
A Geometry-Inclusive Fading Model
for Random Wireless Networks

Martin Haenggi
Network Communications and Information Processing Laboratory

Department of Electrical Engineering
University of Notre Dame

Notre Dame, IN 46556, USA
E-mail: mhaenggi@nd.edu

Abstract— A new fading model is proposed and discussed that
combines the uncertainties in the transmission distance as well
as small-scale fading. If nodes are assumed to be distributed
according to a Poisson point process and the fading is Rayleigh,
the joint fading distribution is particularly simple. Interpreting
fading as a stochastic mapping, we show that a node cannot
infer on the presence of fading by measuring link qualities.
Other applications of the fading model include connectivity,
opportunistic communication, and probabilistic progress.

I. INTRODUCTION

In wireless networks, distances have a strong impact on the
signal strengths and the signal-to-noise-and-interference ratios
(SINRs), and, consequently, on the quality of the links. In
addition, given a transmitter-receiver distance d, the path loss
may deviate significantly from the expected value obtained
from a large-scale path loss model, usually of the form dα, a
phenomenon referred to as fading. While it is widely acknowl-
edged that small-scale fading should be modeled stochastically
(at least until a proper training sequence is received in the slow
fading case), the distance d is usually assumed to be known.
However, in an ad hoc network, only statistical information
on the nodes’ positions may be available. Consequently, the
geometry of the network, in particular the internode distances,
should also be modeled stochastically.

We propose and investigate such a geometry-inclusive fad-
ing model for networks whose nodes are distributed according
to a Poisson point process (PPP) and whose small-scale
fading is Rayleigh. This assumption has two advantages; it
is analytically tractable on the one hand, and it constitutes
a worst or extreme case on the other hand, in the sense that
most fading models are more benign than Rayleigh fading, and
all (homogeneous) point processes have a smaller entropy than
the PPP. For the large-scale path loss, we employ the common
power law mentioned above, well aware of its shortcoming at
small distances [1].

To complete the link model, we assume a transmission
is successful if the signal-to-noise ratio exceeds a certain
threshold, or, equivalently, the path gain between a transmitter
and a receiver exceeds a certain value s. Then, assuming the
path gain is given by Q and the link distance by D, the
probability of successful reception is

pr(s) = P[Q(D) > s] = E[e−Dαs] . (1)

Notation. We use capital symbols (e.g., Q, L, D) or
sans-serif lower-case symbols (e.g., x , n) to denote random
variables. As for the distributions E(a) and Po(b) refer to
the exponential distribution with parameter a (mean 1/a)
and the Poisson distribution with mean b, respectively, and
U [0, a] refers to the uniform distribution in the interval [0, a].
For probability distributions and densities, we use F and f ,
respectively.

Node Distribution: The Poisson point process. A well ac-
cepted model for the node distribution1 is the homogeneous
Poisson point process of intensity λ. For the simplicity of our
exposition, we will focus on infinite networks, and without loss
of generality, we can assume λ = 1 (scale-invariance). From
the Poisson property, the following result can immediately
be derived [2]: For an m-dimensional network, the distance
Dn between a node and its n-th neighbor has the generalized
gamma probability density function (pdf)

fDn
(r) = e−cmrm m (cmrm)n

r(n − 1)!
, (2)

where cm := πm/2/Γ(1+m/2) such that cmrm is the volume
of the m-dimensional ball of radius r. In particular, in two
dimensions, the distance to the nearest neighbor is Rayleigh
distributed with mean 1/2, and the squared ordered distances
D2

n are Erlang with parameter 1/π, i.e., E[D2
n] = n/π.

Fig. 1 shows a PPP of intensity 1 in a 16 × 16 square,
with the nodes marked that can be reached from the center,
assuming a path gain threshold of s = 0.1. The disk shows
the maximum transmission distance in the non-fading case.

II. A FADING MODEL FOR n-TH NEAREST-NEIGHBOR

COMMUNICATION

A. Distribution of path gain

Theorem 1 Consider a node in a Rayleigh fading network
whose nodes are distributed according to a Poisson point
process in R

2 with intensity 1. Let Qn denote the (power)
path gain between the node and its n-th nearest neighbor for
a path loss exponent of 2. The cdf of Qn is

FQn
(x) = 1− πn

(π + x)n
. (3)

1In particular, if nodes move around randomly and independently, or if
sensor nodes are deployed from an airplane in large quantities.
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Fig. 1. A Poisson point process of intensity 1 in a 16 × 16 square. The
reachable nodes by the center node are indicated by a bold × for a path gain
threshold of s = 0.1. The disk indicates the transmission in the non-fading
case, i.e., its radius is 1/

√
s ≈ 3.16.

