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Abstract: We study the convergence of the average consensus algorithm in
wireless networks in the presence of interference. For regular lattices with
periodic boundary conditions, we characterise the convergence properties
of an optimal Time Division Multiple Access (TDMA) protocol that
maximises the speed of convergence on these networks. We provide
analytical upper and lower bounds for the convergence rate for these
networks. Our results show that in an interference-limited scenario, the
fastest converging interconnection topology for the consensus algorithm
crucially depends on the geometry of node placement. In particular,
we prove that asymptotically in the number of nodes, increasing
the transmit power to allow long-range interconnections improves the
convergence rate in one-dimensional tori, while it has the opposite effect
in higher dimensions.
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1 Introduction

Consensus in general, and average consensus in particular, has become an area of
increasing research focus in recent years (e.g., see Blondel et al., 2005; Fang and
Antsaklis, 2005; Jadbabaie et al., 2003; Olfati-Saber and Murray, 2004 and the
references therein). Many applications, including distributed estimation (Boyd et al.,
2006; Xiao and Boyd, 2003; Xiao et al., 2005), motion coordination (Ren et al.,
2004) and load balancing of multiple processes (Cybenko, 1989), have been analysed
in this framework.

Given n nodes each with a scalar value and a possibly time-varying
interconnection graph defined on these nodes, consensus algorithms specify updating
rules that every node should follow. The updated value of each node depends
on the value held by itself and its neighbours at the previous time step. Initial
results focused on the connectivity constraints of interconnected graphs that
ensure consensus. Lately, attention has shifted to analysing the convergence with
constraints imposed by communication channels between the nodes. Thus, effects
such as quantisation (Nedich et al., 2007), packet erasures (Boyd et al., 2006;
Hovareshti et al., 2008), additive channel noise (Huang and Manton, 2007a, 2007b),
and delays (Nedich and Ozdaglar, 2007) have begun to gain attention.

Such works typically assume that the communication channels between each
pair of nodes are uncoupled. However, nodes using consensus algorithms typically
communicate over wireless channels that are inherently broadcast. Moreover, in
wireless networks, any two nodes can communicate by spending enough energy or
by lowering transmission rate. The communication topology in wireless networks
thus depends on the network protocols and is, in fact, a design parameter. Higher
transmission power results in a smaller graph diameter, but also to reduced network
throughput due to interference. The effect of long-range interconnections on the
rate of convergence of the consensus algorithm is thus not clear. We take the first
steps towards analysing the effect of such communication constraints on consensus
algorithms and designing the communication parameters for the consensus problem.
In particular, we consider the rate of convergence of the average consensus
algorithm while explicitly accounting for interference. We analyse the performance
of scheduling algorithms that are optimal with respect to the rate of convergence.
We also provide an analytical understanding of the impact of transmission power
on the rate of convergence.



258 S. Vanka et al.

The paper is organised as follows. We begin by formulating the problem and
introducing our notation. We concentrate on networks of nodes that are physically
placed on a grid with periodic boundary conditions (Section 3). Some avenues for
future work are presented in Section 4.

2 Problem formulation

2.1 Average consensus algorithm

In this paper, we concentrate exclusively on the average consensus algorithm, where
n nodes aim to reach consensus with the final value being the average of their initial
scalar values. Denote the value held by the ith node at time k as xi(k), and by
x(k) the n-dimensional vector obtained by stacking the values of all the nodes in a
column vector.

The interconnection topology among the nodes at time k can be described by
a consensus graph G(k), with an edge present between two nodes iff they can
exchange information. Suppose Ni(k) is the neighbour set of node i at time k, and
all nodes are allowed to simultaneously broadcast their states to their neighbours.
Every exchange happens in a single packet transmission interval (also referred to as
a time slot and normalised to length 1). Therefore,

xi(k + 1) = xi(k) − h
∑

j∈Ni(k)

(xi(k) − xj(k)), (1)

where h is a scalar constant designed to ensure convergence of the algorithm. In this
case, we consider the iteration time to be 1. Denoting the Laplacian of G(k) by L(k),
equation (1) can be rewritten as

x(k + 1) = (I − hL(k))x(k), x(0) = x0. (2)

It can be shown (see, e.g., Olfati-Saber and Murray, 2004) that under proper
connectivity assumptions, provided h is small enough, average consensus is achieved.

We assume that h is fixed and h < 1
2dmax

where dmax is the maximum node
degree in G(k) for all k. To reach average consensus, the consensus graph should be
balanced. We constrain the graph to be undirected, thus satisfying this condition.

