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Abstract— In ad hoc networks with random node distribution,
the underlying point process model and the channel fading
process are usually considered separately. We provide a unified
framework for the geometric characterization of fading by
incorporating the fading process into the point process model.
Concretely, assuming nodes are distributed in a stationary
Poisson point process in R

d, we analyze the properties of the point
processes that describe the path loss with fading. Applications
include connectivity and broadcasting.

I. INTRODUCTION AND SYSTEM MODEL

A. Motivation

When two wireless transceivers communicate, the path loss
is well modeled by the product of a distance component (often
called large-scale path loss) and a fading component (called
small-scale fading or shadowing). It is usually assumed that the
distance part is deterministic while the fading part is modeled
as a random process. This distinction, however, does not apply
to most ad hoc networks, where the distance itself is subject
to uncertainty. In this case it may be beneficial to consider the
distance and fading uncertainty jointly, i.e., to define a point
process that incorporates both. We introduce a framework
that offers a geometrical interpretation of fading and some
new insight into its effect on the network. In particular, we
focus on two applications: connectivity and broadcasting. To
obtain concrete results, we will often use the Nakagami-m
fading model, which is quite general and has the advantage of
including the special case of no fading (m → ∞).

Connectivity. We characterize the geometric properties of
the set of nodes that are directly connected to the origin for
arbitrary fading models, generalizing the results in [1], [2]. We
also show that if the path loss exponent equals the number
of network dimension, any fading model (with unit mean) is
distribution-preserving in a sense made precise later.

Broadcasting. We are interested in the single-hop broadcast
transport capacity, i.e., the cumulated distance-weighted rate
summed over the set of nodes that can successfully decode a
message sent from a transmitter at the origin. In particular, we
prove that if the path loss exponent is smaller than the number
of network dimensions plus one, this transport capacity can
be made arbitrarily large by letting the rate of transmission
approach 0.

B. Notation and symbols

For convenient reference, we provide a list of the symbols
and variables used in the paper. Most of them are also
explained in the text.

Symbol Definition/explanation
1A(x) indicator function
u(x) , 1{x>0}(x) (unit step function)

d number of dimensions of the network
o origin in R

d

B a Borel subset of R or R
d

cd , πd/2/Γ(1 + d/2)
(volume of the d-dim. unit ball)

α path loss exponent
δ , d/α

∆ , (d + 1)/α
s minimum path gain for connection

F, f fading distribution (cdf), fading r.v.
FX distribution of random variable X (cdf)

Φ = {xi} path loss process before fading (PLP)
Ξ = {ξi} path loss process with fading (PLPF)
Φ̂ = {x̂i} points in Φ connected to origin
Ξ̂ = {ξ̂i} points in Ξ connected to origin

Λ, λ counting measure and density for Φ
M, µ counting measure and density for Ξ

N̂ number of nodes connected to o
#A number of elements in the set A

C. Poisson point process model

Node distribution. Let the set {yi}, i ∈ N consist of the
points of a stationary Poisson point process in R

d of intensity
1, ordered according to their Euclidean distance ‖yi − o‖
to the origin o. Define a new one-dimensional (generally
inhomogeneous) PPP {ri , ‖yi−o‖} such that 0 < r1 < r2 <
. . . a.s. Let α > 0 be the path loss exponent of the network and
Φ = {xi , rα

i } be the path loss process (before fading) (PLP).
Let {f , f1, f2, . . .} be an iid stochastic process with f drawn
from a distribution F with unit mean, i.e., Ef = 1. Finally, let
Ξ = {ξi , xi/fi} be the path loss process with fading (PLPF).
In order to treat the case of no fading in the same framework,



we will allow the degenerate case F (x) = u(x− 1), resulting
in Φ = Ξ. Note that the fading is static (unless mentioned
otherwise), and that {ξi} is no longer ordered in general. We
will also interpret these point processes as random counting
measures, e.g., Φ(B) = #{Φ∩B} for any Borel subset B of
R.

Connectivity. We are interested in connectivity to the origin.
A node i is connected if the path loss is smaller than 1/s, i.e.,
if ξi < 1/s. The processes of connected nodes are denoted as
Φ̂ = {xi : ξi < 1/s} (PLP) and Ξ̂ = {ξi : ξi < 1/s} =
Ξ ∩ [0, 1/s) (PLPF).

