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Abstract—A new random geometric graph model, the so-called
secrecy graph, is introduced and studied. The graph represents
a wireless network and includes only edges over which secure
communication in the presence of eavesdroppers is possible.
The underlying point process models considered are Poisson
point processes. In the Poisson case, the node degrees are
determined and percolation is studied using analytical bounds
and simulations. It turns out that a small density of eavesdroppers
already has a drastic impact on the connectivity of the secrecy
graph.

I. I NTRODUCTION

There has been growing interest in information-theoretic
secrecy. To study the impact of the secrecy constraint on
the connectivity of ad hoc networks, we introduce a new
type of random geometric graph, the so-calledsecrecy graph,
that represents the network or communication graph including
only links over which secure communication is possible. We
assume that a transmitter can choose the rate very close to the
capacity of the channel to the intended receiver, so that any
eavesdropper further away than the receiver cannot intercept
the message. This translates into a simple geometric constraint
for secrecy which is reflected in the secrecy graph. In this
initial investigation, we study some of the properties of the
secrecy graph.

II. T HE SECRECYGRAPH

Let Ĝ = (φ, Ê) be a geometric graph inRd, where
φ = {xi} ⊂ R

d represents the locations of the nodes, also
referred to as the “good guys”. We can think of this graph
as the unconstrained network graph that includes all possible
edges over the good guys could communicate if there were no
secrecy constraints.

Take another set of pointsψ = {yi} ⊂ R
d representing

the locations of the eavesdroppers or “bad guys”. These are
assumed to be known to the good guys.

Let Dx(r) be the (closed)d-dimensional ball of radius
r centered atx, and let δ(x, y) = ‖x − y‖ be a distance
metric, typically Euclidean distance. Further, letφ(A) and
ψ(A) denote the number of points ofφ orψ falling in A ⊂ R

d.
Based onĜ, we define the following secrecy graphs (SGs):
The directed secrecy graph: ~G = (φ, ~E). Replace all edges

in Ê by two directional edges. Then remove all edges−−→xixj

for which ψ (Dxi
(δ(xi, xj))) > 0, i.e., there is at least one

eavesdropper in the ball.
From this directed graph, two undirected graphs are derived:

(a) Directed SG~G (b) Basic SGG (c) Enhanced SGG′

Fig. 1. Example for secrecy graphs. The dots are the good guys, the cross
the eavesdropper. The underlying graph is assumed to be fully connected so
that the secrecy graphs include all edges along which securecommunication
is possible.

The basic secrecy graph: G = (φ,E), where the (undi-
rected) edge setE is

E , {xixj : −−→xixj ∈ ~E and−−→xjxi ∈ ~E} .

The enhanced secrecy graph: G′ = (φ,E′), where

E′ , {xixj : −−→xixj ∈ ~E or −−→xjxi ∈ ~E} .

Clearly,E ⊂ E′. The difference is that edges inE permit
secure bidirectional communication while edges inE′ only
allow secure communication in one direction. However, this
one-way link may be used to transmit a one-time pad so that
the other node can reply secretly. In doing so, the link capacity
would drop from1/2 in each direction to1/3. Fig. 1 shows
an example inR2 for the three types of secrecy graphs. based
on the same underlying fully connected graphĜ.

One way to assess the impact of the secrecy requirement is
to determine thesecrecy ratios

η =
|E|
|Ê|

=
N̄
¯̂
N

; η′ =
|E′|
|Ê|

=
N̄ ′

¯̂
N

, (1)

whereN̄ , N̄ ′ > N̄ , and ¯̂
N are the average node degrees of

the respective graphs. Forη ≈ 1, the impact of the secrecy
requirement is negligible while for smallη it severely prunes
the graph.

