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Abstract— We consider a hybrid wireless network, in which the by a receiver located atdue to a transmitter at; is modeled

low-power nodes collect data and pass it to the data aggregation ash?_g(x—z), whereh,. denotes Rayleigh fading andz) =
nodes (base stations). The low-power nodes are assumed to foam ||z]|~. We assume: > 2. The base stations are assumed to

Poisson point process and communicate to the base stations usingr int the pl T t point
spread spectrum. We derive bounds to the probability of sensor 107 & point process, on the plane. The sum-power at poin

node isolation, when the base stations are arranged randomly or 2 ONn the plane is given by
in a regular fashion.

Ip,(z) = Y hi.g(xi—2) (1)
I. INTRODUCTION AND SYSTEM MODEL vl
A. Motivation We say that the communication from a transmitter at location

Hybrid sensor networks consist of two groups of nodes, omes ¢ to a base station situated at ¢, is successful [7] if
group of low powered sensors which sense and forward taed only if

data to the base stations or the data aggregation nodeshid]. T h2_g(x — 2)
base stations are more powerful nodes which are connected to 1_27 I} (2)
each other by a higher-bandwidth network. It has been shown ¢1\(2} ()

in [2] that the throughput of hybrid networks is higher thaa t where h,. is the fading coefficient between node and
conventional network. The paper by Dousse et al. [3] analyziease statiorz. We assume the noise power to be negligible
the connectivity of hybrid networks using percolation theo compared to interference. In the non-fading casg., h..
They consider a disk model without fading for connectivityare identically taken to be one. We assume that the communi-
and allow for multihop routing. The connectivity of an actation between the nodes and the base station utilizesdsprea
hoc network without interference is considered with fadingpectrum.
in [4] and without fading in [5]. Baccelli et al. [6, Sec 5.3], Let P(x) denote the probability that a sensor node located at
give a non-explicit expression for the volume fraction of cannot connect to any base station. We define the probability
stationary coverage processes, which is closely relateéleto of non-connectivityP of the sensor nodes as
node-isolation probability when the base stations asadomly 1 1
deployed. p= WE[ 3 P(x)} =% / P(z)dz  (3)

In this paper we assume that the radio uses spread spectrum ! TEPINA A

and that the sensor nodes simultaneously transmit dataeto \}vrhereA — [~R/2, R/2)2, and R is chosen depending on the

base stations which makes the communication interference- . ) .
S . . o . arrangement of base stations. The choicéaind, in turn,A
limited. A sensor node is said to leennected if it can directly .
. : . stems from the symmetry of the arrangement of base stations.
communicate with at least one base station. We also assupie s . )
. : is definition is useful when the base station procgsss
that there is no power control, since the senor nodes do no . : .
i . ) ) not stationary. Whenp, is stationary,P = P(0). We also
know which base station to communicate with. The sensor_". . o
consider only single-hop connectivitie., the sensor nodes
nodes are assumed to tamdomly placed on the plane. Can the, . . ) )
i try to connect directly to the base stations, without using
base stations be also randomly placed or should they bedolac . . . .
I ermediate nodes for routing. This assumption may look

N a more regular fashion to provide a gertaln probability oestrictive, but some set of nodes have to directly connébt w
connectivity for the sensor nodes? In this paper, we shall pé

primarily dealing with sensor networks, but these resuls a noeds;’:\s;)enliltatlons and one can consgigto consist of these

apply to similar problems in cellular systems and wireless In Sections Il and Il we calculate the isolation probalilit

Internet access. P when the base stations, are modeled as
B. System Model « Poisson point process (PPP) : This means that the base

The location of sensor nodes is modeled as a homogeneous stations are deployed randomly on the plane.
Poisson point process; = {x;} on R? of density\;. Each « Lattice point process: The base stations are meticulously
node is assumed to transmit at unit power. The power received Placed in the lattice grid.