Counting measures. Let Λ be the counting measure associ-
ated with Φ, i.e., Λ(B) = EΦ(B) = E#{Φ ∩ B} for Borel
B. For Λ([0, a)) = EΦ([0, a)), we will also use the shortcut
Λ(a). Similarly, let Λ̂ be the counting measure for Φ̂. All the
processes considered admit a density. Let λ(x) = dΛ(x)/dx
and and λ̂(x) = dΛ̂(x)/dx be the densities of Φ and Φ̂,
respectively. Further, let M be the counting measure for Ξ,
M̂ for Ξ̂, and let µ(x) and µ̂(x) denote the corresponding
densities, i.e., µ(x) = dM(x)/dx and µ̂(x) = dM̂(x)/dx.

D. The standard network

For ease of exposition, we often consider a standard net-
work1 that has the following parameters: d = α = 2, Rayleigh
fading, i.e., F (x) = (1 − e−x)u(x). For comparison with the
non-fading case, we use the term standard network without
fading if there is no fading and d = α = 2. For the standard
network, δ = 1 and ∆ = 3/2.

II. BASIC PROPERTIES

Proposition 1 The processes Φ, Ξ, and Ξ̂ are Poisson.

Proof: {yi} is Poisson by definition, so {ri} and Φ =
{xi} are Poisson by the mapping theorem [3]. Ξ is Poisson
since fi is iid, and Ξ̂(R) = Ξ([0, 1/s)). �

Cor. 2 states some basic facts about these point processes
that result from their Poisson property. Note that (b) has been
shown previously [4], and (c) is a generalization of a result in
[2].

Corollary 2

(a) Λ(x) = EΦ([0, x)) = cdx
δ and λ(x) = cdδx

δ−1. In
particular, for δ = 1, Φ is stationary.

(b) ri is governed by the generalized gamma pdf

fri(r) = e−cdrd d (cdr
d)i

rΓ(i)
, (1)

and xi is distributed according to the cdf

Fxi(x) = 1 − Γic(i, cdx
δ)

Γ(i)
, (2)

1The term “standard” here refers to the fact that in this case the analytical
expressions are particularly simple. We do not claim that a path loss exponent
of 2 is the one most frequently observed.

where Γic denotes the upper incomplete gamma function.
The expected path loss without fading is

Exi = c
−1/δ
d

Γ(i + 1/δ)

Γ(i)
. (3)

(c) ξi is distributed according to the cdf

Fξi(x) = 1−
∫ ∞

0

F (r/x)

(
ci
dδr

δi−1 exp(−cdxrδ)

Γ(i)

)

dx .

(4)
For δ = 1 and Rayleigh fading,

Fξi(x) =
(cdx)i

(cdx + 1)i
. (5)

Proof:

(a) Since the original process {yi} is stationary, the expected
number of points in a ball of radius x around the origin
is cdx

d. The one-dimensional process {ri} has the same
number of points in [0, x), and xi = rα

i , so EΦ([0, x)) =
cdx

d/α. For δ = 1, λ(x) = cd is constant.
(b) Follows directly from the fact that {yi} is stationary

Poisson.
(c) The cdf is 1 − E(F (xi/x)) with xi distributed according

to (2). For Rayleigh fading and general d, α, there is a
pseudo-analytic form of Fξi available using hypergeomet-
ric functions dFα. Note that for the standard network Eξi

does not exist for any i. �

Proposition 3 For δ = 1 and any fading distribution F with
mean 1,

Ξ(B)
d
= Φ(B) ∀Borel B ⊂ R ,

i.e., fading is distribution-preserving.

Proof: Since Ξ is Poisson, independence of Ξ(B1) and
Ξ(B2) for B1 ∩ B2 = ∅ is guaranteed. So it remains to
be shown that the intensities (or, equivalently, the counting
measures on Borel sets) are the same. This is the case if for
all a > 0,

E (#{xi : xi > a, ξi < a}) = E (#{xi : xi < a, ξi > a}) ,

i.e., the expected numbers of nodes crossing a from the left
(leaving the interval [0, a)) and the right (entering the same
interval) are equal. This condition can be expressed as
∫ a

0

λ(x)F (x/a)dx =

∫ ∞

a

λ(x)(1 − F (x/a)dx ∀a > 0 .