For the directed graph, the mean in- and out-degrees are
equal, so we define~N , N̄out = N̄ in = | ~E|/|φ|. Since the
edge sets ofG andG′ are a partition of the edge set of the
undirected multigraph containing all edges in~G, the following
holds:

Fact 1 The mean degrees are related by

N̄ + N̄ ′ = 2N̄ in = 2N̄out . (2)



Furthermore, the degrees of all nodes x ∈ φ are bounded by

Nx 6 min{N in
x , N

out
x } 6 max{N in

x , N
out
x }

6 N ′
x 6 N in

x +Nout
x . (3)

In the example in Fig. 1, (2) yields10/9 + 22/9 = 32/9.
These graphs become interesting if the locations of the

vertices are stochastic point processes. We will useΦ and
Ψ as the corresponding random variables.

Our goal is to study the properties of the resulting random
geometric graphs, including degree distributions and perco-
lation thresholds. We will consider two cases, lattices and
Poisson point processes.

A. Lattice model

Let the underlying graph be the standard square lattice in
Z

2, i.e., Ĝ = L
2, where edge exists between all pairs of points

with Euclidean distance1. Let Ψ be obtained from random
independent thinning of a regular point set where each point
exists with probabilityp, independently of all others. Let the
corresponding secrecy graphs be denoted as~Gp, Gp, andG′

p.
Let θ(p) be the probability that the component containing the
origin is infinite1. Then the percolation threshold is defined as

pc = inf{p : θ(p) = 0} . (4)

B. Poisson model

Let the underlying graph be Gilbert’s disk grapĥGr [1],
where Φ is a Poisson point process (PPP) of intensity1 in
R

2 and two vertices are connected if their distance is at most
r. Ψ is another, independent, PPP of intensityλ. Denote the
secrecy graphs by~Gλ,r, Gλ,r, andG′

λ,r. With θ(λ, r) being
the probability that the component containing the origin (or
any arbitrary fixed node) is infinite, the percolation threshold
radius forĜr is

rG , sup{r : θ(0, r) = 0} ≈ 1.198 , (5)

where the subscript G indicates that this is Gilbert’s critical
radius which is not known exactly but the bounds1.1979 <
rc < 1.1988 were established with99.99% confidence in [2].
For radii larger thanrG, we define

λc(r) , inf{λ : θ(λ, r) = 0} , r > rG. (6)

For the analyses, we assume that there is a node inΦ at the
origin. This does not affect the distributional propertiesof the
PPP.

The parameterr indicating the maximum range of trans-
mission can be related to standard communication parameters
as follows: Assume a standard path loss law with attenuation
exponentα, a transmit powerP , a noise floorW , and a
minimum SNRΘ for reliable communication. Then

r =

(

P

ΘW

)1/α

. (7)

1In the directed case, to be precise, we consider oriented percolation and
let θ(p) be the probability that the out-component is finite,i.e., that there are
directed paths from the origin to an infinite number of nodes.Alternatively
(or in addition) we could consider the in-component of the origin.

III. PROPERTIES OF THEPOISSONSECRECY GRAPHS

A. Isolation probabilities for r = ∞
Fact 2 The probability that the origin o cannot talk to anyone
in ~Gλ,∞ (out-isolation) is

P[Nout = 0] =
λ

λ+ 1
. (8)

In Gλ,∞:

P[N = 0] =
cλ

cλ+ 1
(9)

where c = 4
3 +

√
3

2π = 1.609.

For the directed graph, this is simply the probability that the
nearest neighbor in the combined processΦ ∪ Ψ (of density
1+λ) is an eavesdropper. In the basic graph, letx denote the
origin’s nearest neighbor inΦ and letR = ‖x‖. ForN > 0, we
needDo(R)∪Dx(R) to be free of eavesdroppers. The area of
the two intersecting disks iscπR2 for c = 4/3+

√
3/(2π), and

the probability density (pdf) ofR is pR(r) = 2πr exp(−πr2)
(Rayleigh with mean 1/2). So

P[N > 0] = ER[exp(−λcπR2)] =
1

cλ+ 1
. (10)

The probability of in-isolationP[N in = 0] is smaller than
P[Nout = 0], since for each nodex ∈ Φ\{o}, there must be
at least one bad guy inDx(‖x‖). Clearly, this probability is
smaller compared to (8) where only the nearest eavesdropper
matters. On the other hand, the in-degree is less likely thanthe
out-degree to be large since a significantly larger area needs
to be free of bad guys. The isolation probabilityP[N ′ = 0] is
the smallest of all isolation probabilities.

