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Abstract—We consider a time-slotted two-hop wireless system
in which the sources transmit to the relays in the even time
slots (first hop) and the relays forward the packets to the
destinations in the odd time slots (second hop). Each sourcemay
connect to multiple relays in the first hop. In the presence of
interference and without tight coordination of the relays, it is not
clear which relays should transmit the packet. We propose four
decentralized methods of relay selection, some based on location
information and others based on the received signal strength
(RSS). We provide a complete analytical characterization of these
methods using tools from stochastic geometry. We use simulation
results to compare these methods in terms of end-to-end success
probability.

I. I NTRODUCTION

We consider a two-hop wireless ad hoc network in which
the sources are distributed randomly on the plane and each
source has a destination at a distanceR in a random direction.
In addition there exists a set of relays (different from the
destinations) which assist the sources. In the first hop each
source transmits and will be decoded by any node listening
(relays and destinations) with signal-to-interference ratio (SIR)
greater than a fixed thresholdT . In the second hop, some of
the relays which were able to decode information in the first
hop, transmit. So in the first hop each packet may be received
by many relays, hence multiple copies of the same packet may
exist at different relays. In networks with low or no mobility
multiple copies may be avoided by setting the routing tables
apriori and relays rejecting packets if the source-destination
pair is not in its routing table. Without routing tables, the
relay nodes having the same packet may have to coordinate
with each other and then choose one among them to transmit
the packet. In a mobile wireless network such a coordination
incurs significant overhead and also restrict the number of
relays per source-destination pair to one. More importantly
such a restrictionmay in effect reduce the probability of
success. It is not clear how to choose a subset of these
intermediate relays in a distributed fashion so as to reducethe
interference and increase the probability of packet delivery. In
this paper, we analyze the success probability of such a two-
hop scheme taking the interference and the spatial statistics of
the transmitting nodes into account.

Related Work: In [3], relay selection is based on the SINR.
All the relay-destination channel states are assumed to be
known at the destination, and the destination chooses the

relay. In [5] the relay selection is based on the channel state
information that is fed back to the source. In [2] the relays
estimate the channel using channel reciprocity theorem and
use timers to select the best relay. In [8] a relay selection
method (GeRaF) based on the distance from the destination
is considered. TDMA based contention is used to resolve the
relays transmitting to the same destination. In all these method
some form of channel contention and feedback is used to select
the relays. In the methods we analyze relays are selected in a
completely distributed fashion without any channel feedback.
This makes these relay selection schemes suitable in scenarios
with moderate to high mobility.

The main contribution of this paper is the complete analyti-
cal description of a two-hop wireless network with interference
when the nodes and relays are distributed as a Poisson point
process on the plane. The techniques developed in this paper
can be used to analyze other position based relay selection
methods.

II. SYSTEM MODEL

We assume that the sources form a Poisson point process
(PPP)φs of intensity λs on the plane. The relays are also
assumed to form a PPPφr of intensityλr on the plane. Each
sourcex ∈ φs has a destination denoted byr(x) (not a part
of φs or φr) at a distanceR in some random direction. We
assume that the fading between any two nodes is Rayleigh
distributed so that the powers are exponential with unit mean.
A transmitter located atx can communicate with a receiver at
y if SIR(x, y | φ) > T . The SIR is defined as

SIR(x, y | φ) =
hxyg(x− y)

∑

z∈φ\{x} hzyg(z − y)

whereφ is the transmitting set,g(x) is the path loss function,
andhxz is the power fading coefficient between nodesx and
z. We assumeT > 1, i.e., a narrow band system which implies
at most one transmitter can connect to any receiver. The path
loss functiong(x) is assumed to depend only on‖x‖, to
monotonically decrease with‖x‖, and lima→∞ g(a)a2 = 0
to guarantee finite mean interference. We restrict the number
of hops between any source-destination pair to be two. So a
source can reach its destination either in a single hop or can
use the relays to reach the destination. We can assume that
the sources transmit in the even time slots and a subset of the
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relays in the odd time slots.
Notation:

• We define

1(x→ y | φ) = 1(SIR(x, y | φ) > T ).

1(x → y | φ) represents a random variable that is equal
to one if a transmitter atx is able to connect to a receiver
y when the transmitting set isφ.

• We define forx ∈ φs

φ̂r(x) = {y ∈ φr : 1(x→ y | φs)} .