Proof: Given the distance dn, the received power Qn is
exponentially distributed with mean D−2

n due to the Rayleigh
fading assumption, and D2

n is Erlang as mentioned previously.
Let A := D2

n. We obtain for the cdf P[Qn < x]

FQn
(x) = EA[1− e−Ax]

=

∫

∞

0

(1− e−ax)

(

πnan−1

Γ(n)
e−πa

)

da

= 1− πn

(π + x)n
.

�

Note that Qn = Qf
n/Qd

n, where Qf
n (the fading part) is iid

exponential with mean 1 and Qd
n := D2

n (the distance part) is
Erlang. In particular, for n = 1, (3) is the cdf of the ratio of
two exponential random variables whose means have a ratio π.
Also, 1−FQn

(s) is the moment-generating function of −D2
n

(see (1)). The pdf of Qn is

fQn
(x) =

nπn

(π + x)n+1
, (4)

and the first and second moments of Qn are

EQn =
π

n− 1
for n > 1 (5)

EQ2
n =

2π2

(n− 1)(n− 2)
for n > 2 . (6)

Generally, given n, the highest existing (finite) moment
is EQn−1

n = πn−1. The variance is decreasing quickly:
Var(Qn) = O(1/n2).

Entropy. The differential entropy h(Qn) :=
E[− ln fQn

(Qn)] is

h(Qn) =
n + 1

n
+ ln

(π

n

)

, (7)

which is (as expected due to the decreasing variance) mono-
tonically decreasing with increasing n.

B. Distribution of path loss

Instead of considering the path gain, we may be interested
in the path loss. Let Ln = Qd

n/Qf
n = Q−1

n be the path loss to
the n-th nearest neighbor. For the cdf we obtain

FLn
(x) =

(πx)n

(πx + 1)n
, (8)

and the pdf is

fLn
=

n

x

(πx)n

(πx + 1)n+1
. (9)

So ELn does not exist for any n. In particular, for n = 1,
both the mean path gain and the mean path loss are infinite.
The differential entropy is

h(Ln) = ln π − γ −Ψn , (10)

where γ is the Euler-Mascheroni constant and Ψ is the
digamma function (i.e., the logarithmic derivative of the
gamma function). Since Ψn ≈ ln n for n � 1, this is
essentially the same as (7).

C. Dependence

The RVs Qn (or Ln) are not independent. Consider the joint
pdf of the Qd part. Let xi = D2

i , i.e., consider the squared
ordered distances. Since xi forms a one-dimensional PPP of
intensity π, the differences xi+1−xi are E(π), thus the squared
ordered distances of the first n nodes have the joint pdf

fx1...xn
(x1, . . . , xn) = πne−πxn10<x1<...<xn

, (11)

where 10<x1<...<xn
denotes the (positive) order cone (or

hyperoctant) in n dimensions. For n = 2, the joint cdf is

Fx1x2(x1, x2) = 1− e−π min(x1,x2) − π min(x1, x2)e
−πx2 .

For x1 > x2, this reduces to the cdf of the Erlang distribution,
since x1 is smaller than x2. Clearly, dividing the xi by fi iid
E(1) does not make them independent.

So, the ordering creates dependence. To obtain a set of
independent RVs, we may condition the PPP on having a
certain number of nodes n = n within a given interval [0, a].
Equivalently, we may fix the position of the n+1-th node, i.e.,
set xn+1 = a. Then, the n nodes inside [0, a] are iid U [0, a].
With x ∼ U [0, a] and f ∼ E(1), the cdf of x/f is

Fx/f (x) =
x

a

(

1− e−a/x
)

. (12)

Again, due to the division by an exponential, this RV does not
have any finite moments. To obtain results for the actual PPP,
the expectation over n ∼ Po(aπ) is to be taken.

