thus we have a transmission réte.d;) to R1. agary”
On the other hand, SD is presumed to be not possible at SINRy = P
: . X 921y " + Iz + Na
R2 - which means a fractioa of the received power causes
self-interference. Therefore T assumes a received Sigral- Since fading states are assumed to be spatially iid, from

Interference-plus-Noise-Ratio (SINR) %ffT = ag’fil at Standard arguments (e.g., [5, Lemma 3.1]) we get (5) when
> k=2.

R2, and transmits at a rae(-2%2). FD is implemented by ) )
At R1, denotel; as the interference power. Using the SD

abs+1
assigning a fractiom,, to userk, with > opur = 1. Letu; = u, o
condition

us = 1 — u. We define:
RE 2 C(ab)) W e~ p (aglrf E oy ST 8 . _ab, )

IIl. SUCCESSPROBABILITIES

s A bl I+ N agir;?+ L+ Ny aba+1
Ry = )
afy + 1 rB rB
fd & - P gimy >0, 917y X
Rk = ukc(ek) (3) 11+N1 - 711+N1 -
2) Reception:Receivers have CSI of their intended trans- B
mitter and decode the signal from their intended transmitte = (IglilN > 91> ,
while treating all signals from outside the cluster as noise 1+ M

Such a strategy is optimal in the weak-interference regBhe [ginceq, - ¢,. Again using standard results, we can show that
The actual noise variance at all the near (resp. far) users (’g) holds fork = 1. -
Ny (resp.N»). A receiver decodes packets from its intended o Fp the results are just the single-user success proba-

transmitter on a per-slot basis, and the decoding processyiies specialized to each band. Therefore, for FD we have
approximated by the well-known SINR model: decoding ig), . — 1 9:

successful iff the SINR exceeds the SINR threshold of the
message transmission rate. P = exp(—prmri — Nibpry). (6)



Using (4) the local throughput on thé" typical link for SC respective pre-factor terms that multiply the transmissates

and FD are respectively: to be the same for both SC and FD, thus preserving this
e _ s pse 7 inequality. ]
’;d = PPsk f§ ' o (7) Therefore for a fixed spatial density of interfering trantsmi
7" = wpkpsp Ry - (8) ters SC provides greater average throughput than an omlabgo
In the next section, we propose a utility function to compar@ENeme such as FD. Before proving the second property, we
SC and FD give the following auxiliary result that follows from Progie

tion 1:

IV. TRANSPORTDENSITY .
) o _ Corollary 3. The success probabilities for SC in (5) (resp.
We would like the utility function of each broadcast clustegp i, (6)) are log-concave irp, . (resp.p. and ) on

to account for both the rate of successful packet transomssi @7 1] x R* U {0}.

and the (possibly random) distance over which these packets

are transmitted. One such metric at each cluster is the tegpec ~ Proof: Taking logarithms on both sides in (5) fér= 1
product of the link distances and the number of packets thaglds
can be successfully transmitted per time slot. This expiecta

is computed over all possible spatial interferer configares,

fading channel states and link distances. A natural exdens|,hich is clearly concave ip and ;. A similar result holds
of this idea is to define the network utility function as th%;v?? The ED case is similar. -

average of mdmdual cluster utilities. _ The second result in this section is a property of the utility
Formally, consider a balB(0, r) of radiusr centered at the sub-functions/; and Us:

origin. Define the transport density as
U= ED " 1x D Links LiNk Dist. x Link Throughpult
= 1lm
r—oo 1B(0,7)]

Inpg = —py1r} — Nibur?,

Proposition 4. The utility sub-functionU;, in (10) is log-
concave irpy, if the marginal density of;, is also log-concave.

9) Proof: For SC, ifr, has a log-concave marginal density

where the summation is over clusters #(0,r) and [A] is  f,(.) over a (convex) suppo, C R* U {0} we use (5) and
the area of the setl. From the assumptions in Section 11(7) in (10) to get

all clusters have the same utility; hence the transportitiens
may also be viewed as the utility of the typical cluster of the

network. As a result Uit = Ry /S rkPk (03 78) i (k) dr.
’ k

U =Ui(p1; A) + Ua(p2; A) Since the integrand is log-concave in bath and p over
[0,1] x S, we apply the general result [6, p. 105] and infer
Us(ps: A) = Efr Ty] (10) itgznlggaﬁoncaV|ty ofU; in p over [0, 1]. The proof for FD.IS

is the k' utility sub-functionfor link & = 1,2. As noted The log-concavity condition is satisfied by a large family
earlier in Section II-C, for S = p. The parameter vector of densities encountered in practice: exponential, unifor
A includes the transmission rat€s andTx, path loss exponent gamma distribution to name a few. We will hereafter assume
0, and all the parameters related to the distributions of lirtkis condition is satisfied.

distances; andrq. Let A = (A€, ) for SC andA = (A€, u)

for FD, where thecommonparameter vectorA® contains B. Optimizing Spatial Reuse

the parameters common to both. We state and prove sOm@engte theunconstrainednaximizer ofU; (resp.Us) in p:
properties of the utility function defined in (10). by 7 (resp.m,). From the log-concavity of these functions,
A. Some Properties of the Utility Function atpr =m; oU
The first result is an observation concerning SC and FD 3 1 =
when both schemes have the same spatial reuse that is donstan pi
over the entire bandwidth. for i = 1,2. Let 7; £ min(1,m;) be the corresponding
Proposition 2. Suppose\® is given. Then for a fixed attemptcorTStfai”.ed maximizers of the utility sub-functiof$. The
rate p across all transmitters and across the entire bandwidtQPtimization problem is discussed for FD and SC separately.

receivers, there exists a fractian of the transmit power that Non-interfering sub-networks. Hence for each link its rafe
can be assigned to the near receivers such thigt> U, rate p, can be chosen independently. Thus we have

where

0,

Proof: Ignoring the effect of interference and fading, the max U = max U+ max Uy
result follows from the optimality of SC over a Gaussian (Pt?2)€01] ”lfd[o’_” o pQG[;’”_ u
BC. With interference and fading, from (7), (8) we find the = U (m; A) + Uy (2 A).