If δ = 1, λ(x) = cd, and the condition reduces to
∫ 1

0

F (x)dx =

∫ ∞

1

(1 − F (x))dx ,

which holds since
∫ 1

0

(1 − F (x))dx

︸ ︷︷ ︸

1−
R

1

0
F (x)dx

+

∫ ∞

1

(1 − F (x))dx = Ef = 1 .

�



Corollary 4 For Nakagami-m fading, δ = 1, and any a > 0,
the expected number of nodes that leave the interval [0, a) is

cda
mm−1

Γ(m)
e−m . (6)

The same number of nodes is expected to enter this interval.
For Rayleigh fading (m = 1), the fraction of nodes leaving
the interval is 1/e.

Proof: For Nakagami-m,
∫ 1

0

F (x) = 1 −
∫ 1

0

Γic(m, mx)

Γ(m)
dx =

mm−1

Γ(m)
e−m .

�

Note that the degenerate case of no fading is retrieved as m →
∞.

Due to the ordering of {xi}, the random variables ξi

are not independent. It is often useful to consider a set of
independent random variables, obtained by conditioning the
process on having a certain number of nodes n in an interval
[0, a) (or, equivalently, conditioning on xn+1 = a). With
this conditioning, the n nodes {xi}, i = 1, 2, . . . , n are iid
distributed as follows.

Corollary 5 Conditioned on xn+1 = a:

(a) The nodes {xi}n
i=1 are iid distributed with

fa
xi

(x) =
λ(x)

Λ(x)
= δa−δxδ−1 , 0 6 x < a (7)

and cdf F a
xi

(x) = (x/a)δ.
(b) The path loss with fading {ξi}n

i=1 is distributed as

F a
ξi

(x) = 1 −
∫ a

0

F (y/x)δa−δyδ−1dy . (8)

(c) For the standard network,

F a
ξi

(x) =
x

a

(

1 − e−a/x
)

(9)

(d) For Rayleigh fading, d = 2, and α = 4 (δ = 1/2),

F a
ξ (x) =

√
π

2

√
x

a
erf

(√
a

x

)

. (10)

Proof: As in (4), the cdf is given by 1−E(F (y/x)) with
y distributed as (7). �

III. CONNECTIVITY

Here we investigate the processes Φ̂ and Ξ̂ = Ξ ∩ [0, 1/s)
of connected nodes. Note that µ̂(x) = µ(x)(1 − u(x − 1/s)).
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Fig. 1. Connectivity fading gain for Nakagami-m fading as a function of
δ ∈ [0, 3/2] and m ∈ [1, 5]. For δ = 1, the gain is 1 independent of m
(thick line).

A. Single transmission and fading gain

Proposition 6

(a) λ̂(x) = λ(x)(1 − F (sx)).
(b) With Nakagami-m fading, the number N̂ = Φ̂(R) of

connected nodes is Poisson with mean

EN̂m =
cd

(ms)δ

Γ(δ + m)

Γ(m)
(11)

and the connectivity fading gain, defined as the ratio of
the expected numbers of connected nodes with and without
fading, is

EN̂m

EN̂∞

=
1

mδ

Γ(δ + m)

Γ(m)
= E(f δ) . (12)

Proof:

(a) The effect of fading on the connectivity is independent
thinning by 1 − F (sx) = P[x/f < 1/s].

(b) Using (a), the expected number of connected nodes is
∫ ∞

0

λ̂(x)dx =

∫ ∞

0

cdδx
δ−1 Γic(m, msx)

Γ(m)
dx

which equals EN̂m in the assertion. Without fading,
EN̂∞ = limm→∞ = Λ(1/s) = cds

−δ , which results in
the ratio (12). �

Remarks.