III. CONNECTIVITY

Assume that a path gain of at least s is needed for two
nodes to be connected, i.e., to be able to communicate (at a
given rate with a certain desired reliability). Here we focus
on the node at the origin and denote by nc the number of
nodes that are connected to the origin. Let Ck be the event
that the origin is connected to its k-th nearest neighbor, i.e.,



P[Ck] = P[Qk > s] = πk/(π + s)k. Since this is a geometric
series,

Enc =

∞
∑

k=1

P[Ck] =
π

s
. (13)

Note that this is valid despite the dependence of the events
Ck, and that this expected node degree is exactly the same as
in the disk graph model. More can be said:

Lemma 1 Let {xc
i } ⊂ {xi} be the set of connected nodes,

with xi := D2
i the squared ordered distances. Then {x c

i } is an
inhomogeneous PPP with intensity λ(x) = πe−xs (x > 0),
and the probability of the origin being isolated is e−π/s.

Proof: Let f ∼ E(1). The probability that a point at
position x has a path loss smaller than 1/s is

P[x/f < 1/s] = P[f > sx] = e−xs . (14)

So the set of connected nodes is obtained by thinning the
original homogeneous PPP by e−xs. It follows that the number
nc of connected nodes is Poisson distributed with parameter

Enc = π

∫

∞

0

e−xsdx = π/s , (15)

and thus P[nc = 0] = e−π/s. �

The fact that Rayleigh fading does not change the connec-
tivity of a single node in a network with α = 2 was also
derived in [3]. They also showed that for α > 2, Rayleigh
fading is harmful, although not significantly.

We may also use (12) to derive this result: Given n = n
nodes in the interval [0, a], they are iid U [0, a], and each one
is disconnected with probability

1− Fx/f (1/s) = 1− 1

as
(1− e−as) . (16)

independently of the other n − 1. So the (unconditioned)
probability that all nodes in the interval [0, a] are disconnected
is

P[nc
a = 0] = En

[ (

1− 1− e−as

as

)n ]

(17)

= e−
π

s
(1−e−sa) . (18)

As expected, lima→∞ P[nc
a = 0] = e−π/s. Further, setting

a = 1/s yields e−π/s(1−1/e), which is the probability that
all nodes that are connected under the disk model become
disconnected under the fading model.

IV. FADING AS A STOCHASTIC MAPPING

In this section, we interpret the Rayleigh fading process as
a stochastic mapping of the points xi := D2

i to ξi := xi/fi,
where fi ∼ E(1).2 So, {xi} are the points in the geographical
domain (they indicate distance), whereas {ξi} are the points
in the path loss domain, since ξi is the actual path loss
including fading. This mapping is visualized in Fig. 2. In the
path loss domain, the connected nodes are simply given by

2Hence the ξi correspond to the Li in Section II.

1/s

x

ξ

Fig. 2. The points of a Poisson point process xi are mapped and reordered
according to ξi := xi/fi, where fi is iid E(1). In the lower axis, the nodes
to the left of the threshold 1/s are connected to the origin (path loss smaller
than 1/s).
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Fig. 3. Illustration of the Rayleigh mapping. 200 points xi are chosen
uniformly randomly in [0, 5]. Plotted are the points (xi, xi/fi), where the
fi are drawn iid E(1). Consider the interval [0, 1] (i.e., assume a threshold
s = 1). Points marked by × are points that remain inside [0, 1], those marked
by o remain outside, the ones marked with left- and right-pointing triangles
are the ones that moved in and out, respectively. The node marked with a
double triangle is the furthest reachable node. On average the same number
of nodes move in and out. Note that not all points are shown, since a fraction
e−1 is mapped outside of [0, 5].

{ξc
i } = {ξi} ∩ [0, 1/s]. Note that while we assumed xi to be

ordered, this no longer holds for ξi, since fading is quite likely
to reorder the nodes.

A. Path loss distribution of connected nodes

How are the connected nodes {ξc
i } distributed in the path

loss domain? We have established that nc = |{ξc
i }| ∼

Po(π/s). Since this is true for arbitrary s, we may conjecture
that the connected nodes are homogeneous in the path loss
domain. This is indeed the case:

Theorem 2 The connected nodes {ξc
i } in the path loss domain

form a homogeneous PPP of intensity π on [0, 1/s].