φ̂r(x) denotes the cluster of relays to which the source
x is able to connect in the first hop.

Metric: We analyze the success probability for the direct
connection between the source-destination and the two-hop
connection between them separately. LetP1 denote the prob-
ability that a source can connect to its destination directly in
the first hop. More precisely we define

P1 = lim
a→∞

1

λtπa2
E

∑

x∈φs∩B(o,a)

1(x→ r(x) | φs). (1)

The relays which were able to connect to some source in the
first hop are the potential transmitters in the second hop. Inthe
relay selection methods studied in the next section, a subset of
these potential transmittersNx ⊆ φ̂r(x) are selected for each
x ∈ φs to transmit in the next hop. Let the probability that a
relay can connect to its intended destination (determined by
the source to which it connects in the first hop) in the second
hop beP2, defined as

P2 = lim
a→∞

1

λtπa2
E

∑

x∈φs∩B(o,a)

1− f(x), (2)

where f(x) =
∏

y∈Nx
(1− 1(y → r(x) | ψ)) and ψ =

∪x∈φs
Nx. In the above equation1 − f(x) is equal to one

if and only if at least one node belonging tôφr(x) is able
to connect to the destinationr(x). Here we are assuming no
cooperative communication between nodes which have the
same information, so relays belonging to the same cluster
φ̂r(x) also interfere with each other in the second hop. Then
the success probability is given by

Ps = 1− (1− P1)(1 − P2).

In the above equation we assumed that the success probability
of the direct connection is independent of the two hop success
probability. We also used the spatial ergodic property of PPP
in definingP1 andP2.

III. L OCATION-UNAWARE RELAY SELECTION

In all the four methods described below, a relay has to make
a decision whether to transmit in the second hop if it is able
to connect to some source in the first hop. More precisely:

1) The destinationr(x) can directly decode a packet from
x ∈ φs in the first hop if the SIR(x, r(x) | φs) > T .

2) A subset of the relaysNx ⊆ φ̂r(x) are chosen in a
distributed manner to transmit in the second hop.

3) In the second hop, the destinationr(x) can decode the
packet from a relayy ∈ φr if the SIR(r(x), y | ψ) > T .

The success probabilities of all these methods is analyzed in
the Appendix.

A. Method 1: All relays transmit

This is the most basic scheme where all relays which receive
in the first time slot transmit in the second hop:

Nx = φ̂r(x).

As we shall see, this method has the worst performance
because of the high interference present in the second hop
(specially when the relay density is high).

B. Method 2: RSS-based selection

When a relay node is able to connect to a source node, the
relay node has information about the RSS and could use that
information to make a decision to transmit in the next hop.
In Method1, we do not utilize any information regarding the
SIR received at the relay. In this method we utilize the RSS
information to make the decision. We have RSS= S+I where
S is the strength of the desired signal andI is the interference
observed. Since the relay was able to decode the source, we
have S

I
> T and thus

I ≤
RSS

1 + T
≤
S

T
.

Hence a small value ofRSS
1+T implies low interference (and

hence may see few interferer’s in the second hop). This might
also mean smallerS which implies that the relay is far from
the source. A large value ofRSS

1+T implies a largeS and hence
would indicate a relay close to the source. This may potentially
also imply more interference at the relay. So in the second hop
we give higher priority to nodes that observe smaller value of
RSS
1+T . A relay y ∈ φ̂r(x) transmits the packet in the second
time slot with probability

exp

(

−δ
RSS(y)
1 + T

)

, (3)

where RSS(y) is the RSS that the relayy observes andδ
represents a parameter to be chosen so thatδRSS(y)

1+T is not
too large. We have chosen an exponential penalty just for
convenience and the effect of the penalty function should be
investigated further. So we have

Nx =

{

y ∈ φ̂r(x) : Uy < exp

(

−δ
RSS(y)
1 + T

)}

(4)

whereUy is a set of i.i.d uniform random variables in[0, 1].
We observe that Methods1 and 2 are completely decen-

tralized and require no information about the location of any
node. Hence these methods of relay selection work perfectly
even with high mobility and incur zero overhead.

IV. L OCATION-AWARE SELECTION

In the location-aware based methods we assume that each
node has knowledge about its own location and each source
knows the spatial location of its destination. Also each packet
has information about the location of the source from which
it originated and the location of its destination in its header.
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A. Method 3: Sectorized relay selection

After a relay receives a packet in the first hop, it calculates
the angle between the relay-source and the source destination
and makes a decision based on this information. More pre-
cisely a relayy ∈ φ̂r(x) transmits the packet in the second
time slot if ∠yxr(x) < θ. So for this method, we have

Nx =
{

y ∈ φ̂r(x) : ∠yxr(x) < θ
}

.

