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Abstract—Network-wide adoption of a multipacket transmis-
sion scheme such as Superposition Coding (SC) for local “one-
to-many” communication results in mutually interfering “b road-
cast” clusters. We analyze the benefits of SC and traditional
Frequency Division (FD) with this interference via a utility
function that measures the rate of information transfer per unit
area. In particular, we study transmitters forming a Poisson
point process and using ALOHA for medium access. For a fixed
bandwidth allocation, FD allows spatial reuse to be independently
optimized for each frequency band. On the other hand, with SC
for a fixed power allocation, the optimal spatial reuse depends on
the relative contribution of each link to the utility functi on. Since
optimal spatial reuse is a function of the network geometry,the
gains provided by SC depend on the geometry of the receiver
node placement.

I. I NTRODUCTION

Conventional link-layer abstractions assume a collision
model for packet reception, i.e., a receiver is capable of
decoding only one packet at any given time. As a result,
scheduling at the transmitter requires orthogonality among
transmissions to different users at the physical layer. However,
when receivers are capable of sophisticated physical-layer
processing such as successive decoding or receive beamform-
ing, such an assumption may restrict the design space of the
scheduler, whether in a base station or in a relay node serving
multiple routes.

Indeed, when the one-to-many communication problem is
modeled as communication over a (scalar) Gaussian Broadcast
Channel (BC), multipacket transmission using Superposition
Coding (SC) at the transmitter along with Successive Decoding
(SD) at the receivers is capacity-achieving [1, Chap.15] (albeit
at the cost of a large delay). In a network that has many nodes
with multipacket capabilities, all the one-to-many “clusters”
influence each other through interference. Hence protocols
for medium access become important. Note that orthogonal
transmission schemes such as Frequency Division (FD) break
this communication problem down into separate point-to-point
problems at the cost of assigning a smaller bandwidth to
each user. In this paper, we present some preliminary results
of our investigation of the implications of using SC as a
multipacket transmission scheme in a network. To the best of
our knowledge, this is the first such study. We investigate this
problem using a stochastic geometry framework. In particular,
we study a network consisting of many randomly placed three-
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(in general multi-) nodebroadcast clusters, as shown in Fig.
1. Our approach allows us to compare throughputs obtained
with SC and FD, averaged over four important sources of
uncertainty: node placement (modeled as a homogeneous
Poisson Point Process (PPP)), channel access, link distances
and fading. We quantify the benefit offered by each scheme
in terms of a utility function that accounts for both the local
throughput and the distance of successful packet transmissions,
averaged over all these sources of uncertainty.

We present results for a two-user broadcast; extending these
results to a greater number of users is straightforward. Our
results show that the benefits from SC depend on receiver
geometry. This is a direct consequence of the medium ac-
cess mechanism. Unlike SC, FD allows independent spatial
reuse among the non-interfering sub-networks, as noted in
[2]. Medium access protocols for small link distances per-
mit greater spatial reuse; the opposite is true for large link
distances. In SC the near-far disparity in channel quality is
optimally exploited to maximize the rate of communication
when there is just one broadcast cluster.
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Figure 1. A network consisting of many three-node clusters.Transmitters
(filled circles) are a realization of a homogeneous Poisson Point Process.
Each transmitter communicates with two intended receivers, as shown by the
arrows. The receivers closer to (resp. farther from) to their transmitter (resp.
the near and far receivers) are marked as×-marks (resp.+-marks). The
typical cluster in this network is highlighted.

II. SYSTEM MODEL

A. Network

The transmitters using multipacket transmission are points
drawn from a unit intensity marked homogeneous Poisson



Point Process (PPP)Φ , {xi, txi,1, txi,2} on R
2, where

txi,k ∈ {0, 1} denotes the transmit decision to userk (defined
below) of the transmitter atxi ∈ R

2. Signal propagation is
subject to power-law path loss with exponentβ > 2 and
(frequency-) flat fading. All point-to-point channels are iid
Rayleigh block fading over unit time slots. Each broadcast
cluster consists of a transmitterxi ∈ Φ and its two intended
users or receivers: a “near” user at a distancerxi,1 and a
“far” user at a distancerxi,2. The sequence{rxi,1, rxi,2} is a
sequence of iid realizations drawn from a distributionFr1,r2

.
This distribution is known at the transmitters. Denote the
typical transmitter by T centered at the origin communicating
with its kth typical user at a distancerk at a transmission rate
Rk.