The rate of convergence of the value of the nodes is a function of the graph
topology. For a time-invariant topology, it can be shown (see, e.g., Desai and
Rao, 1990; Olfati-Saber and Murray, 2004; Seneta, 1981) that the convergence
of the consensus protocol is geometric. The rate is governed by the Second
Largest Eigenvalue Modulus (SLEM) of the matrix I − hL. In general, a consensus
algorithm on a graph with smaller SLEM converges more quickly. If L is symmetric,
its SLEM can be written as its norm restricted to the subspace orthogonal to 1n �
[1 1 . . . 1]T1×n, where AT denotes the transpose of a matrix A.

However, in wireless networks, a number of transmissions are necessary to
set up G(k), since the channel must be shared by different users. Therefore if
each node can receive data from say at most one neighbour at any given time,
the exchange of information necessary for iteration k will require at least 1 +
maxi |Ni(k)| transmissions. This idea is developed further in this paper.
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2.2 Communication protocols

Usual treatments of the average consensus algorithm presume the existence of a
consensus graph. In other words, there exists a communication channel between
any two nodes connected by an edge in this graph. However, wireless channels are
broadcast, and as pointed out earlier, the network topology is a design parameter.
The broadcast nature of the channel also manifests as interference from unintended
transmitters. This effect on the average consensus algorithm has not been studied
previously.

We consider a situation in which the physical locations of the nodes are
given. Every node then decides on the power with which it transmits. This power
determines the communication radius of the node according to the relation

P = P0r
α
c ,

where P0 is a normalisation constant, α is the path-loss exponent (typically
2 ≤ α ≤ 5), P is the transmission power and rc is the (normalised) communication
radius. All nodes at a distance smaller than rc from the transmitter can receive the
transmitted message.

We can also define an interference radius ri. A node at position x can receive
a message successfully from a node at position y only if ‖y − x‖ < rc, and there is
no node at position z that is simultaneously transmitting, such that ‖z − x‖ < ri

(interference constraint). For simplicity, we assume rc = ri, noting that the results
can be generalised to other cases.

We now choose a Time Division Multiple Access (TDMA) Medium Access
Control (MAC) protocol for the nodes. These protocols ensure successful
communication by scheduling transmissions in time such that messages do not
interfere. They demonstrate better throughput than collision-based MAC protocols,
but require greater synchronisation and coordination among the nodes (see Liu and
Haenggi, 2005; Xie and Haenggi, 2005).

2.3 Problem formulation

The operation of the network is divided into two phases that are repeated at every
consensus iteration. Phase 1 sets up the consensus graph using multiple transmission
stages. Each transmission stage consumes one time slot. In Phase 2, the nodes update
their values according to equation (1). This step is assumed to be instantaneous.
If Phase 1 occupies T time slots, we have

x(kT + T ) = (I − hL)x(kT ) (3)

for the kth update. Observe that finite communication time slows down convergence.
We are interested in the following problem: given a set of nodes at known

locations, what is the effect of increasing transmit power on the convergence
rate of the consensus algorithm when the channel-access mechanism accounts for
interference? In this context, we characterise the convergence of the consensus
algorithm for the optimal MAC protocol that sets up the consensus graph in the
smallest number of time slots (thus maximising the update rate). This is studied for a
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regular grid of sensor nodes. A periodic boundary condition is chosen for analytical
convenience.

We assume the following:

• All nodes transmit with the same power and follow a time-invariant
transmission policy.

• At the time of an update, we require that the consensus graph be undirected.
i.e., for any two nodes i, j in the network, j ∈ Ni ⇔ i ∈ Nj .

• We do not assume explicit routing of values through nodes.

• We assume half-duplex operation and further that collided packets cannot be
decoded.

Under these assumptions, we are able to show the following results:

• We bound the rate of convergence for the optimal MAC scheduling protocol
for the average consensus algorithm for tori in n dimensions.

• We show that network geometry plays a key role in identifying the optimum
power allocation that maximises the speed of convergence. In particular, while
the convergence rate increases with the transmission power in 1-dimensional
tori, the opposite is true in higher dimensions.

In the next section, we begin by studying the convergence properties of MAC
protocols that maximise the speed of convergence for a given consensus graph G.

3 Analysis of a ring and a 2D torus

3.1 The 1-D case: nodes on a ring

Consider n nodes {0, 1, . . . , n − 1} placed uniformly on a circle of radius r centred
at the origin, as shown in Figure 1. Suppose that the transmission power is such that
every node can transmit information to m of its nearest neighbours on either side.
As an example, in Figure 1, m = 1. Define Pm, m ≤ �n

2 � as the transmit power that
provides a communication radius rc = 2r sin

(
mπ
n

)
. Hence

Pm ∝
(
2r sin

(mπ

n

))α

, (4)

where α ≥ 2 is the path-loss exponent. As stated above, we will assume that the
interference radius ri = rc.

