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Abstract— We consider a hybrid wireless network, in which the
low-power nodes collect data and pass it to the data aggregation
nodes (base stations). The low-power nodes are assumed to forma
Poisson point process and communicate to the base stations using
spread spectrum. We derive bounds to the probability of sensor
node isolation, when the base stations are arranged randomly or
in a regular fashion.

I. I NTRODUCTION AND SYSTEM MODEL

A. Motivation

Hybrid sensor networks consist of two groups of nodes, one
group of low powered sensors which sense and forward the
data to the base stations or the data aggregation nodes [1]. The
base stations are more powerful nodes which are connected to
each other by a higher-bandwidth network. It has been shown
in [2] that the throughput of hybrid networks is higher than the
conventional network. The paper by Dousse et al. [3] analyzes
the connectivity of hybrid networks using percolation theory.
They consider a disk model without fading for connectivity
and allow for multihop routing. The connectivity of an ad
hoc network without interference is considered with fading
in [4] and without fading in [5]. Baccelli et al. [6, Sec 5.3],
give a non-explicit expression for the volume fraction of
stationary coverage processes, which is closely related tothe
node-isolation probability when the base stations arerandomly
deployed.

In this paper we assume that the radio uses spread spectrum
and that the sensor nodes simultaneously transmit data to the
base stations which makes the communication interference-
limited. A sensor node is said to beconnected if it can directly
communicate with at least one base station. We also assume
that there is no power control, since the senor nodes do not
know which base station to communicate with. The sensor
nodes are assumed to berandomly placed on the plane. Can the
base stations be also randomly placed or should they be placed
in a more regular fashion to provide a certain probability of
connectivity for the sensor nodes? In this paper, we shall be
primarily dealing with sensor networks, but these results also
apply to similar problems in cellular systems and wireless
Internet access.

B. System Model

The location of sensor nodes is modeled as a homogeneous
Poisson point processφ1 = {xi} on R

2 of densityλ1. Each
node is assumed to transmit at unit power. The power received

by a receiver located atz due to a transmitter atxi is modeled
ash2

xzg(x−z), wherehxz denotes Rayleigh fading andg(x) =
‖x‖−α. We assumeα > 2. The base stations are assumed to
form a point processφ2 on the plane. The sum-power at point
z on the plane is given by

Iφ1
(z) =

∑

xi∈φ1

h2
xizg(xi − z) (1)

We say that the communication from a transmitter at location
x ∈ φ1 to a base station situated atz ∈ φ2 is successful [7] if
and only if

h2
xzg(x− z)

Iφ1\{x}(z)
≥ β (2)

where hxz is the fading coefficient between nodex and
base stationz. We assume the noise power to be negligible
compared to interference. In the non-fading case,hxiz, hxz

are identically taken to be one. We assume that the communi-
cation between the nodes and the base station utilizes spread
spectrum.

LetP (x) denote the probability that a sensor node located at
x cannot connect to any base station. We define the probability
of non-connectivityP of the sensor nodes as

P =
1

λ1R2
E

[ ∑

x∈φ1∩A

P (x)
]

=
1

R2

∫

A

P (x)dx (3)

whereA = [−R/2, R/2]2, andR is chosen depending on the
arrangement of base stations. The choice ofR and, in turn,A
stems from the symmetry of the arrangement of base stations.
This definition is useful when the base station processφ2 is
not stationary. Whenφ2 is stationary,P = P (0). We also
consider only single-hop connectivity,i.e., the sensor nodes
try to connect directly to the base stations, without using
intermediate nodes for routing. This assumption may look
restrictive, but some set of nodes have to directly connect with
the base stations and one can considerφ1 to consist of these
nodes only.

In Sections II and III we calculate the isolation probability
P when the base stationsφ2 are modeled as

• Poisson point process (PPP) : This means that the base
stations are deployed randomly on the plane.

• Lattice point process: The base stations are meticulously
placed in the lattice grid.



II. RANDOM DEPLOYMENT OF THE BASE STATIONS

The base stations form a PPP with densityλ2 on the plane.
Since the base station process is stationary we haveP = P (0),
i.e., we need to only calculate the probability that a sensor
node located at the origin is not able to connect to any base
station in the presence of interference. We first calculateP
under fading.