II. RANDOM DEPLOYMENT OF THE BASE STATIONS From the upper and lower bound we observe that.e,

The base stations form a PPP with densityon the plane. the number of base stations per sensor node is an important
Since the base station process is stationary we RaveP(0), Parameter. To maintain a minimum degree of connectivity,
i.e, we need to only calculate the probability that a sensite number of base stations should scale proportionally to
node located at the origin is not able to connect to any ba§ number of sensor nodes. We observe from Figure 5

station in the presence of interference. We first calcufate that the lower bound is very close to the actual isolation
under fading. probability. This is intuitive since many of the terms in

. . (6) will be independent, the expectation with respectpto
A Rayleigh Fading can be moved inside, and the inequality (7) becomes an
In Rayleigh fading, the probability’; () that the communi- equality. So we will useexp(—pq) as the probability of
cation between a transmitter located at the origin and averce sensor node isolation, when the base stations are randomly
located atz is successful is given by [7], [8] deployed. Using the above procedure, one can show that
Fy(z) = exp(= |22 *C(a)) 4 o = P(A node cannot connect to any base station within a

i ~ exp(— — e N/ay),
where C(a) = 27/(asin(2n/a)). Let B(oy.2) = Ly . o sancer) & exp(=pq(l ")

|hy=29(y = 2) > B3y, hazlg(x — 2)}, whereh,, are B. NoFading

independent Rayleigh fading random variabl&g¢;, z) de- In the case when there is no fading, we do not have an
notes the set of all node locations on the plane which canquivalent of the success probabilify (z). The interference
connect to the base statianwhen the interference is causeds an alpha-stable process [11], [12], [13]. But we have
by the proces®,. Let 14(x) denote the indicator function of the characteristic function and the Laplace transform ef th
set A. Then1 — 1p4\ (0}, (0) is equal tol if and only if interference distribution. Lek'(y) =P(3_, ., 9(z—2) <y),

a sensor node & cannot connect to the base stationnat i.e, the CDF of the interference and(y) = dF(y)/dy,

Hence we have the probability density function. Sincé, is a PPP.F(y) is
independent ot. Then the Laplace transform 11],
P=E H L= 1p(g:\{0}.) (0) ®) [14] Fi)s P oity) [11]
s £(s) = exp(-mhs¥T(1 - 2/a),
= Eo, {Em[ II1- 13(‘151’")(0)'@51]} ) and the characteristic function is given by

nEpz

where E!Y denotes the conditional expectation (Palm proba-  f(1) = exp {— 27r)\1/ (1- e‘Q’Ti"Q(T))rdr] (8)
bility) [9], [10], that the proces®; has a point at origin. For 0

a Poisson point process, by Slivnyak’s theorem [9], we hale€t Bi(¢1,2) = {y: g(y —2) > 83,4, 9(z — 2)}, i.e, the
E!O(_) = E(.). For a point process, the moment generating set of all sensor nodes that can connect to the base station at
functional G 4(f) is given by G4(f) = E¢[Hme¢ f(z)] [9], = under the interference by transmittersdin. Then as in the

[10]. So we have fading case we have
P =EY (G, (1 —1p(4,.(0))] P=E [ 1= 15,.\(0}m(0)
For a PPP, the generating functior@l,(f) = exp(— [(1 — €2

f(@))A(z)dz) where A(z) is the density function of the By similar arguments as in the fading case, we have

process. Since the base statigiysare Poisson with density
A2, we have P >exp [— A2 /]R2 F(g(x)/ﬁ)dx}
P = B, [exp [_ )\2/ 18(6m) (O)dn}] The technique to evaluatg,. F(g(x)/0)dx using the charac-

o R? teristic functionf is given in Appendix A. We obtain

> exp [— A2 /R2 Ff(n)dn] P > exp(—pq). 9
where(a) follows from Jensen’s inequality and (4). Hence wé'S N the fading case, we have
have P <1-E.[F(q(r)/B)