In this method we are reducing interference by choosing relays
in a sector. If the angleθ is properly chosen the sector may
contain only one relay, i.e.,|Nx| = 1 which would eliminate
the intra-cluster interference.

B. Method 4 : Distance-based selection

In this method, we select the relays in̂φr(x) depending on
their distance from the destinationr(x). A relay y ∈ φ̂r(x)
transmits the packet in the second time slot with probability

exp

(

−ǫ
2‖y− r(x)‖

R

)

(5)

We have normalized the distance byR/2 so that nodes closer
to the source are not over penalized.ǫ is a normalizing
parameter which we will choose later. So we have

Nx =
{

y ∈ φ̂r(x) : Uy < exp
(

−ǫ2‖y − r(x)‖R−1
)

}

whereUy is a set of i.i.d uniform random variables in[0, 1].
In this method, we observe that relays close to the destination
have a higher chance of transmitting than those closer to the
source. One could replace‖y − r(x)‖ in (5) with ‖y − x‖
and exp with 1 − exp. Then the source need not know its
destination location but one would loose the directionality of
relay selection.

In the location-aware methods proposed in this section,
each source needs to know where its destination is located
and maintaining this information would require a significant
overhead in a mobile network.

V. SIMULATION RESULTS

In this section we compare the four methods described in the
above section by simulations. For the purpose of simulation
we consider a square[−30, 30]2 in which the nodes are located
and use Monte-Carlo method to evaluate the results. We use
T = 3 for all the simulations.

In Figure 1, we compare Method3 with a scheme in which
the relays are apriori chosen. In this scheme each source-
destination pair has one relay assisting in communication.
The relay is centered halfway between the source and the
destination. Intuitively such a scheme is the best single-relay
scheme in terms of end-to-end success probability. We observe
that using uncoordinated relays yields a better performance
than selecting a relay apriori. This is because of the selection
diversity that occurs due to fading and the node locations.
Also observe that there is an optimal value of relay intensity
that achieves the maximum value ofPs. In practice this can
be achieved by starting with large number of relays and
using ALOHA-like thinning in the second hop. We observe
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Figure 1. Comparison of Method3 versus the center-scheme. The success
probability versus the relay intensityλr is plotted for various values of the
source destination distanceR.
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Figure 2. Comparison of the simulation and theoretical results for Method
3.

that the intensity of relays required to outperform the center-
method decreases with increasing source destination distance
R. From Figure 2, we observe that the probability of success
as computed from the theory matches the simulations closely.
In Figure 3, the success probability is plotted for the four
methods described in previous sections. We first observe that
all the methods have an optimal value of the parametersδ,
θ and ǫ that achieve the maximum success probability. We
also observe that Method1 has the worst performance. This
is because of the high interference caused by all the relays
(that have received a packet in the first hop) transmitting in
the second hop. We observe that Method3 i.e., the sectorized
selection method performs the best. Also observe that the RSS
based selection has twice thePs as compared to Method1 in
which every relay transmits. We also observe that the both the
location-aware schemes outperform Method1 and Method2
for the particular values ofT = 3, λs = 1, λr = 1.5.
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Figure 3. Probability of success for the four methods described in the
previous section. Thex-axis representsδ for Method 2, 4θ/π for Method
3 and ǫ/6 for Method4.

VI. CONCLUSION

In this paper, we have have analyzed the success probability
in a two hop system taking interference and spatial distribution
of the nodes into account. We have provided an analytical
solution for all the four methods using some approximations.
This method of analysis can be easily extended to any position
based relay selection. We have shown that uncoordinated se-
lection of relays increases the success probability as compared
to selecting a relay for each source-destination pair apriori.

APPENDIX

The probability that a destination located atz can decode
the packet transmitted by a sourceξ when the interference is
caused byφs is

pξ(z) = P (ξ → z | φs) (6)

= P (SIR(ξ, z | φs) > T ) (7)

= P(hξz >
T

g(ξ − z)

∑

x∈φs

hxzg(x− z))

(a)
= E

∏

x∈φs

exp

(

−
T

g(ξ − z)
hxzg(x− z)

)

(b)
= exp(−λs

ˆ

R2

β(ξ − z, y)dy)

where
β(x, y) =

1

1 + g(x)
T
g(y)−1

(a) follows from the exponential distribution ofhξz, and(b)
follows the probability generating functional (PGFL) of the
PPP [1], [7]. Also observe thatpξ(z) depends only on‖ξ−z‖.

