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Abstract—We investigate the delay of the discrete-time slotted
ALOHA network where the sources are distributed as a Poisson
point process. Each of the sources is paired with a destination at
a given distance and a buffer of infinite capacity. The network
is assumed to be static, i.e., the sources and the destinations are
generated at first and remain static during all the time slots.
Employing tools from queueing theory as well as point process
theory, we obtain upper bounds and lower bounds for the cumulative
distribution function (cdf) of the conditional mean delay. Numerical
results show that the gap between the upper and lower bounds is
small, and the results also reveal how these bounds vary with system
parameters.

Index Terms—ALOHA, delay, dominant system, interacting
queues, Poisson bipolar model, queueing theory, static network.

I. INTRODUCTION

In the literature, the protocol of slotted ALOHA is studied

extensively. However, most works concentrate on the capacity

analysis and assume that terminals are backlogged. To make the

model more practically relevant, each terminal should provide

a buffer for queueing. This problem is complex because it

involves interacting queues, i.e., the serving rate of each queue

depends on the sizes of queues, the analysis of which should

combine queueing theory and multi-access information theory and

is notoriously difficult to cope with.

Previous analyses of interacting queues are mostly based on an

oversimplified physical layer and consider a discrete-time slotted

ALOHA system. Each terminal attempts to transmit the head-of-

line packet in each time slot with a certain probability if its buffer

is not empty. If two or more terminals transmit in the same time

slot, a collision occurs. Only the stability region has been studied

[1] for this simplified ALOHA system. In practical networks,

concurrent transmissions lead to interference, which cannot be

accurately modeled as collisions. Moreover, the randomness in

the deployment makes accurate analysis complicated.

In this work, we model a large-scale network by point process

theory, which is widely used to analyze the performance of

wireless networks [2], [3]. A common and meaningful model is

the Poisson point process (PPP), in which each transmitter is

modeled as one point of the PPP. We combine queueing theory

and stochastic geometry to analyze the delay in a static ALOHA

network, i.e., the transmitters and the receivers are generated at

first and remain static during all the time slots. Although ALOHA

is a very simple MAC, the stability and delay analysis is still an

open problem, and studying over it helps us understand more

complex protocols. If each transmitter maintains a buffer to store

the generated packets, the analysis becomes complex since the

serving rate of each queue depends on the status of other queues,

the channel status and the ALOHA protocol. We derive upper

bounds and lower bounds for the cdf of the delay, and by slightly

relaxing the results, we obtain the closed-form results.

Previous analyses have yielded only bounds of arrival rate for

which the system is stable [4]–[6]. In [7], the stability and delay

of high-mobility networks are analyzed by combining queueing

theory and stochastic geometry. In high-mobility networks, the

sizes of queues and the serving rates are decoupled, which,

however, does not hold in static networks. In [8], we derived

the sufficient conditions and necessary conditions for stability of

static Poisson networks, and in this paper, we extend that work

and analyze the delay of such networks.

II. SYSTEM MODEL

We consider a discrete-time slotted ALOHA network with

transmitters and receivers distributed as a Poisson bipolar process

[3, Def. 5.8], i.e., we model the locations of the transmitters

as a PPP Φ = {xi} ⊂ R
d of intensity λ. Each transmitter is

attached with a receiver at a fixed distance r0 and a random

orientation. In the analysis, we condition on x0 ∈ Φ at which a

typical transmitter under consideration is located, where r0 = |x0|
is the distance between this point and the origin at which the

corresponding receiver is located (see Fig. 1). The time is divided

into discrete slots with equal duration, and each transmission

attempt occupies exactly one time slot. The network is assumed

to be static, i.e., the locations of the nodes are generated once at

the beginning and then kept unchanged during all the time slots.

Fig. 1. A snapshot of the bipolar model with ALOHA.

We assume the Rayleigh block fading model, in which the

power fading coefficients remain constant over each time slot

and are spatially and temporally independent with exponential

distribution of mean 1. Let α be the path loss exponent and hk,x

be the fading coefficient between transmitter x and the considered

receiver located at origin o in time slot k. All transmitters are

assumed to transmit at unit power. The power spectral density

of the thermal noise is set as N0 and the bandwidth is W . We

assume that if its SINR is above a threshold θ, a link can be

successfully used for information transmission.