P > exp(—pq) )

where the expectation is with respect to the Rayleigh distri
wherep £ /A andq £ 7372/*C(a)~!. We can derive bution functionH (r). We also have, for any random variable
an upper bound as follows. The first contact distribution [} > 0,
H(r) of ¢ is Rayleigh. We have

P(Y <a) > (e/(e—1)Ly(1/a) —1/(e —1)
P < P(Origin is unable to connect to nearest BS)

[15]. So we have
| a=Fe)H@ar e )

T e—1 e—
1 1 e «

1+ 70 Naf—2/0C(a)~1 1+ pg e—1la+ 2mpql(2/a)



whered: () = eza (v/AaE) Fr(—V/Ag€) cos(2mv/Aa €, ).

e ® @ ® & F\f(g) is the Fourier transform off'(x), and ©(¢) is the
ol Fourier transform of the Gaussian From (10) and (11),
it B A . A 4 we haveP(z) > 1 — (1 — p)\x¢(x). Using the definition of

P from (3) and choosing? = 1/v/\2 (by symmetry of the
lattice), we have

a® &® ® 1—p)A
¢ | P>1- %/ b(x)de
I ) & @ & FY w [-R/2,R/2]?
255 2 15 1 05 0 05 1 15 2 25 =1- (1 - p)ﬂ'>\2)\1_1672/a0(01)71
' . _ _ (a) follows from f[_R/2 R/22 cos(2m\/ Ao (€, x))da = 0,VE #
Fig. 1. Poisson lattice process with=0.04, A =10, A; =1 (0,0). Taking the limitp — 0 (corresponding to the regular

lattice without holes), we have

+
Also in the non-fading case we observe that/)\; is a P> [1=pq| (12)
important system parameter. We glso observe that the low@ere [z]* = max{0,z}. This lower bound corresponds to
bounds for the fading and non-fading cases match. the regular lattice process (sinpe= 0). From Fig 6, we see

I1l. REGULAR DEPLOYMENT OF BASE STATIONS that the lower bound is tight for large/p and larges. For the

We would like to analyze the connectivity when the basre‘?gLJIar lattice, as in the previous cases, we have the folpw
. . . u%per bound

stationsg, are arranged in a lattice process. To overcome som

technical difficulties, we introduce the thinned lattice dab 1 2 22/a

for which the lattice is a limiting process. Let = Z2/v/As P<l-%s /[R/2 Ry exp(=As |l[|°A7°C(a))dx

and remove a lattice point with probabilifyindependent of
other points (thinning the lattice). The final density &f is ChoosingR = 1/v/Xz, we haveP < 1 — erf[ /Lrpq’
A2(1 — p). We obtain the normal lattice when— 0. . . ted

Let v(x) = 1/2702 exp(—||z]|2/202), z € R? denote a two where erf.) is the standard error function.
dimensional Gaussian function. Poisson lattice process (see

. < . X . . IV. SIMULATION AND OBSERVATIONS
Fig. 1) ¢ is a Poisson process with density functiafx) =

A pege V(T + K/ /A2). We also have For the simulations, we consider a square of aréx 10
R N and place the bases stations and the sensor nodes ap@lypriat
¢~ UL 105 The fadingh?w is taken to be exponential with meanFigures

2 and 3 illustrate the single-hop connectivity when the base
étations are arranged as PPP and lattice, respectivelss Sta
indicate base stations and circles indicate the sensorsnhode
Let P(z) denote the probability that a sensor node locat e see from the figures fchat the single-hop connecFivity Is
etter when the base stations are arranged as a lattice. Also

atz cannot connect to any base station in the proggssind b h tth q q h
P(z) denote the same, when the base stations are arrarzggdo serve that most of the sensor nodes are connected to the

where ¢%,i = 1...N denotes i.i.d copies o, and N ~
Poi(A/(1 — p)). This approximation in distribution become
tight ase — 0 L.