B. Physical Layer

1) Transmission:Unit total available bandwidth is avail-
able. The physical layer uses Gaussian signalling over long
blocklengths in each slot with a unit average power constraint
per channel use. Suppose single-user communication from T to
its kth receiver is established using a single-user code of rate
C(θk), whereC(x) ≡ log(1 + x), k = 1, 2. Let θk = 1/N ′

k,
whereN ′

k can be viewed as thepresumednoise-variance at
receiverk. We assumeθ2 < θ1, i.e., the transmitter presumes
that the channel to user 2 is noisier than that to user 1. We will
use the superscriptssc and fd to identify quantities pertaining
to SC and FD.

SC is implemented by assigning the near (resp. far) re-
ceiver’s packets a power0 ≤ α ≤ 1 (resp. ᾱ = 1 − α) of
the transmit power and simultaneously transmitting both the
encoded messages during the same slot. R1 is assumed to
implement SD: R2’s message is decoded first, its contribution
to the received signal subtracted, and its own message is then
decoded. Thus we have a transmission rateC(αθ1) to R1.
On the other hand, SD is presumed to be not possible at
R2 - which means a fractionα of the received power causes
self-interference. Therefore T assumes a received Signal-to-
Interference-plus-Noise-Ratio (SINR) of ᾱ

α+N ′

2

= ᾱθ2

αθ2+1 at

R2, and transmits at a rateC( ᾱθ2

αθ2+1 ). FD is implemented by
assigning a fractionuk to userk, with

∑

k uk = 1. Letu1 ≡ u,
u2 ≡ 1 − u. We define:

Rsc
1 , C(αθ1) (1)

Rsc
2 , C

(

ᾱθ2

αθ2 + 1

)

(2)

Rfd
k , ukC(θk). (3)

2) Reception:Receivers have CSI of their intended trans-
mitter and decode the signal from their intended transmitter
while treating all signals from outside the cluster as noise.
Such a strategy is optimal in the weak-interference regime [3].
The actual noise variance at all the near (resp. far) users is
N1 (resp.N2). A receiver decodes packets from its intended
transmitter on a per-slot basis, and the decoding process is
approximated by the well-known SINR model: decoding is
successful iff the SINR exceeds the SINR threshold of the
message transmission rate.

C. Link Layer

All packet queues are backlogged. In each cluster, the
transmitter link layer assigns a transmit powerα (for SC)
or bandwidthu (for FD) to the near user. In this paper, we
are interested in distributed random protocols where trans-
missions may be uncoordinated. In particular, we assume a
slotted ALOHA protocol with an attempt ratepk for the kth

link being served (i.e., for eachk, txi,k is Bernoulli with
parameterpk independent ofxi). For SC all links at a given
transmitterxi are served (or not served) at the same time (i.e.,
txi,1 = txi,2 = txi

), we denote this common attempt rate by
p. Denote the success probability at thekth typical user by
ps,k. The local throughputT on thekth typical link is defined
as

Tk = pkps,kRk. (4)

III. SUCCESSPROBABILITIES

We find the expected local throughput seen at the typical
transmitter T when it communicates with its near and far
receivers R1 and R2 respectively. The throughput is derived
for the special case of fixed link distances using an extension
of the bipolar model in [4].

Proposition 1. If each transmitter uses SC, the success
probability on thekth typical link for a fixedrk is

psc
s,k = exp(−(pγkr2

k + Nkθkrβ
k )) (5)

whereγk = πΓ(1 + δ)Γ(1 − δ)θδ
k for k = 1, 2 and δ , 2/β.

Proof: We derive the throughput to R2 first. Ifg2 denotes
the channel gain from T to R2,I2 the interference power, and
N2 the noise power, the SINR at R2 is given by

SINR2 =
ᾱg2r

−β
2

αg2r
−β
2 + I2 + N2

Since fading states are assumed to be spatially iid, from
standard arguments (e.g., [5, Lemma 3.1]) we get (5) when
k = 2.