Each transmitter has a buffer of infinite capacity to store the

generated packets. The packets are generated at each transmitter

according to a Bernoulli process with arrival rate λa (0 ≤ λa ≤ 1)
packets per time slot. The arrival processes at different transmit-

ters are independent, and each transmitter attempts to send its

head-of-line packet with probability p if its buffer is not empty.

We assume that the feedback of each transmission attempt, either

successful or failed, is instantaneous so that each transmitter

is aware of the outcome. If the transmission attempt fails, the

transmitter attempts to retransmit the packet at the next time slot

with probability p; otherwise, it deletes the packet from the buffer.

For any time slot k ∈ N
+, let Φk be the set of transmitters that

are transmitting in time slot k. The interference at the typical

receiver located at the origin o in time slot k is

Ik =
∑

x∈Φ\{x0}
hk,x|x|−α1(x ∈ Φk). (1)

When the typical transmitter is allowed to transmit, the SINR of

the typical receiver in time slot k is

SINRk =
hk,x0

r−α
0

WN0 +
∑

x∈Φ\{x0} hk,x|x|−α1(x ∈ Φk)
. (2)

The relevant probability measure of the point process in this

paper is the Palm probability P
x0 . Correspondingly, the expec-

tation E
x0 is taken with respect to the measure P

x0 . Whether

the transmission of the typical transmitter x0 is successful or

not is uncertain because of the four sources of randomness, i.e.,

the bursty arrival of traffic, the fading, the ALOHA protocol

and the realization of PPP. Let Ck
Φ be the event that the typical

transmission succeeds conditioned on the realization of the PPP

Φ and the status of each queue in time slot k, i.e., Ck
Φ consists of

two events: that the transmission is scheduled by the ALOHA and

also successful in time slot k. The success event Ck
Φ relies on the

realization of the PPP since the locations of serving transmitter

and the interferers are different for different realizations of the

PPP. Meanwhile, the success event Ck
Φ relies on the index of the

time slot k because the statuses of the queues at the interferers

change over the time slot. When the queue at an interfering

transmitter is empty, no interference will be caused by the said

transmitter. Even if the realization of the PPP Φ and the time slot

index k are given, whether the typical link is successful or not is

still uncertain because of the effect of ALOHA and fading. Let

P
x0(Ck

Φ) be the success probability conditioned on the PPP Φ in

time slot k.

III. DELAY STATISTICS

For the typical link in the network, the delay considered in

this paper includes two parts, one is the queueing delay, which

measures the delay between the time when a packet arrives at the

queue and the time when it starts to be served, the other is the

service time, which is the time to transmit said packet. In the static

network, given the locations of the transmitters and receivers, the

success probabilities are different for different transmissions; thus,

the serving rates are also different, which results in different mean

delays for different transmissions. Therefore, the mean delay has a

statistical distribution for the overall network. To avoid confusion,

we denote the mean delay of the typical transmitter conditioning

on the realization of the PPP as the conditional mean delay.1

In the following discussions, we analyze the statistics of the

conditional mean delay. Specifically, we derive upper bounds

and lower bounds for the cdf of the conditional mean delay,

which is quite suitable to characterize the delay performance.

Unless otherwise specified, we assume that the delay mentioned

in this paper is evaluated in terms of time slots. Let DΦ be the

conditional mean delay conditioned on the realization of the PPP;

thus it is a random variable uniquely defined by the PPP and

formally defined as follows.

Definition 1. Let A(t) be the number of packets that arrived
at the transmitter x0 in [0, t]. Let Ti,Φ be the time in number
of time slots between the arrival of the ith packet and the
moment of successfully transmitting it to the receiver at the origin
conditioned on the realization of the PPP Φ. Then, the conditional
mean delay is defined as

DΦ � lim
t→∞

∑A(t)
i=1 Ti,Φ

A(t)
. (3)

A. Lower Bound

In order to derive a lower bound for the cdf of the mean delays

in the overall network, we consider a dominant system. Assume

that in the dominant system the typical transmitter behaves exactly

the same as that in the original system. However, for the other

transmissions in the dominant system, we assume that when the

queues at the transmitters become empty, the transmitters continue

to transmit “dummy” packets with the ALOHA probability p, thus

continuing to cause interference to the other transmissions no

matter whether their queues are empty or not. The queue size at

each transmitter in the dominant system will never be smaller than

that in the original system, resulting in larger delay. Therefore, the

cdf we obtain under these assumptions will be a lower bound for

the cdf of the mean delay in the original system. The following

theorem gives the lower bound for the cdf of the conditional mean

delay in the overall network.