as . By using the moment generating function of a Poiss earest base stations even under fading. This is expecieg si
random variable. it can be shown that ~» = P(A node cannot connect to any base station within a

distancer from itself ) ~ exp(—pg(1 — e~""21/9)), is very
P(z) ~ exp {;)‘(1 _ p(m))} (10) close toP even at smalk. For example in Fig 4, we observe
1—-p that 6, saturates at = 1 for a wide range ofg and Ay,
Using the same notation and as for the PPP with fading, we., whatever connectivity is available for a sensor node, it
have is available within its immediate vicinity, even with fadjn
P(z)=F H 1= 14\ {a}m () This is interesting since, even under fading a base staton ¢
localize the positions of the sensor nodes that connectToé

. - : . . saturation point fow, scales approximatel Vlog(A
Using similar techniques as in Section II-A and from Ap; . some pr())sitivec independenptpof\Q y ast log(A)

pendix I-8, we have That said, just communicating to the geographically ne¢ares

P(z) > exp(— Aot (z)) (11) base station is not an optimal strategy for connectivityeund
fading (when there is no power control), because the upper
) o tendsI to af pen;e_clt lattilge as — 0I and A _; oo.bEa;/(en t)henhit would bound toP which corresponds to this strategy is large com-
e an overlap of multiple.. For example consider a 0, ¢), wheree is ;
small but larger thao. Then the probability that no point lies in this ball is pared to aCtuaP (espeually for Sma”e’ﬁ)' For example When,
approximatelyexp(—A [5 ) Sgezz ¥(@ + k)dz) & exp(—)). Also the the base stations are randomly deployed, we see from Fig 5,

number of points inside this ball is Poisson distributed witean . that for 5 = 0.01,1/p = 4, the gap is aboud.2.

nEP
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Fig. 2. Connectivity, Stars: base stations, circles: sensdes, base stations Fig- 5. P versus1/p. Comparison of simulation and theoretical bounds,
form a PPP with fading when base stations are random.

)\2=1, a=4, L=10, Base Stations :Lattice

— — — Lattice Fading (Sim)
0.8 — — Lower Bound
Upper Bound

B=0.La=4,=2,=1

Fig. 6. P versusl/p. Comparison of simulation and theoretical bounds,
when base stations are regular.

Fig. 3. Connectivity, Stars: base stations, circles: senedes, base stations
form a lattice process with fading

We observe from Fig 6, that the lower and upper bounds

become tight for a lattice process whgrand1/p are large.
a=4 In scaling scenarios, to maintain the same connectivityh bo
the intensities should scale in a similar fashion (with the
same exponent). From Fig 7, we see that the connectivity
is better when the base stations are regularly arranged. The
gap in connectivity decreases whgnbecomes large. When
q < 1/p, the gap between the upper bound of the isolation
probability for random deployment of base stations (with
fading) and the lower bound of isolation probabilty for ikt
deployment (with fading) io?>¢?/(1 + pg) — 0 asq — 0.
So in contention-based systems like ALOHA, where> 1,
a regular arrangement of base stations offers no (specific)
advantage. The above gap also goes to zerp-as2. Also the
o 05 1 15 2 25 3 35 4 45 5 number of base stations to which a sensor node can connect
under fading, when the base stations are deployed randomly
is approximately Poisson distributed with meaqn Also for
a givenp and S there exists amv € (2, 00) which maximizes
the connectivity.

-

P(node cannot connect to any BS located within distance r)

T

P
o

Fig. 4. 6, versusr, random arrangement of BS with fading widy = 1



=4, L=10\,=1 a ~ T 7
@\ / Frn—2) Y 0(y/Ag)e?mv32(6m gy

081 if:t:c(esgi)m) sez?
orl (b) Ay Z \/75 2w/ N2i(€,x / Ff(n)CQWi\/E<€’n>d77
06} £ez?
osf = X2 > (v Aa8) cos(2my/ N (€, ) VFf(—/As6)
041 £€Z?

(§,m) denotes the Euclidean inner product betwgeand 7.
Ff denotes the Fourier transform df;. (a) follows from
Poisson summation formula [16, p.254)) follows from the
translation property of the Fourier transform.
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