Proof: We need to show homogeneity of ξc
i inside

[0, 1/s]. To that end we determine the conditional distribution



P[ξ < x | ξ < 1/s] for a node ξ := x/f with x ∼ U [0, a].
Applying (12),

P[ξ < x | ξ < 1/s] = sx
1− e−a/x

1− e−as
, 0 6 x 6 1/s . (19)

As a → ∞, this is sx, so indeed the distribution is uniform.
�

Remark. The Mapping Theorem [4, Sect. 2.3] states that an
inhomogeneous PPP in one dimension can be transformed to a
homogeneous PPP by means of a continuous monotonic trans-
formation. If the inhomogeneous PPP has an exponentially
decreasing density, then the total number of nodes is finite, and
the support of the “homogenized” process is necessarily finite.
In our case, where the support is [0, 1/s], the transformation
is 1

se−sx.
An immediate consequence is the following:

Corollary 1 The path loss to the connected nodes is uniform
in [0, 1/s], irrespective of whether there is Rayleigh fading or
not. Thus the node at the origin cannot decide whether the
network is subject to Rayleigh fading or not.

B. Impact of fading

First we address the question about the probability that a
node from inside [0, 1/s] (geographical domain) is mapped
to the outside (path loss domain), and vice versa, i.e., the
probability that a node is (dis)connected only due to fading.
A node at position x will be mapped outside the interval with
probability 1 − e−xs. Conditioned on having n nodes inside,
these n nodes are uniformly randomly placed. The probability
that one of these nodes ends up outside [0, 1/s] is

Ex [1− e−xs] = e−1 . (20)

So, out of n nodes, ne−1 will become disconnected due
to fading. Unconditioning on n, we see that the number of
nodes moving out (i.e., becoming disconnected by fading), is
Po(π/(se)).

On the other hand, we expect the same number of nodes
moving into the interval [0, 1/s] from outside, i.e., getting
connected by fading. The probability of a node at x to end
up inside is e−xs. Consider the interval [1/s, (1 + a)/s], and
assume the number of nodes in this interval be fixed to n.
These n nodes are again uniformly randomly distributed, and
the probability of a node moving inside [0, 1/s] is

Ex [e
−xs] =

∫ (1+a)/s

1/s

s

a
e−xsdx (21)

=
1

ae
(1− e−a). (22)

En = πa/s, so that on average π(1− e−a)/(se) nodes move
in. As a → ∞, this is exactly compensating for the nodes
moving out. Note that this holds for any threshold 1/s.

Fig. 3 illustrates the situation for 200 nodes randomly cho-
sen from [0, 5] with a threshold s = 1. Before fading, we
expect 40 inside. From these, a fraction e−1 is moving out

(right triangles), the rest stays in (marked by ×). From the
ones outside, a fraction (1 − e−4)(ae) ≈ 9% moves in (left
triangles), the rest stays out (circles).

What is the probability that all nodes within [0, 1/s] move
out? Given n nodes, that probability is e−n. So

P[ξi > 1/s ∀i ∈ {i | xi < 1/s}] = En[e
−n] = e−π/s(1−1/e) .

(23)
What is the probability that no node outside [0, 1/s] moves
in? Consider an interval [1/s, (1 + a)/s]. Given n nodes,
the probability of none moving inside [0, 1/s] is (1 − (1 −
e−a)/(ae))n. Since n is Poisson with parameter πa/s, we
have

P[{i | ξi < 1/s} ∩ {i | 1/s < xi 6 (1 + a)/s} = ∅] (24)

= En

[ (

1− 1− e−a

ae

)n ]

= e−
π

se
(1−e−a) .

(25)

So, as a →∞, this probability is e−π/(se). The probability of
both events, all nodes inside the interval moving out and no
node outside moving in, is the product, which equals e−π/s,
as expected.

C. Reordering

What is the probability that node n + m has a smaller path
loss than node n?

P[xn/fn > xn+m/fn+m] = P

[

xn

xn + ym
>

fn

fn+m

]

(26)

xn is Erlang with parameters n and π, ym is the distance from
xn to xn+m and thus Erlang with parameters m and π, and
the cdf of z := fn/fn+m is Fz(x) = x/(x + 1). Hence

Pn,m =En,m

[

xn

2xn + ym

]

=

∫

∞

0

∫

∞

0

x

2x + y

πn+mxn−1ym−1

Γ(n)Γ(m)
e−π(x+y)dxdy .