Theorem 1. Given a slotted ALOHA system with the transmitters
distributed as a PPP and with a packet arrival being Bernoulli
processes, a lower bound of the cdf of the conditional mean delay
in the overall network is

P
x0 (DΦ ≤ T ) ≥ 1

2
+

1

π

∫ ∞

0

1

ω
Im

{
pjω exp

(
− jωθrα0WN0

−jω ln

(√
(2 + 2λaT − λa)2 − 8Tλa − λa + 2

4T
+

λa

2

)

−2πλ

∫ ∞

0

(
1−

( p

1 + θrα0 r
−α

+ 1− p
)jω)

rdr

)}
dω. (4)

Proof: The success probability for the typical link given Φ
in the dominant system, denoted by P

x0(CΦ), is the same for

each time slot, which is given by (7). Given the realization of the

point process Φ, the queueing system at the typical transmitter is

equivalent to a Geo/G/1 queue, or a discrete-time single server

retrial queue [9], [10]. In the equivalent Geo/G/1 queue, the time

is slotted and the packets arrive according to a Bernoulli process

1Strictly speaking, there is no typical transmitter in a realization of the PPP.
Since there is no commonly accepted terminology, we still call the link from x0

to o the typical link, even when conditioning on Φ (and on x0 ∈ Φ). When taking
the expectation w.r.t. Φ later, the notion of typicality has its usual meaning.



with intensity λa packets per time slot. The arrival process is

also called geometric arrival process since the probability that a

packet arrives in a time slot is λa, and the number of time slots

between two adjacent arrivals is a geometric random variable.

The success probability is P
x0(CΦ), thus the service times of

packets are independent and identically distributed with geometric

distribution. From [9], we get the conditional mean delay DΦ as

DΦ =

{
1

Px0 (CΦ) +
λa−λaP

x0 (CΦ)
2(Px0 (CΦ)−λa)Px0 (CΦ) if Px0(CΦ) > λa

∞ if Px0(CΦ) ≤ λa.
(5)

Noticing that the queue is stable only when P
x0(CΦ) > λa, we

get the cdf of the conditional mean delay as

P
x0 (DΦ ≤ T ) = P

x0

(
P
x0(CΦ) ≥√

(2 + 2λaT − λa)2 − 8Tλa − λa + 2

4T
+

λa

2

)
. (6)

The success probability for the typical link conditioned on Φ
in the dominant system is evaluated as

P
x0(CΦ) = pPx0(SINR > θ | Φ)

= pPx0
(
hk,x0r

−α
0 > θ (WN0 + Ik) | Φ

)
= pEx0

(
exp

(
− θrα0WN0

−
∑

x∈Φ\{x0}
θrα0 hk,x|x|−α1(x ∈ Φk)

)
| Φ

)

= p exp
(− θrα0WN0

) ∏
x∈Φ\{x0}

( p

1 + θrα0 |x|−α
+ 1− p

)
. (7)

The moment generating function of Y
Δ
= ln (Px0(CΦ)) is

MY (s) = ps exp
(
− sθrα0WN0

−2πλ

∫ ∞

0

(
1−

( p

1 + θrα0 r
−α

+ 1− p
)s)

rdr
)
. (8)

The cdf of Y , denoted by FY (y) = P (Y ≤ y), follows from

the Gil-Pelaez Theorem [11] as

FY (y) =
1

2
− 1

π

∫ ∞

0

Im{e−jωyMY (jω)}
ω

dω. (9)

The cdf of Px0(CΦ) is evaluated as

P
x0 {Px0(CΦ) ≤ λa} = FY (ln(λa))

=
1

2
− 1

π

∫ ∞

0

Im{e−jω ln(λa)MY (jω)}
ω

dω. (10)

Therefore, we have

P
x0 (DΦ ≤ T ) =

1

2
+

1

π

∫ ∞

0

1

ω
Im

{
pjω exp

(
− jωθrα0WN0

−jω ln

(√
(2 + 2λaT − λa)2 − 8Tλa − λa + 2

4T
+

λa

2

)

−2πλ

∫ ∞

0

(
1−

( p

1 + θrα0 r
−α

+ 1− p
)jω)

rdr

)}
dω. (11)

Thus, for the original system, we get the result in Theorem 1.