At R1, denoteI1 as the interference power. Using the SD
condition

psc
s,1 = P

(

αg1r
−β
1

I1 + N1
≥ αθ1,

ᾱg1r
−β
1

αg1r
−β
1 + I1 + N1

≥
ᾱθ2

αθ2 + 1

)

= P

(

g1r
−β
1

I1 + N1
≥ θ1,

g1r
−β
1

I1 + N1
≥ θ2

)

= P

(

g1r
−β
1

I1 + N1
≥ θ1

)

,

sinceθ1 > θ2. Again using standard results, we can show that
(5) holds fork = 1.

For FD, the results are just the single-user success proba-
bilities specialized to each band. Therefore, for FD we have
for k = 1, 2:

pfd
s,1 = exp(−pkγkr2

k − N1θkrβ
k ). (6)



Using (4) the local throughput on thekth typical link for SC
and FD are respectively:

T sc
k = ppsc

s,kRsc
k . (7)

T fd
k = ukpkpfd

s,kRfd
k . (8)

In the next section, we propose a utility function to compare
SC and FD.

IV. T RANSPORTDENSITY

We would like the utility function of each broadcast cluster
to account for both the rate of successful packet transmissions
and the (possibly random) distance over which these packets
are transmitted. One such metric at each cluster is the expected
product of the link distances and the number of packets that
can be successfully transmitted per time slot. This expectation
is computed over all possible spatial interferer configurations,
fading channel states and link distances. A natural extension
of this idea is to define the network utility function as the
average of individual cluster utilities.

Formally, consider a ballB(0, r) of radiusr centered at the
origin. Define the transport densityU as

U = lim
r→∞

E[
∑

TX

∑

Links Link Dist.× Link Throughput]
|B(0, r)|

(9)
where the summation is over clusters inB(0, r) and |A| is
the area of the setA. From the assumptions in Section II,
all clusters have the same utility; hence the transport density
may also be viewed as the utility of the typical cluster of the
network. As a result,

U = U1(p1; Λ) + U2(p2; Λ)

where
Uk(pk; Λ) = E[rkTk] (10)

is the kth utility sub-function for link k = 1, 2. As noted
earlier in Section II-C, for SCpk = p. The parameter vector
Λ includes the transmission ratesT1 andT2, path loss exponent
β, and all the parameters related to the distributions of link
distancesr1 andr2. Let Λ ≡ (Λc, α) for SC andΛ ≡ (Λc, u)
for FD, where thecommonparameter vectorΛc contains
the parameters common to both. We state and prove some
properties of the utility function defined in (10).

A. Some Properties of the Utility Function

The first result is an observation concerning SC and FD
when both schemes have the same spatial reuse that is constant
over the entire bandwidth.

Proposition 2. SupposeΛc is given. Then for a fixed attempt
rate p across all transmitters and across the entire bandwidth,
for every fraction0 ≤ u ≤ 1 of the bandwidth assigned to near
receivers, there exists a fractionα of the transmit power that
can be assigned to the near receivers such thatU sc ≥ U fd.

Proof: Ignoring the effect of interference and fading, the
result follows from the optimality of SC over a Gaussian
BC. With interference and fading, from (7), (8) we find the

respective pre-factor terms that multiply the transmission rates
to be the same for both SC and FD, thus preserving this
inequality.

Therefore for a fixed spatial density of interfering transmit-
ters SC provides greater average throughput than an orthogonal
scheme such as FD. Before proving the second property, we
give the following auxiliary result that follows from Proposi-
tion 1:

Corollary 3. The success probabilities for SC in (5) (resp.
FD in (6)) are log-concave inp, rk (resp. pk and rk) on
[0, 1]× R

+ ∪ {0}.

Proof: Taking logarithms on both sides in (5) fork = 1
yields

ln psc
s,1 = −pγ1r

2
1 − N1θ1r

β
1 ,

which is clearly concave inp and r1. A similar result holds
psc

s,2. The FD case is similar.
The second result in this section is a property of the utility

sub-functionsU1 andU2:

Proposition 4. The utility sub-functionUk in (10) is log-
concave inpk if the marginal density ofrk is also log-concave.

Proof: For SC, if rk has a log-concave marginal density
fk(·) over a (convex) supportSk ⊆ R

+ ∪ {0} we use (5) and
(7) in (10) to get

U sc
k = pRsc

k

∫

Sk

rkpsc
s,k(p; rk)fk(rk)drk.