A. Rayleigh Fading

In Rayleigh fading, the probabilityFf (x) that the communi-
cation between a transmitter located at the origin and a receiver
located atx is successful is given by [7], [8]

Ff (x) = exp(−λ1‖x‖2β2/αC(α)) (4)

where C(α) = 2π2/(α sin(2π/α)). Let B(φ1, z) = {y :
|hyz|2g(y − z) ≥ β

∑
x∈φ1

|hxz|2g(x − z)}, wherehab are
independent Rayleigh fading random variables.B(φ1, z) de-
notes the set of all node locations on the plane which can
connect to the base stationz when the interference is caused
by the processφ1. Let 1A(x) denote the indicator function of
setA. Then 1 − 1B(φ\{0},η)(0) is equal to1 if and only if
a sensor node at0 cannot connect to the base station atη.
Hence we have

P = E
∏

η∈φ2

1 − 1B(φ1\{0},η)(0) (5)

= E!0
φ1

[
Eφ2

[
∏

η∈φ2

1 − 1B(φ1,η)(0)|φ1]
]

(6)

whereE!0
φ1

denotes the conditional expectation (Palm proba-
bility) [9], [10], that the processφ1 has a point at origin. For
a Poisson point process, by Slivnyak’s theorem [9], we have
E!0(.) = E(.). For a point processφ, the moment generating
functionalGφ(f) is given byGφ(f) = Eφ[

∏
x∈φ f(x)] [9],

[10]. So we have

P = E0
φ1

[Gφ2
(1 − 1B(φ1,η)(0))]

For a PPP, the generating functionalGφ(f) = exp(−
∫

(1 −
f(x))λ(x)dx) where λ(x) is the density function of the
process. Since the base stationsφ2 are Poisson with density
λ2, we have

P = Eφ1
[exp

[
− λ2

∫

R2

1B(φ,η)(0)dη
]
]

(a)

≥ exp
[
− λ2

∫

R2

Ff (η)dη
]

where(a) follows from Jensen’s inequality and (4). Hence we
have

P ≥ exp(−ρq) (7)

whereρ , λ2/λ1 and q , πβ−2/αC(α)−1. We can derive
an upper bound as follows. The first contact distribution [9]
H(r) of φ2 is Rayleigh. We have

P ≤ P(Origin is unable to connect to nearest BS)

=

∫

R+

(1 − Ff (r))H(r)dr

=
1

1 + πλ−1
1 λ2β−2/αC(α)−1

=
1

1 + ρq

From the upper and lower bound we observe thatρ, i.e.,
the number of base stations per sensor node is an important
parameter. To maintain a minimum degree of connectivity,
the number of base stations should scale proportionally to
the number of sensor nodes. We observe from Figure 5
that the lower bound is very close to the actual isolation
probability. This is intuitive since many of the terms in
(6) will be independent, the expectation with respect toφ1

can be moved inside, and the inequality (7) becomes an
equality. So we will useexp(−ρq) as the probability of
sensor node isolation, when the base stations are randomly
deployed. Using the above procedure, one can show that
δr = P(A node cannot connect to any base station within a
distancer) ≈ exp(−ρq(1 − e−r2λ1/q)).

B. No Fading

In the case when there is no fading, we do not have an
equivalent of the success probabilityFf (x). The interference
is an alpha-stable process [11], [12], [13]. But we have
the characteristic function and the Laplace transform of the
interference distribution. LetF (y) = P(

∑
x∈φ1

g(x−z) ≤ y),
i.e., the CDF of the interference andf(y) = dF (y)/dy,
the probability density function. Sinceφ1 is a PPP,F (y) is
independent ofz. Then the Laplace transform off(y) [11],
[14] is

L(s) = exp(−πλ1s
2/αΓ(1 − 2/α)),

and the characteristic function is given by

f̂(η) = exp
[
− 2πλ1

∫ ∞

0

(1 − e−2πiηg(r))rdr
]

(8)

Let B1(φ1, z) = {y : g(y− z) ≥ β
∑

x∈φ1
g(x− z)}, i.e., the

set of all sensor nodes that can connect to the base station at
z under the interference by transmitters inφ1. Then as in the
fading case we have

P = E
∏

η∈φ2

1 − 1B1(φ1\{0},η)(0)

By similar arguments as in the fading case, we have

P ≥ exp
[
− λ2

∫

R2

F (g(x)/β)dx
]

The technique to evaluate
∫

R2 F (g(x)/β)dx using the charac-
teristic functionf̂ is given in Appendix A. We obtain

P ≥ exp(−ρq). (9)

As in the fading case, we have

P ≤ 1 − Er[F (g(r)/β)]

where the expectation is with respect to the Rayleigh distri-
bution functionH(r). We also have, for any random variable
Y ≥ 0,

P(Y < a) ≥ (e/(e− 1))LY (1/a) − 1/(e− 1)

[15]. So we have

P ≤ e

e− 1
− e

e− 1
ErLf (β/g(r))

=
e

e− 1

[ α

α+ 2πρqΓ(2/α)

]
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Fig. 1. Poisson lattice process withσ = 0.04, λ = 10, λ2 = 1

Also in the non-fading case we observe thatλ2/λ1 is a
important system parameter. We also observe that the lower
bounds for the fading and non-fading cases match.