In order to simplify the lower bound, we derive a lower bound

by using the Markov inequality.

Corollary 1. Given a slotted ALOHA system with the transmitters
distributed as a PPP and with a packet arrival being Bernoulli

processes, for all t > 0, a lower bound of the cdf of the
conditional mean delay in the overall network is

P
x0 (DΦ ≤ T ) ≥ max

{
0, 1− p−t exp

(
tθrα0WN0

−2πλ

∫ ∞

0

(
1−

( p

1 + θrα0 r
−α

+ 1− p
)−t)

rdr

+t ln
(√(2 + 2λaT − λa)2 − 8Tλa − λa + 2

4T
+

λa

2

))}
. (12)

When t is a positive integer, denoted by n, we get a closed-form
lower bound

P
x0 (DΦ ≤ T ) ≥ plb(T, n) (13)

where

plb(T, n) = max

{
0, 1− p−n exp

(
nθrα0WN0

+πλδn(1− p)δθδr20

n∑
i=1

((1− p)−i − 1)
Γ(i− δ)Γ(n− i+ δ)

Γ(i+ 1)Γ(n− i+ 1)

+n ln
(√(2 + 2λaT − λa)2 − 8Tλa − λa + 2

4T
+

λa

2

)}
. (14)

When n is chosen as the optimal value for given T , i.e.,
nmax(T ) = argmaxn∈N+plb(T, n), we get a lower bound that
is superior to other lower bounds corresponding to other n as

P
x0 (DΦ ≤ T ) ≥ plb(T, nmax(T )), (15)

Proof: For all t > 0, the cdf of Px0(CΦ) is

P
x0 {Px0(CΦ) < λa} = P

x0

{
e−t ln(Px0 (CΦ)) > e−t ln(λa)

}
. (16)

By applying the Markov inequality, we obtain

P
x0 {Px0(CΦ) < λa} <

1

e−t ln(λa)
E

(
e−t ln(Px0 (CΦ))

)
= p−t exp

(
t ln(λa) + tθrα0WN0

−2πλ

∫ ∞

0

(
1−

( p

1 + θrα0 r
−α

+ 1− p
)−t)

rdr
)
. (17)

Therefore, the cdf of the conditional mean delay is

P
x0 (DΦ ≤ T ) ≥ max

{
0, 1− p−t exp

(
tθrα0WN0

−2πλ

∫ ∞

0

(
1−

( p

1 + θrα0 r
−α

+ 1− p
)−t)

rdr

+t ln
(√(2 + 2λaT − λa)2 − 8Tλa − λa + 2

4T
+

λa

2

))}
.

By setting t = n ∈ N
+, we get∫ ∞

0

(
1−

( p

1 + θrα0 r
−α

+ 1− p
)−n)

rdr

(a)
= −

n∑
i=0

Ci
n(1− (1− p)i)

∫ ∞

0

(θrα0 r
−α)ir

(1 + (1− p)θrα0 r
−α)n

dr

(b)
= −n

2
δ(1− p)δθδr20

n∑
i=1

((1− p)−i − 1)
Γ(i− δ)Γ(n− i+ δ)

Γ(i+ 1)Γ(n− i+ 1)
.

where Ci
n = n!/(i!(n− i)!) = Γ(n+ 1)/(Γ(i+ 1)Γ(n− i+ 1))

is the binomial coefficient and δ = 2/α. (a) holds from the

binomial expansion and the exchange of summation and integral.

(b) follows from the relationship between the beta function

B(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt and the gamma function and

from the fact that the term for i = 0 equals to zero. Thus, we get

the results in Corollary 1.



B. Upper Bound

To derive an upper bound of the cdf of the conditional mean

delay, we consider a modified system as follows: if a packet in an

interfering transmitter is not scheduled by the ALOHA or failed

for the transmission, it will be dropped rather than retransmitted.