An alternative interpretation of this geometry is to consider the n nodes on
a regular one-dimensional torus [0, 1] (hereafter called a ‘1-torus’ or T1(n)), with
node k assumed to be at k/n. This perspective allows us to compare the results
developed here with those for higher dimensional tori.

If the wireless channel could support simultaneous transmissions by every node,
the system would evolve according to equation (2), with I − hL being an n × n
circulant matrix with the first row given by

[1 − 2mh 1T
m 0 0 · · · 0 1T

m],
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where

1T
m = [1 1 · · · 1]1×m.

For future reference, denote by G1,m, L1,m and F1,m the consensus graph, the
Laplacian and the update matrix, respectively, for such a situation. We now
characterise the time necessary to form G1,m.

Figure 1 Schematic of nodes placed along a ring

3.2 Characterising the time for the communication phase

We bound the length of the shortest TDMA schedule that forms G1,m. Denote its
length by T ∗

1 (m), or, more compactly, as T ∗
1 . Observe that for all m1 ≤ m2, G1,m1 ⊆

G1,m2 . Therefore G1,m can always be formed in at most T ∗
1 (m1) ≤ T ∗

1 (m2) slots.
This implies that m1 ≤ m2 =⇒ T ∗

1 (m1) ≤ T ∗
1 (m2). We say that a link is formed

from node v to node u whenever the packet from v is successfully decoded at u.
Since G1,m is undirected, an edge e ∈ G1,m connecting v and u is formed iff both v
and u form links with each other.

Lemma 1: Consider the set-up described above, where the consensus graph G1,m

is to be formed in the smallest number of time slots. The optimal TDMA protocol
forms G1,m in the smallest possible number of time slots T ∗

1 where

2m + 1 ≤ T ∗
1 (m) ≤ 4m + 1.

Proof: Suppose G1,m is formed in T time slots. Each node is connected to m nearest
neighbours on either side, and the node degree of G1,m is 2m. Suppose Nt links in
G1,m are formed in time slot t. Given that there are are 4mn links in the graph,

T∑
t=1

Nt = 4mn. (5)
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Now suppose that K(t) nodes {vi1 , vi2 , . . . , viK(t)} transmit in time slot t. Let the
respective power allocations be {Pl1 , Pl2 , . . . , PlK(t)}.

Assume that the power allocated to node vik
allows it to broadcast its message

to at most the lk nearest neighbours on either side, or equivalently form at most 2lk
links. Since at most 2m of these links contribute to the formation of edges in G1,m,

Nt ≤ 2
K(t)∑
k=1

min(m, lk) ≤ 2mK(t),

where the second inequality is obtained by choosing min(m, lk) = m for all
transmitting nodes. To minimise T in equation (5), we need to maximise Nt for all t.

Observe that any transmission to a neighbour beyond the m nearest neighbours
does not contribute to the graph G1,m; this implies that choosing lk = m is sufficient.
This argument holds for any of the K(t) transmitters. Hence each of the transmitting
nodes should form m links on either side, or equivalently transmit with power Pm.

Now note that the optimal protocol selects {vi1 , vi2 , . . . , viK(t)} for all t while
meeting this upper bound, and ensuring that T is minimised. As noted above, this
minimum value of T has been called T ∗

1 .
Since the optimal protocol leads to each node transmitting to m-nearest

neighbours whenever it communicates, for every 2m + 1 adjacent nodes, only one
node can transmit in any slot to avoid interference. As a result, a TDMA schedule
cannot have fewer than 2m + 1 slots. In other words, T ∗

1 ≥ 2m + 1.
An upper bound on T ∗

1 can be obtained by considering the length of a
particular TDMA schedule. Consider a protocol in which each transmitter is
allocated power Pm. Due to interference constraints, no two transmission intervals
can overlap each other. Given that there are a total of n nodes uniformly placed on
a ring, the maximum number of allowed transmitters at any time step is

Kmax =
⌊

n

2m + 1

⌋
.