Closed-form expressions include P1,1 = 1− ln 2 ≈ 0.307, and
P1,2 = 3− 4 ln 2 ≈ 0.227. Generally Pk,k can be determined
analytically. For k = 1, 2, 3, 4, we obtain 1 − ln 2, 12 ln 2 −
8, 167/2 − 120 ln 2, 1120 ln2 − 776. For k = 10, this is
0.3298. Further, limk→∞ Pk,k = 1/3, which is the probability
that an RV ∼ E(1) is larger than a RV ∼ E(2).

In the limit, as n →∞, we have Pn,m = 1/(m+1), which
is the probability that a node has the largest fading coefficient
among m + 1 nodes that are at the same distance. Indeed, as
n →∞, xn+m < xn(1 + ε) a.s. for any ε > 0 and finite m.

V. MAXIMUM TRANSMISSION DISTANCE AND

PROBABILISTIC PROGRESS

In this section we explore the benefits of fading in terms of
transmission distance and address the question which node to
transmit to.
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Fig. 4. Expected maximum transmission distances for s ∈ [0.05, 1.00].

A. Maximum transmission distance

The probability that a node outside [0, 1/s] can be reached is
1−e−π/(se). But how far is the furthest node that is connected,
on average?

The maximum of x̂ of n exponential RVs with n ∼ Po(π/s)
is given by the Gumbel distribution Fx̂ (x) = exp(−π

s e−sx).
This is not 0 at x = 0, however, since there is no guarantee that
there is at least one connected node. Conditioning on n > 0,
we obtain

Fx̂ (x) =
exp(π

s (1− e−sx))− 1

exp(π
s )− 1

, (27)

which is a proper distribution on [0,∞). Since the expectation
can only be evaluated numerically, we resort to finding a
tractable approximation.

From Lemma 1 follows that the squared distance of an arbi-
trarily chosen connected node is E(1/s). Let x̂ = maxi{xc

i }.
Then the cdf of x̂ is P[x̂ < x] = (1 − e−xs)n, and the mean
(given n) is

Ex̂ |n =
1

s

(

Ψ(n + 1) + γ
)

'
1

s

(

ln n + γ
)

. (28)

We replace n by its expectation π/s (invoking Jensen’s in-
equality) to obtain the approximation

Ex̂ ≈ 1

s

(

ln
(π

s

)

+ γ
)

. (29)

The expected maximum distance of transmission is approxi-
mately the square root of this quantity. It turns out that this
approximation is actually a tight upper bound, see Fig. 4. Also
compare with Fig. 1, where the most distant node is quite
exactly 6 units away (s = 0.1).

B. Probabilistic progress

Define the probabilistic progress as the product of expected
link distance and success probability. The expected link dis-
tance when transmitting to node n is

√
n/2.

Pn =

√
n

2

(

π

π + s

)n

(30)

What is the optimum n? If n were real, this would be max-
imized for 2 log(1 + s/π))−1. Rounding and lower bounding
by 1 yields the estimate

n̂opt = max
{

1, d(2 log(1 + s/π))−1c
}

. (31)

For small s and large s, we have

nopt = d π

2s
e . (32)

In particular, for s > π(
√

2 − 1), the nearest neighbor has
the largest probabilistic progress. For s = π(

√
2 − 1), P1 =

P2 = 1/
√

2. For smaller s, the optimum n is larger than 1. In
general, Pn = Pn+1 for s = π(

√

1 + 1/n− 1). So

nopt = n ⇐⇒ n + 1

n
<

( s

π
+ 1

)2

<
n

n− 1
. (33)

Finally,
nopt = d

(

(s/π + 1)2 − 1
)

−1e . (34)

VI. CONCLUDING REMARKS

We have proposed a novel fading model that incorporates
the two main types of uncertainty in the channels of wireless
ad hoc networks, namely the fading state and the link distance.
The model is characterized by the distribution of the path
gain. We discussed several applications that demonstrate the
analytical tractability of the model, at least for a path loss
exponent of 2. For other path loss exponents, the cdf can be
written in pseudo-closed-form, as it includes hypergeometric
functions.

The effect of fading is thinning in the geographical domain.
In the path loss domain, the distribution of connected nodes
is uniform. Interpreting fading as a stochastic mapping yields
additional insights on its effect.

We expect the proposed model to provide better insight into
the behavior of large ad hoc networks and to provide a tool
to derive new analytical results, e.g., in throughput and outage
analyses, connectivity, the design of flooding algorithms, and
RSSI-based localization.
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