Since the integrand is log-concave in bothrk and p over
[0, 1] × Sk we apply the general result [6, p. 105] and infer
the log-concavity ofUk in p over [0, 1]. The proof for FD is
identical.

The log-concavity condition is satisfied by a large family
of densities encountered in practice: exponential, uniform,
gamma distribution to name a few. We will hereafter assume
this condition is satisfied.

B. Optimizing Spatial Reuse

Denote theunconstrainedmaximizer ofU1 (resp.U2) in p1

by π1 (resp.π2). From the log-concavity of these functions,
at p1 = πi

∂Ui

∂pi
= 0,

for i = 1, 2. Let π̄i , min(1, πi) be the corresponding
constrained maximizers of the utility sub-functionsUi. The
optimization problem is discussed for FD and SC separately.

1) FD: Orthogonalization decouples the network into two
non-interfering sub-networks. Hence for each link its attempt
ratepk can be chosen independently. Thus we have

max
(p1,p2)∈[0,1]2

U fd = max
p1∈[0,1]

U fd
1 + max

p2∈[0,1]
U fd

2

= U fd
1 (π̄1; Λ

fd) + U fd
2 (π̄2; Λ

fd).



2) SC: In general, the maximizer̄π of U does not neces-
sarily maximizeU1 or U2. However the log-concavity ofU1

and U2 implies π̄ lies in [π̄1, π̄2], as shown in the following
result:

Proposition 5. If π1 andπ2 are the unconstrained maximizers
of U sc

1 and U sc
2 , then if π̄ is a constrained maximizer ofU ,

there existstα ∈ [0, 1] such thatπ̄ = tαπ̄1 + t̄απ̄2, where
t̄α = 1 − tα.

Proof: Recall that for SC,p1 = p2 = p. Without loss of
generality, assumeπ1 < π2. Then

∂U sc

∂p
=

∂U sc
1

∂p
+

∂U sc
2

∂p
.

SincelnU sc
1 is a differentiable concave function ofp,

∂ lnU sc
1

∂p
=

1

U1

∂U sc
1

∂p
> 0,

for p < π1. Similarly one can argue that∂Usc

1

∂p < 0 for p > π1.
Thus ∂Usc

∂p > 0 for p < π1 and ∂Usc

∂p < 0 for p > π2. We have
the following possibilities:

1) π1 > 1. This impliesπ2 > 1. Therefore∂Usc

∂p > 0 for
0 ≤ p ≤ 1, i.e., p = 1 is a feasible maximizer ofU sc.

2) π1 < 1, π2 > 1. Then a feasible maximizer ofU sc

should lie in[π1, 1], since ∂Usc

∂p > 0 for 0 ≤ p < π1.
3) π1 < 1, π2 < 1. Then a feasible maximizer ofU sc

should lie in [π1, π2], since ∂Usc

∂p > 0 for p ∈ [0, π1)

and ∂Usc

∂p < 0 for p ∈ (π2, 1].
In all these cases a feasible maximizer can be written asπ̄ =
tα min(1, π1) + t̄α min(1, π2) for sometα ∈ [0, 1] since any
point in an interval can be written as a convex combination of
its end points.

Corollary 6. For any fixed0 ≤ α ≤ 1 the utility function
U sc(p; Λ) can be maximized by the following ALOHA proto-
col: In each time slot, each node independently tosses a coin
of bias tα obtained from the optimization in Proposition 5. If
the outcome is heads, it transmits with a probabilityπ̄1. Else
it transmits with probabilityπ̄2.

V. NUMERICAL RESULTS

We present some numerical studies to gain more insight
into our results. We compare the transport densities offered by
both FD and SC. The network is assumed to be interference-
limited, i.e.,N1 = N2 = 0. The single-user SINR thresholds
are chosen asθ1 = 10 dB, θ2 = 0 dB. The path-loss exponent
β = 3.

For reference, in Fig. 2, we show the transport density for
the near and far receivers with an attempt ratep = 1, for
r1 = 0.1 andr2 = 0.6 (which are scaled byλ−1/2 for a PPP
with intensityλ). As Proposition 2 predicts, SC offers a greater
overall utility but in terms of individual utility sub-functions,
we find a Pareto improvement by switching from FD to SC by
choosing an appropriate powerα to the near user and using
the entire bandwidth for communication.