The transmission schedule for this MAC protocol is as follows. Consider time slot 1.
Suppose some node v ∈ V transmits at Pm. We require that all nodes (2m + 1)
nodes apart should transmit as long as the half-duplex and interference constraints
are satisfied. Since the maximum number of simultaneous transmissions possible is⌊

n
2m+1

⌋
, in 2m + 1 time slots, (2m + 1)

⌊
n

2m+1

⌋
nodes can transmit. After 2m + 1

time slots,

n − (2m + 1)
⌊

n

2m + 1

⌋
= rem(n, 2m + 1) ≤ 2m

nodes will not have transmitted with this protocol. So this schedule forms
G1,m in Tu = (2m + 1) + rem(n, 2m + 1) ≤ 4m + 1. Hence, we conclude T ∗

1 ≤ Tu

≤ 4m + 1. �

We have thus bounded the length of the shortest TDMA schedule that forms the
consensus graph G1,m. In other words, we have bounded the smallest time T in the
update equation (3).
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3.3 Bounding the rate of convergence

To characterise the fastest convergence possible for a given G1,m we need to use the
above result in conjunction with the spectral properties of G1,m which are presented
below.

Theorem 2: Consider the problem set-up described above. If the optimal TDMA
protocol is used to construct G1,m for each iteration, the error vector ε(k) = x(k)
− 1nxav converges geometrically to zero with the rate of decay β bounded as

ρ
1

2m+1
1 ≤ β ≤ ρ

1
4m+1
1 (6)

where

ρ1 = 1 − h(2m + 1) + hS
(m,n)
1

(7)

S(m,n)
p =

sin
( (2m+1)πp

n

)
sin

(
πp
n

) , p = 0, 1, . . . n − 1.

Proof: The consensus graph at each update step is balanced and connected. Thus,
the node values converge to the average of their initial values with the decay rate
as the modulus of the second largest eigenvalue of F1,m (Olfati-Saber and Murray,
2004). Denote e−j 2πk

n by Wk,n. Since F1,m is circulant, its kth eigenvalue ρk is

ρk = 1 − 2mh + h
m∑

l=1

(W l
k,n + W l

−k,n)

(8)

= 1 − (2m + 1)h + 2h
m∑

l=0

cos
(

2πkl

n

)

which results in

ρk = 1 − (2m + 1)h + hS
(m,n)
k , k = 0, . . . , n − 1. (9)

It is easy to see that ρ0 = 1. The second largest eigenvalue is given by ρ1 = ρn−1 < 1,
where ρ1 was defined in equation (7). From Lemma 1, 2m + 1 ≤ T ∗

1 ≤ 4m + 1, and
equation (6) follows. �

Remarks:

1 For any given transmission power Pm, we see that the MAC constraints
reduce the rate by a factor of T , where 2m + 1 ≤ T ≤ 4m + 1.

2 The speed of convergence is an increasing function in m and hence in Pm.
An illustration of this fact is provided in Figure 2. For the purpose of the plot,
we show the time taken for the error norm to become half, termed the
‘half-value period’, as a function of transmission power for 31 nodes arranged
regularly on a ring of radius 1 unit. We have assumed α = 2, and the constant
of proportionality in equation (4) to be unity. For each Pm,
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we chose h ∝ 1
2m+1 . The results are somewhat counter-intuitive since the rate

reduction due to a larger number of steps in the communication phase is
always offset by the increase in rate due to higher connectivity. That forming
long range communication links would lead to faster convergence even in
networks with interference was not a priori evident.

3 The effect of increasing the transmission power is most prominent at
small Pm. This can again be seen from Figure 2. If θ = pπ/n and p � n,

sin θ ≈ θ − θ3/3. (10)

We use equation (10) to express the spectral gap SG � 1 − ρ
1
T
1 when m � n as

SG = 1 −
(

1 − h(2m + 1) + h
sin

( (2m+1)π
n

)
sin

(
π
n

) ) 1
T

≈ η mh(m + 1)(2m + 1)T−1n−2

where η � 4π2

3 . Since h ∝ 1
2m+1 and T = Θ(m) for the optimal schedule, the

spectral gap scales as m
n2 .

Figure 2 Variation of the convergence rate with the transmission power for a ring
of n = 31 nodes

3.4 Nodes on a two-dimensional torus

We now use a similar approach to analyse consensus on two dimensional tori.
A 2-torus T2(n) consists of n = l2 regularly spaced points on a 2-dimensional
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torus at [0, 1]2. A 2-torus with n = 9 nodes is depicted in Figure 3. Clearly, the
2-torus lies in the XY plane. The X and Y axes are referred to as the two axial
directions of this torus. Choosing a node as the origin, we label each node by
its position with respect to the origin node. Therefore, the node at

(
i√
n
, j√

n

)
is

labelled (i, j).

Figure 3 The toroidal lattice T2(9). Nodes in black indicate those physically placed in
[0, 1]2. Node (0, 0) represents the node at the origin, with each of the black
nodes (i, j) being placed at (i/3, j/3). Nodes that left unfilled are the image
nodes that arise due to the periodic boundary condition

We denote the position of node (i, j) by z(i,j), or, more compactly, zij ≡
(

i√
n
, j√

n

)
.