In this way, since the interference in the modified system is

always smaller than that in the original system and the packets

will not accumulate at the interfering transmitters, the cdf of the

conditional mean delay for the modified system will be an upper

bound of that for the original system.

Theorem 2. An upper bound of the cdf of the conditional
mean delay of the slotted ALOHA system with the transmitters
distributed as a PPP and with a packet arrival being Bernoulli
processes is

P
x0 (DΦ ≤ T ) ≤ 1

2
+

1

π

∫ ∞

0

1

ω
Im

{
pjω exp

(
− jωθrα0WN0

−jω ln

(√
(2 + 2λaT − λa)2 − 8Tλa − λa + 2

4T
+

λa

2

)

−2πλ

∫ ∞

0

(
1−

( λap

1 + θrα0 r
−α

+ 1− λap
)jω)

rdr

)}
dω. (18)

Proof: In the modified system, the interfering transmitter

is active if there is a packet arriving at the queue and the

transmission is scheduled by ALOHA, thus the probability is λap.

From (6), we get the cdf of the conditional mean delay as

P
x0 (DΦ ≤ T ) = P

x0

(
P
x0(CΦ) ≥√

(2 + 2λaT − λa)2 − 8Tλa − λa + 2

4T
+

λa

2

)
. (19)

By introducing the modified system, packets at the interfering

transmitters are dropped if the transmitters are silenced due to

ALOHA or if the transmission fails due to the SINR condition,

thus an interfering transmitter is active with probability λap.

Similar to the derivation of (7), we get the success probability

for the typical link conditioned on Φ in the modified system as

P
x0(CΦ) = p exp

(− θrα0WN0

)
∏

x∈Φ\{x0}

( λap

1 + θrα0 |x|−α
+ 1− λap

)
. (20)

The moment generating function of Y
Δ
= ln (Px0(CΦ)) is

MY (s) = ps exp
(
− sθrα0WN0

−2πλ

∫ ∞

0

(
1−

( λap

1 + θrα0 r
−α

+ 1− λap
)s)

rdr
)
. (21)

The cdf of Y can be derived as follows by applying the Gil-

Pelaez Theorem given by (9).

FY (y) =
1

2
− 1

π

∫ ∞

0

Im{e−jωyMY (jω)}
ω

dω. (22)

Therefore, we have

P
x0 {Px0(CΦ) ≥ x} =

1

2
+

1

π

∫ ∞

0

1

ω
Im

{
pjω exp

(
− jωθrα0WN0 − jω ln (x)

−2πλ

∫ ∞

0

(
1−

( λap

1 + θrα0 r
−α

+ 1− λap
)jω)

rdr

)}
dω. (23)

Therefore, the cdf of the conditional mean delay for the

modified system is evaluated as

P
x0 (DΦ ≤ T ) =

1

2
+

1

π

∫ ∞

0

1

ω
Im

{
pjω exp

(
− jωθrα0WN0

−jω ln

(√
(2 + 2λaT − λa)2 − 8Tλa − λa + 2

4T
+

λa

2

)

−2πλ

∫ ∞

0

(
1−

( λap

1 + θrα0 r
−α

+ 1− λap
)jω)

rdr

)}
dω. (24)

Since the cdf of the conditional mean delay of the modified

system is only an upper bound of the original system, we get the

result in Theorem 2.
In the following, we use the Markov inequality to derive an

upper bound that is slightly easier to evaluate.

Corollary 2. An upper bound of the cdf of the conditional
mean delay in the slotted ALOHA system with the transmitters
distributed as a PPP and with a Bernoulli packet arrival is

P
x0 (DΦ ≤ T ) ≤ pt exp

(
− tθrα0WN0

−2πλ

∫ ∞

0

(
1−

( λap

1 + θrα0 r
−α

+ 1− λap
)t)

rdr

−t ln

(√
(2 + 2λaT − λa)2 − 8Tλa − λa + 2

4T
+

λa

2

))
, (25)

for all t > 0. When t is a positive integer, denoted by n, we get
a lower bound in closed form as