Direct transmission: So from (1) we have

P1 = lim
a→∞

1

λtπa2
E

∑

x∈φs∩B(o,a)

1(x→ r(x) | φs)

(a)
= lim

a→∞

1

πa2

ˆ

B(o,a)

px(r(x))dx
(b)
= Po(R),

where(a) follows from the Campbell-Mecke theorem [7] and
(b) follows from he fact thatpξ(z) depends only on‖ξ − z‖.

First hop: A point process is completely characterized by
its PGFL and so we will evaluate the PGFL of the relays
which can connect to sourceξ ∈ φs, i.e., the cluster̂φr(ξ).
Let 0 ≤ v(x) ≤ 1. The PGFL ofφ̂r(ξ) is given by

Gξ(v(x)) = E

∏

x∈φr

1− (1− v(x))1(ξ → x | φs) (8)

(a)
= E exp

(

−λr

ˆ

R2

(1 − v(x))1(ξ → x | φs)dx

)

(b)

≥ exp

(

−λr

ˆ

R2

(1 − v(x))pξ(x)dx

)

, (9)

where (a) follows sinceφr is a PPP, and(b) follows from
Jensen’s inequality. From the PGFL we observe that the point
process consisting of relays which connect to the origin is not
a PPP.(b) would have been an equality if1(ξ → x | φs) are
independent for differentx and the resulting process would
be a PPP. But for the sake of analysis, we make the following
assumptions and justify them by simulations.

1) We assume that the spatial distribution ofφ̂r(ξ) is an
inhomogeneous PPP with intensityλrpξ(ξ). SinceT >
1, φ̂r(ξ1) ∩ φ̂r(ξ2) = ∅, ∀ξ1, ξ2 ∈ φs.

2) We also assumêφr(ξ1) is independent of̂φr(ξ2) for all
ξ1, ξ2 ∈ φs.

We will show the results obtained by this assumption are close
to the actual by simulation. From Figure 2 we observe that
the simulation results (for Method3) are very close to that
predicted by theory making the above assumptions. This is
intuitive since many terms in (8) are independent and thus the
bound in (9) is very tight.

A subset of relaysNξ ⊆ φ̂r(ξ) for eachξ ∈ φs transmit
in the second hop depending on the relay selection method.
This is basically a thinning of the point processφ̂r(ξ). We will
now derive the intensity of the point processNξ for different
methods. We will denote the spatial intensity ofNξ by ∆ξ(z)
and we haveE[|Nξ ∩A|] =

´

A
∆ξ(z)dz for anyA ⊂ R

2 .
Method1: SinceNξ = φ̂r(ξ), we have∆ξ(z) = λrpξ(z).
Method2: From (11), we have

∆ξ(z) = λrE

(

exp

(

−δ
RSS(z)
1 + T

)

1 (ξ → z | φs)

)

(a)
= λr(1 + T )

exp
(

−λs
´

R2

(δg(ξ−z)+T )g(y)
g(ξ−z)+(δg(ξ−z)+T )g(y)dy

)

1 + T + δg(ξ − z)
,

where(a) follows from a procedure similar to the evaluation
of pξ(z).
Method3: Given ξ andr(ξ), we have

∆ξ(z) = λrpξ(z)1(∠zξr(ξ) < θ).

Method4: Given ξ andr(ξ), we have

∆ξ(z) = λrpξ(z) exp
(

−ǫ‖z − r(ξ)‖R−1
)

The average number of relays in a clusterNξ that transmit in
the second hop is

´

∆ξ(z)dz.
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Second hop: The transmitting set in second hop is given
by ψ =

⋃

ξ∈φs
Nξ. Since T > 1, at most one transmitter

belonging toNξ can connect tor(ξ). So the probability that
no node fromNξ can connect tor(ξ) denoted byf(ξ) is given
by

f(ξ) = 1−
∑

z∈Nξ

1 (z → r(ξ) | ψ) .

