Efficient Routing in Wireless Networks with Random Node Distribution

Martin Haenggi¹

Department of Electrical Engineering University of Notre Dame, Notre Dame, IN 46556, USA E-mail: mhaenggi@nd.edu

Abstract — After deriving the distribution of the distance to the *n*-th nearest neighbor in uniformly random networks of any dimension we establish that nearest-neighbor routing schemes perform poorly in random networks. We suggest and analyze an improved scheme that approaches the performance of regular networks.

I. DISTANCES IN RANDOM NETWORKS

For large *m*-dimensional networks with uniformly random node distribution of density λ , the probability of finding *k* nodes in a subset of measure *A* is given by the Poisson distribution $e^{-\lambda A} \frac{(\lambda A)^k}{k!}$.

Theorem 1 The distance R_n between a node and its n-th neighbor has the pdf²

$$f_{R_n}(r) = e^{-\lambda c_m r^m} \frac{m \left(\lambda c_m r^m\right)^n}{r(n-1)!}, \quad r \ge 0,$$
(1)

where $c_m r^m$ is the volume of the m-sphere of radius r.

Proof: Let $c_m r^m =: A_m(r)$. The complementary cdf of R_n is the probability P_n that there are less than n nodes closer than r. We have $P_n := e^{-\lambda A_m(r)} \sum_{k=0}^{n-1} (\lambda A_m(r))^k / k!$, from which (1) follows.

To ensure routing progress, we have to restrict the angle ϕ between the direction of a link and the source-destination axis, which entails a change of the volume from an *m*-sphere to an *m*-sector with volume $c_{\phi,m}r^m$ in (1). The energy consumption is (proportional to) $\mathbb{E}[R_n^{\alpha}] = (\lambda c_{\phi,m})^{-\alpha/m} \frac{\Gamma(n+\alpha/m)}{\Gamma(n)}$, where α is the path loss exponent. The main problem of nearest-neighbor (or *n*-th neighbor) routing is the large variance in the expected energy consumption. Furthest-neighbor routing (within a maximum distance) is preferred.

Theorem 2 Let R_d denote the distance to the furthest node within the sector ϕ such that $R_d \leq d$, conditioned on having at least one node within distance d. The pdf of R_d is

$$f_{R_d}(r) = \frac{\lambda c_{\phi,m} m r^{m-1} e^{\lambda c_{\phi,m} r^m}}{e^{\lambda c_{\phi,m} d^m} - 1}, \quad r \in [0, d].$$
(2)

Proof: The complementary $\operatorname{cdf} \mathbb{P}[R_d > r]$ is given by the probability that there is at least one node in the volume $c_{\phi,m}(d^m - r^m)$ divided by the probability that there is at least a node in $c_{\phi,m}d^m$.

The fact that the pdf increases with e^{r^m} suggests that the expected value is close to d and that the variance is small. So, in this furthest-neighbor routing scheme, all nodes in a

route transmit over approximately a distance d. So, furthestneighbor routing results in balanced energy consumption and reduced delay. For m = 2 and $\phi = \pi/4$, the expected maximum of k RVs R_1 (k nearest-neighbor hops) is lowerbounded by $\sqrt{\ln(k) + 1}$. For k = 20, this is 2, while $\mathbb{E}[R_1] = 1$. Thus choosing d = 2 cuts the delay in half at no cost in lifetime.

II. ROUTING OVER RAYLEIGH FADING CHANNELS

We assume a narrowband Rayleigh block fading channel. Assuming a transmission is successful if the SINR exceeds some threshold Θ , the mean packet reception probability p_r can be factorized into a zero-noise part p_r^I and a zero-interference part p_r^N , *i.e.*, $p_r = p_r^I p_r^N$ [1, Theorem 1]. Since we are concerned with energy consumption, we focus on the noise part $p_r^N = \exp(-\Theta N d^{\alpha}/P_0)$, where P_0 is the transmit power and d is the distance.

Assume an *n*-hop route from node 0 to node *n*, and let p_D denote the desired (end-to-end) reliability. The reception probability of a chain of *n* nodes is $p_n = \prod_{i=1}^n e^{-\Theta/\tilde{\gamma}_i} = e^{-\Theta\sum_{i=1}^n \frac{1}{\tilde{\gamma}_i}}$, where $\bar{\gamma}_i$ denotes the mean SNR at link *i*.

Denote the ratio of the expected per-hop distances for nearest- and furthest-neighbor routing by ρ , *i.e.*, $\rho = d/\mathbb{E}[R_n]$. Given an end-to-end reliability p_D , the per-hop reception probability is $p_r^{\mathsf{NEAR}} = p_D^{1/k}$, whereas $p_r^{\mathsf{FAR}} = p_D^{\rho/k}$. Since the energy consumption is proportional to $-1/\ln p_r$, this reduces the energy consumption for furthest-neighbor routing by a factor ρ .

III. DELAY CONSIDERATIONS

Routing schemes with less hops can exploit time diversity in the form of retransmissions. Consider an *n*-hop strategy and a single-hop strategy, both covering a distance *d*. The singlehop scheme can transmit *n* times. The required single-use reception probability $p_{D,1}$ is $p_{D,1} = 1 - (1 - p_D)^{\frac{1}{n}}$. Compared with the single-transmission case, this leads to an energy gain of $G = \frac{\log p_{D,1}}{n \log p_D}$, which increases with increasing p_D (diversity benefit) and, as a function of *n*, has a maximum for small *n*. If CSI is available, a single transmission can be scheduled optimistically, and the gain increases by a factor of *n*.

IV. CONCLUDING REMARKS

Due to the variance in the node distances and the large number of hops, nearest-neighbor routing may be very inefficient in both energy (lifetime) and delay. A furthest-neighbor routing approach performs much better, in particular in fading environments, where the increased transmission speed (fewer hops) can be used for time diversity, *e.g.*, for retransmission in block fading channels.

References

 M. Haenggi, "On Routing in Random Rayleigh Fading Networks," *IEEE Transactions on Wireless Communications*, 2003. Submitted for publication. Available at http://www.nd. edu/~mhaenggi/routing.pdf.

¹The support of the DARPA/IXO-NEST Program (AF-F30602-01-2-0526) and NSF (ECS03-29766) is gratefully acknowledged.

²This distribution generalizes the Erlang (m = 1), Weibull (n = 1), exponential (m = n = 1), the Rayleigh (n = m/2 = 1), and the Γ (non-integer n) distribution.