P
x0 (DΦ ≤ T ) ≤ pn exp

(
− nθrα0WN0

−πλnδθδr20

n∑
i=1

(1− (1− λap)
i)
Γ(i− δ)Γ(n− i+ δ)

Γ(i+ 1)Γ(n− i+ 1)

−n ln

(√
(2 + 2λaT − λa)2 − 8Tλa − λa + 2

4T
+

λa

2

))
. (26)

When the optimum value is chosen for n, we have

P
x0 (DΦ ≤ T ) ≤ min

n∈N+

(
pn exp

(
− nθrα0WN0

−πλnδθδr20

n∑
i=1

(1− (1− λap)
i)
Γ(i− δ)Γ(n− i+ δ)

Γ(i+ 1)Γ(n− i+ 1)

−n ln

(√
(2 + 2λaT − λa)2 − 8Tλa − λa + 2

4T
+

λa

2

)))
. (27)

Proof: For all t > 0, by applying the Markov inequality, we

obtain the following inequality

P
x0 {Px0(CΦ) < λa}

= P
x0

{
(Px0(CΦ))

t < λt
a

}
> 1− λ−t

a E

(
(Px0(CΦ))

t
)

= 1− pt exp
(
− t ln(λa)− tθrα0WN0

−2πλ

∫ ∞

0

(
1−

( λap

1 + θrα0 r
−α

+ 1− λap
)t)

rdr
)
. (28)

Therefore,

P
x0 {Px0(CΦ) ≥ x} ≤ pt exp

(
− t ln(x)− tθrα0WN0

−2πλ

∫ ∞

0

(
1−

( λap

1 + θrα0 r
−α

+ 1− λap
)t)

rdr
)
. (29)



From (6), we get an upper bound for the cdf of the conditional

mean delay for the modified system as follows

P
x0 (DΦ ≤ T ) ≤ pt exp

(
− tθrα0WN0

−2πλ

∫ ∞

0

(
1−

( λap

1 + θrα0 r
−α

+ 1− λap
)t)

rdr

−t ln

(√
(2 + 2λaT − λa)2 − 8Tλa − λa + 2

4T
+

λa

2

))
. (30)

Since P
x0 (DΦ ≤ T ) ≤ 1, we give an upper bound in Corollary 2

for the cdf of the conditional mean delay for the original system.

By the same derivations as Corollary 1, we get the results.

C. Comparison of Lower and Upper Bounds

In this section, we compare the lower and upper bounds for the

cdf of conditional mean delay based on their numerical evaluation.
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Fig. 2. Comparison of lower bound and upper bound for the cdf of conditional
mean delay for different packet arrival rates λa. The parameters are set as θ =
10dB, r0 = 1, N0 = −173dBm, W = 20MHz, α = 4 and λ = 0.01.

Fig. 2 plots the lower and upper bounds for the cdf of the

conditional mean delay for different packets arrival rate λa. It is

observed that the lower and upper bounds are tight for different

λa. However, the closed form lower bounds become loose when

the packet arrival rate increases, which is caused by the fact that

the Markov inequality becomes loose when λa gets large.

Fig. 3 plots the lower and upper bounds for the cdf of the con-

ditional mean delay for different λ. It is observed that the bounds

become loose when the intensity of transmitters increases. This is

because as λ increases, the effect of interference is non-negligible,

thus increasing the difference between the dominant/modified

system and the original system. Although the closed form lower

bounds (black lines) are loose for large λ, the non-closed form

lower bounds (blue lines) are still tight.

IV. CONCLUSIONS

In this paper, we investigated the delay of the discrete-time

slotted ALOHA network with the transmitters and receivers

distributed as a Poisson bipolar process. We employed tools from

queueing theory as well as point process theory and proposed

several novel approaches to derive the upper and lower bounds

for the cdf of the conditional mean delay. The numerical results
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Fig. 3. Comparison of lower bound and upper bound for the cdf of conditional
mean delay for different transmitter intensities λ. The parameters are set as θ =
10dB, r0 = 1, N0 = −173dBm, W = 20MHz, α = 4 and λa = 0.1.

show that the gap between the non-closed form upper and lower

bounds is small. As for the closed form upper and lower bounds,

the gap is small for small arrival rate λa and small intensity of

transmitters λ.
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