For example, in Figure 3, the position of node (1, 1) is z11 �
( 1

3 , 1
3

)
. An alternative

interpretation of a toroidal arrangement in two-dimensions is shown in Figure 4.
Both these interpretations yield similar results in the limiting case of a large torus
where local distances are not significantly affected by curvature. We will focus on
the former interpretation in this paper.

Suppose that all nodes on a torus T2(n) participate in an average consensus
algorithm of the form equation (2) with a power allocation of Pm per node. As an
extension to the 1-D case, we assume that with power Pm, the set of all reachable
nodes will lie in a communication sphere of radius m

n1/2

(
m < � l

2�
)
centred at the

transmitter. We now have the desired consensus graph G2,m = (V, E2,m) where the
vertex set

V = {0, 1, . . . , l − 1}2,

is the set of all points in T2(n). The edge set E2,m is formed by connecting every
node to all nodes on the torus that are within its communication sphere:

E2,m =
{

v, u ∈ V : v �= u, �2(zv, zu) ≤ m√
n

}
,

where �2(x, y) is the Euclidean norm between x and y.
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Figure 4 Schematic of nodes placed along a 2-dimensional torus. The periodic square grid
can be considered a limiting case of a large torus, so that the effect of its
curvature on small distances is not important

Using notation similar to that of Section 3.1, the Laplacian and the update matrix
for G2,m will be denoted by L2,m and F2,m � I − hL2,m, respectively. Assuming as
before that each transmission occupies one time slot, we now study the convergence
properties of the optimal MAC protocol that will form G2,m in the smallest number
of time slots.

We note that geometry plays a key role in scheduling transmitters in
multi-dimensional networks. This is illustrated for a 2-torus with n = 25 nodes and
m = 1 in Figure 5. Although identifying this schedule is non-trivial, as before we
can circumvent this problem by exploiting its optimality to bound its length. Similar
to Section 3.2, we denote this optimal length by T ∗

2 . We begin by characterising
the length T ∗

2 of the shortest TDMA schedule that constructs G2,m. Thereafter,
we exploit the properties of the consensus algorithm along with the optimality of the
MAC protocol and constraints imposed by our problem to bound the convergence
rates for a 2-torus.

Figure 5 Effect of geometry in sphere packing, shown for T2(25) and m = 1. The black
nodes denote the transmitters (e.g., (0, 0)). Note that the dimensionality is
exploited to allow more concurrent transmissions. The diamond-shaped nodes
(e.g., (4, 0)) are covered by transmitters via their images (shown as unfilled circles)



Power-delay analysis of consensus algorithms on wireless networks 267

With Pm as the transmit power that enables a node to form error-free links with m
neighbours in the axial directions. Given that there are

√
n nodes in either of the

axial directions,

Pm ∝
(

m√
n

)α

,

where α ≥ 2 is the path-loss exponent. Define Π to be the elementary circulant
matrix having as the first row [0 1 0 · · · 0 0]1×m. Then the update matrix F2,m

can be written as

F2,m =
∑
ij

aijΠi ⊗ Πj

where ⊗ denotes the Kronecker product and

aij =

{
h if (i, j) �= (0, 0),

1 − h|{(i, j) ∈ Z
2 : i2 + j2 ≤ m2}| if (i, j) = (0, 0).

We are now ready to bound T ∗
2 :

Lemma 3: If each node transmits at power Pm and the optimal schedule over the
2-torus constructs G2,m in T ∗

2 time slots, for 1 < m < �l/2�, we have

Tl ≤ T ∗
2 ≤ Tu

where Tl = 2m2 + 2m + 1 and Tu = 16m2 + 8m + 1.

Proof: Using similar arguments as in Lemma 1 it is easy to show that power
allocation for any node should be at least Pm. Define a feasible TDMA schedule for
a power allocation Pm per node as one that which constructs G2,m while satisfying
the half-duplex and interference constraints described in Section 2.

Without loss of generality, suppose node (0, 0) transmits in the first time slot with
power Pm. Let B denote its communication disc, i.e., a circle of radius m√

n
centred

at (0, 0). From the definition of a feasible schedule, other than (0, 0), no other node
inside B can transmit at this time. This means a feasible schedule can allow at most
one transmission inside B. Therefore any feasible schedule needs at least as many
time slots as the number of nodes inside a sphere of radius m√

n
centred at (0, 0),

in order to form G2,m. In other words, a feasible schedule has at least |B ∩ T2(n)|
time slots. This involves counting the number of nodes of a square grid that fall
inside the circle we are considering, which can be cumbersome. For our purposes,
it will suffice to find a lower bound for this value by counting only those nodes that
fall in a suitably chosen square U circumscribed by B.