So P̃2 (same asP2 without the limit) is given by

P̃2 = E

∑

x∈φt∩B(o,a)

∑

z∈Nξ

1 (z → r(ξ) | ψ)

(a)
= λt

ˆ

B(o,a)

E

∑

z∈Nξ

1 (z → r(ξ) | Nξ ∪ ψ) dξ

(b)
= λt

ˆ

B(o,a)

ˆ

E [∆ξ(z)1 (z → r(ξ) | Nξ ∪ ψ)] dzdξ

where(a) and (b) follow from the Campbell-Mecke theorem
and Slivnyak’s theorem. We included∆ξ(x) in the expectation
operator because in Methods3 and4, ∆ξ(z) depends on the
random variabler(ξ). We now show that the inner integral
does not depend onξ. We also have∆ξ(z) = ∆o(ξ − z) for

Method 1 and 2. For Methods3 and 4 we have∆ξ(z)
d
=

∆o(ξ − z) where the equality is in distribution. Using the
substitutionz′ ← z − ξ, the stationarity ofψ, and the above
property of∆ξ(z) we have

P2 =
1

2π

ˆ 2π

0

ˆ

R2

E [∆o(z)1 (z → Rν | ψ ∪No)] dzdν

(10)
whereRν = (R cos(ν), R sin(ν)). For Methods1 and 2 by
the isotropic nature ofNo andψ we have

P2 =

ˆ

R2

∆o(z)E1 (z → R | ψ ∪No) dz (11)

Due to space constraints we will only describe how to derive
P2 for Method 3. Method 4 can be analyzed in a similar
fashion. From (10) and the definition of∆o(z) for Method
3, we haveP2 =

λr
2π

ˆ 2π

0

ˆ

po(z)E1(∠zoRν < θ)1 (z → Rν | ψ ∪No) dzdν

Sinceψ is isotropic we have

P2 =
λrθ

π

ˆ

po(z)E1

(

z → R | ψ ∪ Ño
)

dz. (12)

HereÑo is equal toNo∩S(o,R, θ) whereS(o,R, θ) denotes
a sector of angleθ on either side of the line joining the origin
and(R, 0). With a slight abuse of notation we will denotẽNo
also byNo andNo depends on the relay selection method.
We now evaluateE [1 (z → R | ψ′)] whereψ′ = ψ ∪No.

E [1 (z → R | ψ′)] = P (hzRg(z −R) > TI(ψ′, R))

(a)
= E exp

(

−
TI(ψ′, R)

g(z −R)

)

(13)

where (a) follows from the exponential distribution ofhzR.
Also (13) is the Laplace transform of the interference evaluated
at T/g(z − R). By our assumptionsψ′ is a Poisson cluster

process [4], [6] with an additional cluster at the origin. The
Laplace transform of the interference in this case is given by
E exp

(

−s
∑

y∈ψ′ hyRg(y −R)
)

which is equal to

E





∏

y∈ψ′

exp (−shyRg(y −R))





(a)
= Gψ′

(

1

1 + sg(y −R)

)

whereGψ(.) is the PGFL of the processψ′ and (a) follows
by Laplace transform of the fading. So we have

E [1 (z → R | ψ′)]

(a)
= E





∏

ξ∈φs

∏

y∈Nξ

1

1 + Tg(y−R)
g(z−R)



 E





∏

y∈No

1

1 + Tg(y−R)
g(z−R)





(b)
= E





∏

ξ∈φs

exp
(

−β̃(z −R, ξ)
)



 exp
(

−β̃(z −R,R)
)

(c)
= exp

(

−β̃(z −R,R)− λs

ˆ

1− exp
(

−β̃(z −R, ξ)
)

dξ

)

,

where (a) follows from assumption2, (b) follows from a
technique similar to the derivation ofpξ(z), (c) follows from
the PGFl of PPP, and where

β̃(z, ξ) =

ˆ

R2

β(z, y)∆̃o(y + ξ)dy.

From the above equation, (12) and (11) we have,

P2 =

ˆ

R2

∆̃o(z +R)

· exp

(

−β̃(z,R)− λs

ˆ

R2

1− exp
(

−β̃(z, ξ)
)

dξ

)

dz,

where ∆̃o(z) = ∆0(z) for Method 1 and 2. For Method3,
∆̃o(z) = θ

π
λrpξ(z). For Method4

∆̃o(z) =
λr
2π
pξ(z)

ˆ 2π

0

exp
(

−ǫ‖z −Rν‖R
−1

)

dν.
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