B. Degree distributions

Proposition 3 The out-degree of o in ~Gλ,∞ is geometric with
mean 1/λ.

Proof: Consider the sequence of nearest neighbors ofo
in the combined processΦ∪Ψ. Nout = n if the closestn are
in Φ and the(n + 1)-st is in Ψ. Since these are independent
events,

P[Nout = n] =
λ

1 + λ

(

1

1 + λ

)n

. (11)

Alternatively, the distribution can be obtained as follows:
Let R be the distance to the closestbad guy, i.e., R =
miny∈Ψ ‖y‖. We have

P[Nout = n] = ER

[

exp(−πR2)
(πR2)n

n!

]

, (12)

where the pdf ofR is pR(r) = 2πrλ exp(−πλr2).
For generalr, we have:

Proposition 4 The out-degree distribution of ~Gλ,r is

P[Nout = n] =
λ

(

1 − Γ(n,a)
Γ(n)

)

+ exp(−a)an

n!

(λ + 1)n+1
, (13)



where a = πr2(λ + 1), and Γ(·, ·) is the upper incomplete
gamma function. The probability of out-isolation is

P[Nout = 0] =
exp(−πr2(λ+ 1)) + λ

1 + λ
, (14)

and the mean out- and in-degrees are

ENout = EN in =
1

λ
(1 − exp(−λπr2)) . (15)

The mean degree of the basic graph Gλ,r is

EN =
1

cλ
(1 − exp(−cλπr2)) , (16)

where c = 4
3 +

√
3

2π .

Proof: If there is no bad guy insideDx(r) — which is the
case with probabilityP0 = exp(−λπr2) — then the number
is simply Poisson with meanπr2. If there is a bad guy at
distanceR, the number is Poisson with meanπR2. So we
have

P[Nout = n] =P0 exp(−πr2) (πr2)n

n!

+ (1 − P0)ER<r

[

exp(−πR2)
(πR2)n

n!

]

,

which, after some manipulations, yields (13). The mean is
obtained more directly using Campbell’s theorem [3] which
says that for stationary point processes with intensityµ in R

2

and non-negative measurablef ,

E

[

∑

x∈Φ

f(x)

]

= µ

∫

R2

f(x)dx .

Applied to the mean out-degree (µ = 1) we obtain

ENout =
∑

x∈Φ

P(−→ox ∈ ~E) = E

∑

x∈Φ\{o}
‖x‖<r

exp(−λπ‖x‖2)

= 2π

∫ r

0

x exp(−λπx2)dx . (17)

By replacing the areaπr2 by cπr2 (area of two overlapping
disks of radiusr and distancer), the same calculation yields
(16).

The probability of isolation can directly be obtained from
considering the two possibilities for isolation: Either there is
no node at all within distancer or there is one node (or more)
within r and the nearest one is bad. So, usinga as in the
proposition,P[Nout = 0] = exp(−a)+ (1− exp(−a))λ/(1 +
λ). SinceΦ has intensity1, the isolation probability equals
the density of isolated nodes.

As λ → 0, we obtain the Poisson isolation probability and
for r → ∞ we get the geometric isolation probability (11).
Also in (13) we can observe the expected behavior in the
limits λ, r → 0 andλ, r → ∞. So the two-parameter distribu-
tion (13) includes the Poisson distribution and the geometric
distribution as special cases. Fig. 2 shows an example of the
resulting distributions forr = 1 andλ = 1/5.
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Fig. 2. Distribution of the node degree with and without power constraints.
The solid bold curve shows the distribution (13) forr = 1 andλ = 1/5. The
dashed curve is the Poisson distribution with meanπ (which results when
r = 1, λ = 0), and the dash-dotted curve is the geometric distribution with
mean5 (which results whenλ = 1/5, r → ∞).
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Fig. 3. Left: Mean out-degree of~G1/10,r . The vertical line goes through
the inflection point and indicates the boundary between the power-limited and
the secrecy-limited regime. At the inflection point,r = rT = (2πλ)−1/2 =
p

5/π ≈ 1.26. Right: The curveλ = (2πr2)−1

bordering the power-limited and the secrecy-limited regimes. Asr → ∞ or
λ → ∞, the network becomes secrecy-limited and the degree distribution is
geometric. Asr → 0 or λ → 0, the network is power-limited and the degree
distribution is Poisson.