Consider a square U having as its vertices, the nodes (m, 0), (0, m), (−m, 0)
and (0,−m). Clearly U ⊆ B. Each of its diagonals contains 2m + 1 nodes. The
line segments joining nodes (−m + |k|, k) and (m − |k|, k) for k = −m,−m + 1,
. . . , m − 1, m are all parallel to the segment joining (−m, 0) and (m, 0). Each such
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segment has exactly 2m + 1 − 2|k| nodes. Counting all these nodes yields the number
of nodes in B:

|U ∩ T2(n)| =
m∑

k=−m

(2m + 1) − 2|k|

= 2m + 1 + 2
m∑

k=1

2(m − k)

= 2m2 + 2m + 1.

We can thus choose Tl = 2m2 + 2m + 1 as the lower bound on the length of any
feasible schedule that forms G2,m. In particular, T ∗

2 is the length of the shortest
feasible schedule. Consequently, T ∗

2 ≥ Tl.
If Tu is number of time slots taken by any feasible schedule to form G2,m,

T ∗
2 ≤ Tu. Consider the following schedule: in the first time slot, choose (0, 0)

as a transmitter, and schedule nodes (0 + p(2m + 1), 0 + q(2m + 1)) for p, q =
1, . . . , � l

2m+1� to transmit. In other words, we attempt to tile the torus with
squares of side 2m+1√

n
. Clearly this is feasible, since each node lies in at most one

communication sphere. In each subsequent time slot, repeat this process by choosing
some other node (i, j) inside the square of side (2m + 1)/

√
n centred at the origin

and schedule nodes (i + p(2m + 1), j + q(2m + 1)) for transmission. Repeat this
process until all the (2m + 1)2 nodes in this square have been chosen once. Using
arguments similar to those used in Lemma 1, a maximum of � l

(2m+1)�2 simultaneous

transmissions can be scheduled per time slot. After (2m + 1)2 time slots,

n −
⌊

l

(2m + 1)

⌋2

(2m + 1)2 = 2
⌊

l

2m + 1

⌋
(2m + 1) rem(l, (2m + 1))

+ (rem(l, 2m + 1))2

nodes are yet to transmit. In the first term, we can schedule �l/(2m + 1)� nodes
in each of the 2rem(l, 2m + 1) ≤ 4m ‘rows’ that require at most 4m(2m + 1)
additional time slots. Scheduling one node per time slot, all the remaining
(rem(l, 2m + 1))2 nodes can transmit in at most 4m2 time slots. Therefore the
schedule constructs G2,m in (2m + 1)2 + 4m(2m + 1) + 4m2 = 16m2 + 8m + 1 time
slots. Thus, we conclude that T ∗

2 ≤ 16m2 + 8m + 1. �

Compared to the 1-torus, the optimal schedule for a 2-torus is bounded by two
quadratic terms. As we shall see, this plays a key role in determining the effect of
transmit power on convergence behaviour.

3.5 Bounding the rate of convergence

Finding the eigenvalues of F2,m seems intractable. This difficulty arises from the
fact that the nodes that can receive data from a particular transmitter lie within
discs (or spheres) centred at the transmitter. While in one-dimension such discs can
cover the entire ring, such coverage is not possible in higher dimensions in general.
For our purpose, we lower and upper bound such discs by squares of suitable side
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length that cover the entire region. The idea is illustrated in Figure 6. To this end,
we begin with the following preliminary result.

Figure 6 Edges to (2, 2) in T2(25) in Ĝ2,m̃, G2,m and Ĝ2,m for m = 2. For nodes shown as
squares (e.g., (2, 3), that lie on the innermost square), edges between (2, 2) and
these nodes exist in all these graphs. For traingle-shaped nodes (e.g., (4, 2), that
lie on the circle), such edges exist only in G2,m and Ĝ2,m. For nodes shown as
circles (e.g., (0, 0)), such edges exist only in Ĝ2,m

Lemma 4: Let Ĝ2,m be the consensus graph formed over T2(n) by placing edges
between each node (i, j) with all other nodes (k, l) �= (i, j) satisfying

�∞(zij , zkl) ≤ m√
n

, 1 ≤ m <

⌊√
n

2

⌋

where �∞ denotes the ∞-norm. Also denote the Laplacian of Ĝ2,m by L̂2,m and
its maximum degree by dmax and the update matrix F̂2,m = I − hL̂2,m for some
0 ≤ h ≤ 1

2dmax
. Then the eigenvalues of the F̂2,m are

λa,b = 1 − h(2m + 1)2 + hS(m,l)
a S

(m,l)
b ,

where, as defined above

S(m,l)
a =

sin
(

(2m+1)πa
l

)
sin

(
πa
l

) , a = 0, 1, . . . l − 1.