1) Since N̂ is Poisson, the probability of isolation is

P(N̂ = 0) = exp(−EN̂) (13)

2) EN̂ can also be expressed as

EN̂ =

∞∑

i=1

P[ξi < 1/s] . (14)

3) The connectivity fading gain equals the δ-th moment of
the fading distribution, which, by definition, approaches
one as the fading vanishes, i.e., as m → ∞. For a fixed



δ, it is decreasing in m if δ > 1, increasing if δ < 1, and
equal to 1 for all m if δ = 1. It also equals 1 if δ = 0.
For a fixed m, it is not monotonic with δ, but exhibits
a minimum at δ ∈ (0, 1). The fading gain as a function
of δ and m is plotted in Fig. 1. For Rayleigh fading and
δ = 1/2, the factor is π/2, and the minimum is assumed
at δ ≈ 0.462. So, depending on the type of fading and
the ratio of the number of network dimensions to the
path loss exponent α, fading can increase or decrease the
number of connected nodes.

4) For the standard network, EN̂ = π/s and the probability
of isolation is e−π/s.

5) The expected number of connected nodes N̂a with xi < a
is

EN̂a = cda
δF a

ξi
(1/s) . (15)

where F a
ξi

is given in (8).

Corollary 7 Under Nagakami-m fading, a randomly chosen
connected node x̂ ∈ Φ̂ has mean

Ex̂ =
δ(δ + m)

ms(δ + 1)
, (16)

which is 1 + δ/m times the value without fading.

Proof: A random connected node x̂ is distributed accord-
ing to

fx̂(x) =
λ̂(x)

EN̂
. (17)

Without fading, the distribution is sδδxδ−1, 0 6 x 6 1/s,
resulting in an expectation of δ/(s(δ + 1)). �

For Rayleigh fading, for example, the distribution fx̂ is a
gamma distribution with mean δ/s, so the average connected
node is 1 + δ times further away than without fading.

B. Connectivity with retransmissions

Assuming a block fading network and n transmissions of
the same packet, what is the process of nodes that receive the
packet at least once?

Corollary 8 In a network with iid block fading, the density
of the process of nodes λ̂n that receive at least one of n
transmissions is

λ̂n = (1 − F (sx)n)cdδx
δ−1 . (18)

Proof: This is a straightforward generalization of
Prop. 6(a). �

So, in a standard network, the number of connected nodes
with n transmissions EN̂n =

∫∞

0 λ̂n(x)dx grows with log n.

IV. BROADCASTING

A. Broadcast transport sum-distance and capacity

Assuming the origin o transmits, the set of nodes that
receive the message is {x̂i}. We would like to determine the
broadcast transport sum-distance D, i.e., the expected sum
over the all the distances x̂

1/α
i from the origin:

D , E




∑

x̂i∈Φ̂

x̂
1/α
i



 (19)

Proposition 9 The broadcast transport sum-distance for
Nakagami-m fading is

Dm = cd
δ

∆

1

(ms)∆
Γ(m + ∆)

Γ(m)
, (20)

and the (broadcast) fading gain Dm/D∞ is

Dm

D∞
=

1

m∆

Γ(m + ∆)

Γ(m)
= E(f ∆) . (21)

Proof: From Campbell’s theorem [5],

E




∑

x̂i∈Φ̂

x̂
1/α
i



 =

∫ ∞

0

x1/αλ̂(x)dx

= cdδ

∫ ∞

0

x1/α+δ−1(1 − F (sx))dx ,

which equals (20) for Nakagami-m fading.
Without fading, a node xi is connected if xi < 1/s,

therefore

D∞ =

∫ 1/s

0

x1/αλ(x)dx (22)

= cd
δ

∆
s−∆ = cd

d

d + 1
s−∆ . (23)

So the fading gain Dm/D∞ is the ∆-th moment of f as given
in (21). �

Remarks.

1) The fading gain is independent of the threshold s. Dm ∝
s−∆ for all m. It strongly resembles the connectivity
gain (Prop. 6), the only difference being the parameter
∆ instead of δ. See Remark 3 to Prop. 6 and Fig. 1 for a
discussion and visualization of the behavior of the gain
as a function of m and ∆.

