
Efficient Routing in Wireless Networks with Random Node Distribution

Martin Haenggi1

Department of Electrical Engineering
University of Notre Dame, Notre Dame, IN 46556, USA

E-mail: mhaenggi@nd.edu

Abstract — After deriving the distribution of the

distance to the n-th nearest neighbor in uniformly

random networks of any dimension we establish that

nearest-neighbor routing schemes perform poorly in

random networks. We suggest and analyze an im-

proved scheme that approaches the performance of

regular networks.

I. Distances in Random Networks

For large m-dimensional networks with uniformly random
node distribution of density λ, the probability of finding k
nodes in a subset of measure A is given by the Poisson distri-

bution e−λA (λA)k

k!
.

Theorem 1 The distance Rn between a node and its n-th

neighbor has the pdf 2

fRn (r) = e−λcmrm m (λcmrm)n

r(n − 1)!
, r > 0 , (1)

where cmrm is the volume of the m-sphere of radius r.

Proof: Let cmrm =: Am(r). The complementary cdf of Rn is
the probability Pn that there are less than n nodes closer than
r. We have Pn := e−λAm(r) ∑n−1

k=0 (λAm(r))k/k!, from which
(1) follows. �

To ensure routing progress, we have to restrict the angle φ
between the direction of a link and the source-destination axis,
which entails a change of the volume from an m-sphere to an
m-sector with volume cφ,mrm in (1). The energy consumption

is (proportional to) E[Rα
n ] = (λcφ,m)−α/m Γ(n+α/m)

Γ(n)
, where

α is the path loss exponent. The main problem of nearest-
neighbor (or n-th neighbor) routing is the large variance in
the expected energy consumption. Furthest-neighbor routing
(within a maximum distance) is preferred.

Theorem 2 Let Rd denote the distance to the furthest node

within the sector φ such that Rd 6 d, conditioned on having

at least one node within distance d. The pdf of Rd is

fRd
(r) =

λcφ,mmrm−1eλcφ,mrm

eλcφ,mdm
− 1

, r ∈ [0, d] . (2)

Proof: The complementary cdf P[Rd > r] is given by the
probability that there is at least one node in the volume
cφ,m(dm

−rm) divided by the probability that there is at least
a node in cφ,mdm. �

The fact that the pdf increases with erm

suggests that the
expected value is close to d and that the variance is small.
So, in this furthest-neighbor routing scheme, all nodes in a
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2This distribution generalizes the Erlang (m = 1), Weibull (n =
1), exponential (m = n = 1), the Rayleigh (n = m/2 = 1), and the
Γ (non-integer n) distribution.

route transmit over approximately a distance d. So, furthest-
neighbor routing results in balanced energy consumption and
reduced delay. For m = 2 and φ = π/4, the expected maxi-
mum of k RVs R1 (k nearest-neighbor hops) is lowerbounded
by

√

ln(k) + 1. For k = 20, this is 2, while E[R1] = 1. Thus
choosing d = 2 cuts the delay in half at no cost in lifetime.

II. Routing over Rayleigh Fading Channels

We assume a narrowband Rayleigh block fading channel. As-
suming a transmission is successful if the SINR exceeds some
threshold Θ, the mean packet reception probability pr can
be factorized into a zero-noise part pI

r and a zero-interference
part pN

r , i.e., pr = pI
rp

N
r [1, Theorem 1]. Since we are con-

cerned with energy consumption, we focus on the noise part
pN

r = exp(−ΘNdα/P0), where P0 is the transmit power and
d is the distance.

Assume an n-hop route from node 0 to node n, and let
pD denote the desired (end-to-end) reliability. The recep-
tion probability of a chain of n nodes is pn =

∏n
i=1 e−Θ/γ̄i =

e
−Θ

∑n
i=1

1

γ̄i , where γ̄i denotes the mean SNR at link i.
Denote the ratio of the expected per-hop distances for

nearest- and furthest-neighbor routing by ρ, i.e., ρ = d/E[Rn].
Given an end-to-end reliability pD, the per-hop reception
probability is pNEAR

r = p
1/k
D , whereas pFAR

r = p
ρ/k
D . Since the

energy consumption is proportional to −1/ ln pr, this reduces
the energy consumption for furthest-neighbor routing by a
factor ρ.

III. Delay Considerations

Routing schemes with less hops can exploit time diversity in
the form of retransmissions. Consider an n-hop strategy and
a single-hop strategy, both covering a distance d. The single-
hop scheme can transmit n times. The required single-use

reception probability pD,1 is pD,1 = 1− (1−pD)
1

n . Compared
with the single-transmission case, this leads to an energy gain

of G =
log pD,1

n log pD
, which increases with increasing pD (diversity

benefit) and, as a function of n, has a maximum for small
n. If CSI is available, a single transmission can be scheduled
optimistically, and the gain increases by a factor of n.

IV. Concluding Remarks

Due to the variance in the node distances and the large num-
ber of hops, nearest-neighbor routing may be very inefficient
in both energy (lifetime) and delay. A furthest-neighbor rout-
ing approach performs much better, in particular in fading
environments, where the increased transmission speed (fewer
hops) can be used for time diversity, e.g., for retransmission
in block fading channels.
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