Proof: Let matrices Ak, k = 0, 1 be be l × l circulant matrices, with their first
row being [dk − 1T

m 0 0 · · · 0 − 1T
m]1×l, where d0 = (2m + 1)2 − 1 and



270 S. Vanka et al.

d1 = −1. Let Bm � 1T
m ⊗ A1. It is easy to see that the Laplacian L̂2,m of Ĝ2,m is an

n × n block circulant matrix with each of its l block rows being

[A0 Bm 0 0 · · · 0 Bm]l×n.

Exploiting the properties of block circulant matrices and the fact that Ak’s are
themselves circulant (and consequently share the same eigenvectors) to compute the
eigenvalues of L̂2,m:

µr,s =
l−1∑
t=0

ηr,t e−j 2πst
l (11)

where ηr,t is the rth eigenvalue of At ∀r, s = 0, 1, . . . , l − 1. Using the 1-torus result
from equation (9) for ηr,t and simplifying, the eigenvalues of F̂2,m = I − hL̂2,m are

λa,b = 1 − h(2m + 1)2 + hS(m,
√

n)
a S

(m,
√

n)
b (12)

which is the desired result. �

We are now in a position to bound the rate of decay for the 2-torus:

Theorem 5: Consider a consensus algorithm of the form (2) on G2,m. If each node

transmits at Pm for 1 ≤ m < �
√

n
2 �, the rate of convergence β of an optimal MAC

schedule on G2,m that drives δ(k) = x(k) − 1nxav to zero is bounded as

λ
1

2m(m+1)
1 < β < λ̃

1
16m2+8m+1
1

where m̃ � � m√
2
� and

λ1 =
(
1 − h(2m + 1)2 + h(2m + 1)S(m,

√
n)

1

)
λ̃1 =

(
1 − h(2m̃ + 1)2 + h(2m̃ + 1)S(m̃,

√
n)

1

)
.

Proof: Consider undirected graphs Gsub,G and Gsup with a common vertex set V
and edge sets Esub ⊆ E ⊆ Esup, with the same h (refer to equation (2)) that ensures
consensus for all these graphs. Call G the nominal graph and Gsub and Gsup as
sub- and super-graphs of G. Suppose all the graphs satisfy conditions to reach
average consensus. The proof rests on two simple but important facts:

Fact 1: If iterations are performed at the same rate and if the same h is used,
the consensus algorithm on a graph cannot be slower than that on its sub-graphs.
This follows from the fact that the second largest eigenvalue always decreases if
edges are added to a graph (cf. Mohar, 1991, Theorem 3.2).

Fact 2: Suppose the iterations on these graphs occur every Tu, T ∗
2 and Tl time slots

respectively, with Tu ≥ T ∗
2 ≥ Tl. Then the graphs on which the consensus algorithm

converges the fastest and slowest are still Gsup and Gsub, respectively.
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In what follows, we will first define the nominal consensus graph G and choose
appropriate super- and sub-graphs Gsup and Gsub. We will then use the results from
Lemma 3 to obtain the values of Tl, T

∗
2 and Tu.

Consider the graph Ĝ2,m as defined in Lemma 4. Note that

�2(rij , rkl) ≤ c =⇒ �∞(rij , rkl) ≤ c.

Choosing c = m√
n
, it is easy to see that every edge in E2,m is present in Ê2,m.

It follows that G2,m ⊇ Ĝ2,m. This is illustrated in Figure 6 for n = 25, m = 2.
Define m̃ = � m√

2
� and form a graph Ĝ2,m̃ = (V, Ê2,m̃). It is easy to see that

�∞(rij , rkl) ≤
⌊

m̃√
n

⌋
�2(rij , rkl)

=⇒ �2(rij , rkl) ≤
√

2
⌊

m̃√
n

⌋
≤

⌊√
2m̃√
n

⌋
≤ m√

n
.

Therefore Ĝ2,m̃ ⊆ G2,m.
The differences in connectivity in the graphs Ĝ2,m̃, G2,m and Ĝ2,m are illustrated

in Figure 6, for a torus of n = 25 nodes and m = 2. Here m̃ = �2/
√

2� = 1.
The consensus graphs Ĝ2,m and G2,m correspond to update matrices F̂2,m and

F2,m respectively for all m. We now use the results for eigenvalues of the Laplacian
L̂2,m, derived in Lemma 4. The rate of convergence on Ĝ2,m is a function of the
second largest eigenvalue modulus that is obtained by setting a = 0 and b = 1 in
equation (12):

λ0,1 = 1 − h(2m + 1)2 + h(2m + 1)S(m,l)
1 � λ1. (13)

Making the substitution m ← m̃ gives

λ̃1 � 1 − h(2m̃ + 1)2 + h(2m̃ + 1)S(m̃,l)
1 (14)

which is the corresponding value for Ĝ2,m̃.
Consider now a consensus algorithm on Gsub = Ĝ2,m̃, G = G2,m and Gsup = Ĝ2,m.