2) SC: In general, the maximizex of U does not neces-
sarily maximizeU; or Us. However the log-concavity of/;
and U, implies 7 lies in [71, T2], as shown in the following
result:

Proposition 5. If 71 andw, are the unconstrained maximizers

of U3¢ and U5, then if 7 is a constrained maximizer df,
there existst, € [0,1] such thatr = t,7; + {72, Where
to =1 —tq.

Proof: Recall that for SCp; = p; = p. Without loss of
generality, assume; < my. Then

ouse  oUye n ouUs®
o  op  Ip’
Sinceln U5¢ is a differentiable concave function of
81 SC SC
IlUl . i aUl > O’
Ip Ui 9p

for p < m. Similarly one can argue thgg < 0 forp > m.
Thusaai: >0 forp<m andaaL:' < 0 for p > 7. We have
the following possibilities:
1) 7 > 1. This impliesms > 1. ThereforeaaLSC > 0 for
0<p<l,ie.,p=1Is afeasible maximizer of/s°.
2) m < 1,m > 1. Then a feasible maximizer df/*°
should lie in[ry, 1], since 2= > 0 for 0 < p < 7.
3) m < 1,m < 1. Then a fpeasible maximizer df=c
should lie in[ry,m), sinceaaL;C > 0 for p € [0,7)
and 2= < 0 for p € (ms, 1].
In all these cases a feasible maximizer can be writtef as
tomin(1,m) 4 t, min(1, o) for somet, € [0, 1] since any
point in an interval can be written as a convex combination
its end points. [ ]

Corollary 6. For any fixed0 < « < 1 the utility function

U=¢(p; A) can be maximized by the following ALOHA proto
col: In each time slot, each node independently tosses a ¢
of biast,, obtained from the optimization in Proposition 5. If

the outcome is heads, it transmits with a probabifity. Else
it transmits with probabilityrs.

V. NUMERICAL RESULTS
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Figure 2. Individual utility sub-functions that constituthe utility function
for fixed attempt ratep = 1 for near receiver distance; = 0.1 and far
receiver distance’s = 0.6. These functions are compared for FD (solid
black lines), SC (lines with circular markers).

A. Fixed Link Distances

Each transmitter has a pair of designated receivers at fixed
distances; andr, > rq. For the simulationy; = 0.1 and
ro = 0.3,0.6. Fig. 3 shows the optimized transport densities
for SC and FD for each far receiver distance. SC always has
greater transport density compared to FD. Interestingly, is
not alwaysthe result of improved transport densities to both
receivers, as we find from the utility sub-function plot irgFi
df which can be interpreted as the throughput-distanceugtod
seen at the typical transmitter in the network.

While the transport densities fdyoth links are improved
for ro = 0.3, whenr, = 0.6 this gain comes from improving

(t)ri}? throughput-distance product to the near receiverseat th
expense of the far receivers. This is a result of increased
disparity in optimal spatial reuse among the near and far
receivers for0.6, as discussed in the following.

For fixedr; and SINR threshold$; and 7 , the optimal

attempt rater; remains unchanged. In our case thigis= 1.

We present some numerical studies to gain more insigf@r 2 = 0.3, this is also the optimal attempt rate for the far

into our results. We compare the transport densities affbye

receiver, i.e.7ro = 1. Thus an attempt rate of 1 simultaneously

both FD and SC. The network is assumed to be interferengeaximizes bottl/; andU,, resulting in a large gain from SC
limited, i.e., N; = N, = 0. The single-user SINR thresholdsover FD. On the other hand, when = 0.6, the optimal
are chosen a8, = 10 dB, 6, = 0 dB. The path-loss exponentattempt rate falls to about 0.37, much below 1. Here SC

8 =3.

chooses a rate between 0.37 and 1, depending on the power

For reference, in Fig. 2, we show the transport density féflocation parametex, as suggested by Proposition 5, but FD

the near and far receivers with an attempt rate-= 1, for
r1 = 0.1 andry = 0.6 (which are scaled by~'/2 for a PPP

uses the optimal attempt rate for each subband.

with intensity\). As Proposition 2 predicts, SC offers a greatds: Random Link Distances

overall utility but in terms of individual utility sub-furtons,

Here provide results for a specific model of randomness

we find a Pareto improvement by switching from FD to SC bthat is a natural extension to case with fixed link distances
choosing an appropriate powerto the near user and usingdiscussed above. For some< a < b, assume that the near

the entire bandwidth for communication.

receiver distance:; ~ Unif(0,a) and the far user distance

We now discuss the implications of optimizing spatial re-us» ~ Unif(a, b), independent of each other. Clearly, these are
for SC and FD for both fixed and randomized link distancelkg-concave probability density functions; thus Propoaits
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lines) and SC without perfect SD (lines with circular magier . L. -
always a compromise between maximizing the utility sub-

function to each receiver separately. Since optimal spatia
reuse is a function of network geometry, the utility seerhat t
typical receivers from SC depend on the geometry of receiver
node placement and the chosen transmission rates. To obtain
benefits from SC, for a given a set of transmission rates and a
fixed near receiver distance, the far receivers must be glace
at a distance far enough from their intended transmitters to
provide long-range connectivity but close enough to ensure
that the optimal spatial reuse to serve them is not veryrdiffe
from that of the near receivers.
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