We now discuss the implications of optimizing spatial re-use
for SC and FD for both fixed and randomized link distances.
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Figure 2. Individual utility sub-functions that constitute the utility function
for fixed attempt ratep = 1 for near receiver distancer1 = 0.1 and far
receiver distancer2 = 0.6. These functions are compared for FD (solid
black lines), SC (lines with circular markers).

A. Fixed Link Distances

Each transmitter has a pair of designated receivers at fixed
distancesr1 and r2 > r1. For the simulation,r1 = 0.1 and
r2 = 0.3, 0.6. Fig. 3 shows the optimized transport densities
for SC and FD for each far receiver distance. SC always has
greater transport density compared to FD. Interestingly, this is
not alwaysthe result of improved transport densities to both
receivers, as we find from the utility sub-function plot in Fig.
4, which can be interpreted as the throughput-distance product
seen at the typical transmitter in the network.

While the transport densities forboth links are improved
for r2 = 0.3, whenr2 = 0.6 this gain comes from improving
the throughput-distance product to the near receivers at the
expense of the far receivers. This is a result of increased
disparity in optimal spatial reuse among the near and far
receivers for0.6, as discussed in the following.

For fixedr1 and SINR thresholdsT1 andT2 , the optimal
attempt ratēπ1 remains unchanged. In our case this isπ̄1 = 1.
For r2 = 0.3, this is also the optimal attempt rate for the far
receiver, i.e.,̄π2 = 1. Thus an attempt rate of 1 simultaneously
maximizes bothU1 andU2, resulting in a large gain from SC
over FD. On the other hand, whenr2 = 0.6, the optimal
attempt rate falls to about 0.37, much below 1. Here SC
chooses a rate between 0.37 and 1, depending on the power
allocation parameterα, as suggested by Proposition 5, but FD
uses the optimal attempt rate for each subband.

B. Random Link Distances

Here provide results for a specific model of randomness
that is a natural extension to case with fixed link distances
discussed above. For some0 < a < b, assume that the near
receiver distancer1 ∼ Unif(0, a) and the far user distance
r2 ∼ Unif(a, b), independent of each other. Clearly, these are
log-concave probability density functions; thus Proposition 5
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Figure 3. Optimized utility function for fixed near receiverdistancer1 = 0.1
for two far receiver distancesr2 = 0.3 and r2 = 0.6. For each case, these
functions are compared for FD (solid black lines), SC with perfect SD (dashed
lines) and SC without perfect SD (lines with circular markers).
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Figure 4. Individual utility sub-functions that constitute the optimized utility
function in Fig. 3, with the same legend.

applies. For the plots we seta = 0.2 and b = 1, so that
E[r1] = 0.1 andE[r2] = 0.6. The results are shown in Fig. 5.

For this model, it can be shown that the maximizer forU1

is π̄1 = 1, while that forU2 is π̄2 = min(1, ln(b2/a2)
γ2(b2−a2) ) 6= π̄1

in general. Thus for fixed transmission rates, the utility gain
from SC is actually a function of the parametersa andb that
determine receiver placement.

VI. CONCLUSIONS

We have analyzed SC—an information-theory inspired mul-
tipacket transmission scheme—with conventional Frequency
Division (FD) in a stochastic geometric setting. We com-
pared the these schemes by introducing a utility function
that measures the effective rate of information transfer in
space. While FD can adapt its spatial reuse independently
for each link, the utility-maximizing spatial reuse for SC is
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Figure 5. Individual utility sub-functions that constitute the optimized utility
function for near receiver distancer1 ∼ Unif(0, a) andr2 ∼ Unif(a, b) for
a = 0.2 andr2 = 1.

always a compromise between maximizing the utility sub-
function to each receiver separately. Since optimal spatial
reuse is a function of network geometry, the utility seen at the
typical receivers from SC depend on the geometry of receiver
node placement and the chosen transmission rates. To obtain
benefits from SC, for a given a set of transmission rates and a
fixed near receiver distance, the far receivers must be placed
at a distance far enough from their intended transmitters to
provide long-range connectivity but close enough to ensure
that the optimal spatial reuse to serve them is not very different
from that of the near receivers.
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