All the graphs are given equal edge weights h, determined by the maximum node
degree in Ĝ2,m. Suppose an iteration on the torus forms G2,m in T ∗

2 time slots.
Let iterations on Ĝ2,m and Ĝ2,m̃ occur every Tl and Tu time slots, respectively,
where Tl = 2m2 + 2m + 1 and Tu = 16m2 + 8m + 1. From Lemma 3 we know that
Tu ≥ T ∗

2 ≥ Tl. The values of SLEM for the corresponding to Ĝ2,m and Ĝ2,m̃ are
known. Hence the convergence rates are, respectively, λ

1/Tl

1 and λ̃
1/Tu

1 . The result
now follows from Fact 2. �

To understand the effect of higher transmit powers on the convergence rate in 2-tori,
we simplify the expressions for λ1 and λ̃1 in Theorem 5 using h = γ/(2m + 1)2,
0 < γ < 1:

λ1 = 1 − γ + γ
sin((2m + 1)π/

√
n)

(2m + 1) sin(π/
√

n)

λ̃1 = 1 − γ
(2m̃ + 1)2

(2m + 1)2
+ γ

(2m̃ + 1)
(2m + 1)2

sin((2m̃ + 1)π/
√

n)
sin(π/

√
n)

.
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Comparing this to the 1-torus case with h = γ/(2m + 1),

ρ1 = 1 − γ + γ
sin((2m + 1)π/n)
(2m + 1) sin(π/n)

.

Clearly λ1 is of the same form as ρ1 in Theorem 2, except for the
√

n. For large m,
the behaviour of λ̃1 will also be similar to λ1.

However, the two cases differ in the length of the optimal schedule, whose length
was shown to be Θ(m) for the 1-torus, and Θ(m2) for the 2-torus. Therefore,
the effect of interference depends on the geometry of node placement. High
transmit powers cause greater interference, thereby reducing network throughput.
In scheduling MAC protocols, this effect is reflected in longer schedules. Although
this is offset by the resultant long-range connections in a 1-torus, it is no longer
true for higher dimensions. Figure 7 shows the lower bound for β obtained from
Theorem 5 for a 2-torus with n = 4096 nodes arranged as a 64 × 64 toroidal lattice.
Observe that the convergence rate worsens with increasing transmit power. This is
surprising when compared to the 1-torus, where the result is the opposite.

Figure 7 Variation of half-value period with transmission power on a 2-torus

3.6 Tori in arbitrary dimensions

The results in Lemma 3 can be extended to higher-dimensional grids with toroidal
boundary conditions. Indeed using similar arguments for power Pm, the optimal
schedule for a d-dimensional torus cannot be shorter than |U ∩ Td(n)| where U is a
polyhedron that can be circumscribed by the sphere of radius m/(n1/d). Similarly,
to find the upper bound one can generalise the schedule described in Lemma 1 that
was used to find an upper bound. It can be shown that the optimal schedule length
will be Θ(md).

The results in Lemma 4 can also be generalised to d-dimensions as λ1 = 1 −
h(2m + 1)d + h(2m + 1)d−1S

(m,l)
1 for the lower bound and choosing m̃ = �m/

√
d�
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to find λ̃1 for an upper bound on the convergence rate. Thus the convergence slows
down with transmit power in geometries having dimension two or more.

4 Conclusions

We introduced a framework that considers the effects of realistic communication
constraints on average consensus algorithms. In particular, we analytically
characterise the performance of the medium access control algorithm that maximises
the speed of convergence. We study the effect of transmit power on convergence in
the presence of interference. In interference-limited wireless networks, the geometry
of node placement plays a key role in deciding the fastest converging consensus
graph. While forming long-range links (using more power) always improves the
convergence on ring topologies, it is not so for higher-dimensional tori.

This work could be extended to other classes of graphs, like Cayley graphs
and expander graphs that have good convergence properties (Carli et al., 2008).
Another issue is the effect of stochastic data loss through effects due to fading and
interference, using a different framework as compared to Boyd et al. (2006) and
Hovareshti et al. (2008), to explicitly account for interference.
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