2) For Rayleigh fading (m = 1), D1 = cdδs
−∆, and the

fading gain is Γ(1+∆). For the standard network, this is
Γ(5/2) = 3

√
π/4 ≈ 1.33. For d = α = 2, D∞ = 2π

3s3/2 .
3) The formula for the broadcast transport sum-distance

reminds of an interference expression. Indeed, by simply
replacing x1/α by x−1, a well-known result on the mean
interference is reproduced: Assuming each node transmits
at unit power, the total interference at the origin is

E

(
∑

xi∈Φ

x−1
i

)

=

∫ ∞

0

x−1λ(x)dx = cd
δ

δ − 1
xδ−1

∣
∣
∣

∞

0



which for δ < 1 diverges due to the lower bound
integration bound (i.e., the one or two closest nodes) and
for δ > 1 diverges due to the upper bound (i.e., the large
number of nodes that are far away).

So far, we have ignored the actual rate of transmission R
and just used the threshold s for the sum-distance. To get to the
single-hop broadcast transport capacity C (in bit-meters/s/Hz),
we relate the (bandwidth-normalized) rate of transmission R
and the threshold s by R = log2(1 + s) and define

C , max
R>0

RD = max
s>0

log2(1 + s)D(s). (24)

Let D1
m be the broadcast transport sum-distance for s = 1

(see Prop. 9), i.e., Dm = D1
ms−∆.

Proposition 10 For Nakagami-m fading:
(a) For ∆ ∈ (0, 1], the broadcast transport capacity is

achieved for

Ropt =
W
(

− e−1/∆

∆

)

+ ∆−1

log 2
, ∆ ∈ (0, 1] , (25)

where W denotes the principal branch of the Lambert
W function. The resulting broadcast transport capacity is
tightly (within at most 0.13%) lower bounded by

Cm >
D1

m

log 2
(∆−1 − ∆)

(

e∆−1−∆ − 1
)−∆

. (26)

(b) For ∆ = 1/(2 log 2), Cm = D1
m. For all other values of

∆, Cm is larger.
(c) For ∆ > 1, the broadcast transport capacity increases

without bounds as R → 0, independent of the transmit
power.

Proof:
(a) Dm ∝ s−∆, so Cm ∝ R(2R − 1)−∆ which, for

∆ 6 1, has a maximum at Ropt given in (25). The
lower bound stems from an approximation of Ropt using
W(− exp(−1/∆)/∆) ≈ −∆.

(b) ∆ = 1/(2 log2) minimizes Ropt(2
Ropt − 1)−∆ (not the

bound (26)).
(c) For ∆ > 1, R(2R − 1)−∆ is decreasing with R, and

limR→0 R(2R−1)−∆ = limR→0(log 2)−∆R1−∆ = ∞. �

Remark. (c) is also apparent from the expression D(s) log2(1+
s), which, for s → 0, is approximately D1

ms1−∆/ log 2. So,
in this regime, the gain from reaching additional nodes more
than offsets the loss in rate.

B. The benefit of retransmissions

Let p(x) , 1− F (sx). The density of nodes that receive k
packets out of n transmissions is given by

λn
k (x) = λ(x)

((
n

k

)

p(x)k(1 − p(x))n−k

)

. (27)

Note that summing λn
k from 1 to n reproduces Cor. 8. The

densities of the nodes receiving exactly m of n messages is
plotted in Fig. 2 for the standard network with n = 10.
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Fig. 2. Normalized node densities λ10

k (x1/α) in a standard network that
receive k = 0, 1, . . . 10 out of 10 transmissions. The dashed line indicates
the density of the nodes that receive at least one transmission.

This expression permits the evaluation of the contribution
that each additional transmission makes to the broadcast
transport sum-distance and capacity.

V. CONCLUDING REMARKS

We have studied some geometric properties of d-
dimensional Poisson networks with fading. For connectivity
and broadcast transport capacity, it is sufficient to consider
one-dimensional distance processes with and without fading.

For Nakagami-m fading, it turns out that the connectivity
fading gain is the δ-th moment of the fading distribution, while
the fading gain in the broadcast transport sum-distance is its
∆-th moment. A path loss exponent larger than the number
of dimensions d (d + 1 for broadcasting) leads to a negative
impact of fading.

Interestingly, the broadcast transport capacity turns out to
be unbounded if ∆ > 1, i.e., if the path loss exponent is
smaller than d+1. While this result may be of interest for the
design of efficient broadcasting protocols, it also raises doubts
on the validity of transport capacity as a performance metric.
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