As a function ofr, the mean degree increases approximately
as πr2 for small r (this is the region where the degree is
power-limited) and has a cap at1/λ (due to the secrecy
condition). Hence there exists a power-limited and a secrecy-
limited regime, and the inflection point ofEN(r), which is
rT = (2πλ)−1/2 is a suitable boundary. This is illustrated
in Fig. 3. Generally, the curve2πr2 = 1/λ separates the two
regimes. Note that in thepower-limited regime, the distribution
is close toPoisson, whereas in the secrecy-limited regime, it is
closer to geometric. Using the maximum slopes of ENout(r),
a simple piecewise linear upper bound on the mean degree is

ENout(r) < min{sr, 1

λ
} , s ,

√

2π

eλ
. (18)

This bound is reasonably tight forλ not too small.
As a function of λ, the mean degree is monotonically

decreasing fromπr2 to 0, upper bounded by1/λ.
The transmission range (power) needed to get withinǫ of

the maximum mean out-degree (forr = ∞) is

rǫ =

√

− log ǫ

λπ
(19)



For example,r0.01 = 1.21/
√
λ achieves a mean out-degree of

0.99/λ.
Next we establish bounds on the node degree distribution

in the basic graphGλ,∞. LetR be the distance of the nearest
bad guy. If the second-nearest bad guy is at distance at
least2R, which happens with probabilityexp(−λπ3R2), then
bidirectional secure communication is possible to any good
guy in the areaaπR2 where a = 2/3 +

√
3/(4π) ≈ 0.80

(circle minus a segment of heightR/2). As a lower bound,
we consider the circle of radiusR/2. For sure bidirectional
communication is possible to any node within that distance.
(This bound would be tight if there were many more bad guys,
all at the same distanceR.) So we have

n
∑

k=0

ER

[

exp(−A)
Ak

k!

]

< P[N 6 n] <

n
∑

k=0

ER

[

exp(−B)
Bk

k!

]

whereA = aπR2 andB = bπR2 with b = 1/4. The bounds
are geometric:

1 −
(

a

a+ λ

)n+1

< P[N 6 n] < 1 −
(

b

b + λ

)n+1

(20)

Since EN =
∑

P[N > n], the boundsa/λ > EN > b/λ
for the mean degree follow. From (16) we already know that
EN = 1/(λc) ≈ 0.62/λ.

Lastly, in this subsection, we consider the enhanced graph.

Proposition 5 The mean degree EN ′ in the enhanced graph
G′

λ,r is

EN ′ =
2

λ
(1− exp(−λπr2))− 1

cλ
(1− exp(−cλπr2)) . (21)

Proof: This follows by combining (2), (15), and (16).

C. Secrecy ratios

Using the mean degree established in (16) we obtain

η(λ, r) =
1 − exp(−cλπr2)

cλπr2
. (22)

η(λ, r) is decreasing in bothr and λ. η′(λ, r) follows from
(21). Of interest are also the relative edge densities of the
enhanced and basic graphs:

Fact 6 At least a fraction 3π/(5π+3
√

3) ≈ 0.45 of the edges
in the enhanced graph G′

λ,r are present in the basic graph
Gλ,r.

The ratioEN/EN ′ is 1 for smallλr2 and reaches its minimum
asλr2 → ∞, where it is(2c − 1)−1 with c as in (16). The
consequence is that in some graphs, more than 50% of the
links can only be used securely in one direction (unless one-
time pads are used).