III. R EGULAR DEPLOYMENT OF BASE STATIONS

We would like to analyze the connectivity when the base
stationsφ2 are arranged in a lattice process. To overcome some
technical difficulties, we introduce the thinned lattice model,
for which the lattice is a limiting process. Letφ2 = Z

2/
√
λ2

and remove a lattice point with probabilityp independent of
other points (thinning the lattice). The final density ofφ2 is
λ2(1 − p). We obtain the normal lattice whenp→ 0.

Let ν(x) = 1/2πσ2 exp(−‖x‖2/2σ2), x ∈ R
2 denote a two

dimensional Gaussian function. APoisson lattice process (see
Fig. 1) φ̂ is a Poisson process with density functionλ(x) =
λ

∑
k∈Z2 ν(x+ k/

√
λ2). We also have

φ̂ ≈ ∪N
i=1φ

i
2

whereφi
2, i = 1 . . . N denotes i.i.d copies ofφ2 andN ∼

Poi(λ/(1 − p)). This approximation in distribution becomes
tight asσ → 0 1.

Let P (x) denote the probability that a sensor node located
at x cannot connect to any base station in the processφ2, and
P̂ (x) denote the same, when the base stations are arranged
as φ̂. By using the moment generating function of a Poisson
random variable, it can be shown that

P̂ (x) ≈ exp
[ −λ
1 − p

(1 − P (x))
]

(10)

Using the same notation and as for the PPP with fading, we
have

P̂ (x) = E
∏

η∈φ̂

1 − 1B(φ1\{x},η)(x)

Using similar techniques as in Section II-A and from Ap-
pendix I-B, we have

P̂ (x) ≥ exp(−λλ2ψ(x)) (11)

1φ̂ tends to a perfect lattice asσ → 0 and λ → ∞. Even then it would
be an overlap of multipleφ2. For example consider a ballδ(0, ǫ), whereǫ is
small but larger than5σ. Then the probability that no point lies in this ball is
approximatelyexp(−λ

R

δ(0,ǫ)

P

k∈Z2 ν(x + k)dx) ≈ exp(−λ). Also the
number of points inside this ball is Poisson distributed withmeanλ.

whereψ(x) =
∑

ξ∈Z2 ν̂(
√
λ2ξ)F̂f (−

√
λ2ξ) cos(2π

√
λ2〈ξ, x〉).

F̂f (ξ) is the Fourier transform ofF (x), and ν̂(ξ) is the
Fourier transform of the Gaussianν. From (10) and (11),
we haveP (x) ≥ 1 − (1 − p)λ2ψ(x). Using the definition of
P from (3) and choosingR = 1/

√
λ2 (by symmetry of the

lattice), we have

P ≥ 1 − (1 − p)λ2

R2

∫

[−R/2,R/2]2
ψ(x)dx

(a)
= 1 − (1 − p)πλ2λ

−1
1 β−2/αC(α)−1

(a) follows from
∫
[−R/2,R/2]2

cos(2π
√
λ2〈ξ, x〉)dx = 0,∀ξ 6=

(0, 0). Taking the limit p → 0 (corresponding to the regular
lattice without holes), we have

P ≥ [1 − ρq]+ (12)

where [x]+ = max{0, x}. This lower bound corresponds to
the regular lattice process (sincep = 0). From Fig 6, we see
that the lower bound is tight for large1/ρ and largeβ. For the
regular lattice, as in the previous cases, we have the following
upper bound

P ≤ 1 − 1

R2

∫

[−R/2,R/2]2
exp(−λ1‖x‖2β2/αC(α))dx

ChoosingR = 1/
√
λ2, we haveP ≤ 1 − erf

[√
π

4ρq

]2

ρq,

where erf(.) is the standard error function.

IV. SIMULATION AND OBSERVATIONS

For the simulations, we consider a square of area10 × 10
and place the bases stations and the sensor nodes appropriately.
The fadingh2

xy is taken to be exponential with mean1. Figures
2 and 3 illustrate the single-hop connectivity when the base
stations are arranged as PPP and lattice, respectively. Stars
indicate base stations and circles indicate the sensor nodes.
We see from the figures that the single-hop connectivity is
better when the base stations are arranged as a lattice. Also
we observe that most of the sensor nodes are connected to the
nearest base stations even under fading. This is expected since
δr = P(A node cannot connect to any base station within a
distancer from itself ) ≈ exp(−ρq(1 − e−r2λ1/q)), is very

close toP even at smallr. For example in Fig 4, we observe
that δr saturates atr = 1 for a wide range ofβ and λ1,
i.e., whatever connectivity is available for a sensor node, it
is available within its immediate vicinity, even with fading.
This is interesting since, even under fading a base station can
localize the positions of the sensor nodes that connect to it. The
saturation point forδr scales approximately asc+