D. Edge lengths

We consider the distribution of the length of the edges
in ~Gλ,∞. For each node, its nearest bad guy determines the
maximum length of an out-edge. So we intuitively expect the
edge length distribution to approximately inherit the distribu-
tion of the distance to the nearest bad guy. Simulation studies
reveal that indeed the edge length distribution is very close to
Rayleigh with mean1/(2

√
λ), with only very slightly higher

probabilities for longer edges—which is expected since nodes
whose nearest bad guy is far will have many long edges on
average and thus skew the distribution.

In the power-limited regime, withr finite andλ → 0, the
edge length pdf converges to the usual2x/r2, 0 6 x 6 r.

E. Oriented percolation of ~Gλ,r

We are studying oriented out-percolation in~Gλ,r , i.e., the
critical region in the(λ, r)-plane for which there is a positive
probability that the out-component containing the origin has
infinite size.

Fact 7 λc(r) is monotonically increasing for r > rG, and we
have

0 < lim
r→∞

λc(r) < 1 . (23)

In other words, there exists a λ∞ < 1 such that for λ > λ∞,
G′

λ,r does not percolate for any r.

This follows from the facts that for fixedr the mean degree
is continuously decreasing to0 as a function ofλ, and for
λ < 1, the mean degree is smaller than 1 even forr = ∞, so
percolation is impossible. We will useλ∞ to denote the limit
in (23). For intensities smaller than that, we define

rc(λ) , sup{r : θ(λ, r) = 0} , λ 6 λ∞ . (24)

From the monotonic decrease of the mean degree inλ
follows:

Fact 8 The percolation radius rc(λ) is monotonically increas-
ing with λ and has a vertical asymptote at λ∞.

Conjecture 9 rc(λ) is convex (and, consequently, λc(r) is
concave):

d2rc(λ)

dλ2
> 0 ∀ 0 6 λ < λ∞ (25)

It follows that

rc(λ) > rG + cλ , where c ,
drc(λ)

dλ

∣

∣

∣

λ=0
. (26)

Simulation results show thatλ∞ ≈ 0.1499 with a standard
deviation of5.8 · 10−4 over 200 runs.

Sinceλc(r) is concave and converges to a finiteλ∞, we
may conjecture that it can be well approximated by a function
of the form:

λc(r) ≈ λ∞ − exp(a− br) , r > rG , (27)

wherea andb are related througha = logλ∞ + brG. Indeed
simulation results (see Fig. 4) reveal that forb = 4, λ∞ =
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Fig. 4. The simulated critical densityλc(r) vs. log10(r) together with a
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0.1499, anda = 2
√

2, we obtain an excellent approximation.
Similarly,

rc(λ) ≈
a

b
− 1

b
log(λ∞ − λ) , λ < λ∞ . (28)

It follows that the constantc in Conj. 9 isc = (bλ∞)−1 =
5/3, and the slope ofλc(r) at r = r+G is 3/5.

For thecritical graph~Gλ,rc(λ), it turns out that bothP[N =
0] andEN are increasing withλ.

A good empirically derived approximation is

P[Nout
c = 0] ≈ 1

80
+

4

5
λ , λ < λ∞ . (29)

For the mean out-degree we have from (15) and (28)

ENout
c (λ) > πr2G +

11

4
λ . (30)

ENout
c (λ) is convex and reaches1/λ∞ atλ = λ∞ per Prop. 3.

So percolation on the secrecy graph requires a higher mean
degree than Gilbert’s disk graph, as expected since edges are
not independent.

IV. CONCLUDING REMARKS

We have introduced a new class of random geometric
graphs that captures the condition for secure communications
in ad hoc networks. For lattice-based models, there exist
analogies to bond and site percolation problems. In Poisson-
based networks, we have derived the mean node degrees
and, in some cases, the distribution. As a byproduct, a two-
parameter distribution was found that includes the Poissonand
the geometric distribution as special cases. Based on the mean
degree, we defined power- and secrecy-limited regions in the
(λ, r)-plane. The percolation region{(r, λ) : θ(r, λ) > 0} was
bounded and numerically determined. In conclusion, the pres-
ence of eavesdroppers is rather harmful in the random case.
A (relative) density of0.15 is sufficient to make percolation
impossible. Many interesting problems remain open; we hope
that this initial study sparks further investigations.
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