√
log(λ2)

for some positivec independent ofλ2.
That said, just communicating to the geographically nearest

base station is not an optimal strategy for connectivity under
fading (when there is no power control), because the upper
bound toP which corresponds to this strategy is large com-
pared to actualP (especially for smallerβ). For example when
the base stations are randomly deployed, we see from Fig 5,
that for β = 0.01, 1/ρ = 4, the gap is about0.2.
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Fig. 2. Connectivity, Stars: base stations, circles: sensor nodes, base stations
form a PPP with fading
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Fig. 3. Connectivity, Stars: base stations, circles: sensor nodes, base stations
form a lattice process with fading
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Fig. 4. δr versusr, random arrangement of BS with fading withλ2 = 1
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Fig. 5. P versus1/ρ. Comparison of simulation and theoretical bounds,
when base stations are random.

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1/ρ

P

λ
2
=1, α=4, L=10, Base Stations :Lattice

 

 
Lattice Fading (Sim)

Lower Bound

Upper Bound

β=0.1

β=0.01

Fig. 6. P versus1/ρ. Comparison of simulation and theoretical bounds,
when base stations are regular.

We observe from Fig 6, that the lower and upper bounds
become tight for a lattice process whenβ and1/ρ are large.
In scaling scenarios, to maintain the same connectivity, both
the intensities should scale in a similar fashion (with the
same exponent). From Fig 7, we see that the connectivity
is better when the base stations are regularly arranged. The
gap in connectivity decreases whenβ becomes large. When
q ≤ 1/ρ, the gap between the upper bound of the isolation
probability for random deployment of base stations (with
fading) and the lower bound of isolation probabilty for lattice
deployment (with fading) isρ2q2/(1 + ρq) → 0 as q → 0.
So in contention-based systems like ALOHA, whereβ > 1,
a regular arrangement of base stations offers no (specific)
advantage. The above gap also goes to zero asα→ 2. Also the
number of base stations to which a sensor node can connect
under fading, when the base stations are deployed randomly
is approximately Poisson distributed with meanρq. Also for
a givenρ andβ there exists anα ∈ (2,∞) which maximizes
the connectivity.
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V. CONCLUSION

In this paper, we have derived upper and lower bounds
for the isolation probability for single-hop connectivityin
an interference limited hybrid system. The cases when the
base stations are deployed randomly and placed regularly in
a lattice are considered. By simulations, the lower bound is
shown to be very tight in the case when the base stations are
randomly deployed. We show that the ratio of the number of
sensor nodes to the base stations is a critical parameter for
connectivity. We also show that the advantage of deploying
base stations in a regular fashion decreases with increasing β
(SIR threshold).

APPENDIX

A. Calculation of
∫

R2 F (g(x)/β)dx

Changing to polar coordinates, and using a change of
variables

1

2π

∫

R2

F
(g(x)

β

)
dx =

β−2/α

α

∫ ∞

0

F (y)y−2/α−1dy

(a)
=

β−2/α

2

∫ ∞

0

f(y)y−2/αdy

(b)
= ∆

∫ ∞

0

|η|2/α−1Re(f̂(η))dη

where∆ = Γ(1/2−1/α)β−2/α

Γ(1/α)π1/2−2/α . (a) follows from integration by

parts and assuminglimy→0 F (y)y−2/α → 0. (b) follows from
Folland [16, p.300]. Considering the real part from (8) and
after integration, we have

∫

R2

F
(g(x)

β

)
dx =

β−2/αα sin
(

2π
α

)

2πλ1
(13)

B. Calculation of P1(x)

1

λ
log(

1

P1(x)
) ≤

∫

R2

Ff (η − x)
∑

k∈Z2

ν(η + k/
√
λ2)dη

(a)
= λ2

∫

R2

Ff (η − x)
∑

ξ∈Z2

ν̂(
√
λ2ξ)e

2πi
√

λ2〈ξ,η〉dη

(b)
= λ2

∑

ξ∈Z2

ν̂(
√
λ2ξ)e

2π
√

λ2i〈ξ,x〉
∫

R2

Ff (η)e2πi
√

λ2〈ξ,η〉dη

= λ2

∑

ξ∈Z2

ν̂(
√
λ2ξ) cos(2π

√
λ2〈ξ, x〉)F̂f (−

√
λ2ξ)

〈ξ, η〉 denotes the Euclidean inner product betweenξ and η.
F̂f denotes the Fourier transform ofFf . (a) follows from
Poisson summation formula [16, p.254].(b) follows from the
translation property of the Fourier transform.
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