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Abstract—The spatial correlation of the energy harvested from
RF transmitters, named energy correlation, plays a key role in
the performance evaluation of wirelessly powered networks. This
paper introduces an analytical framework with foundations in
stochastic geometry to characterize the energy correlation based
on the energy correlation coefficient (ECC). For a model where
RF power sources are distributed according to a Poisson point
process and employ beamforming techniques to transfer energy
directionally, we focus on two cases: i) each power source points
the beam in a random direction; ii) each power source points the
beam to an RF-powered node located in its Voronoi cell. We first
analyze the ECC of the two cases, and then give the asymptotic
results with respect to the antenna array size. It turns out that in
both cases the harvested energy at two locations exhibit positive
correlation, and when the antenna array size tends to infinity, the
correlation in the first case vanishes while the one in the second
case is still positive. Numerical results give useful insights into
the effect of several system parameters on the energy correlation
from directed wireless energy transfer.

I. INTRODUCTION

Charging mobile devices wirelessly is one of the most
desirable features to realize self-sustainable wireless com-
munication networks, especially for the Internet of Things
[1]. However, the harvested energy may not be enough for
the information transmission due to the severe propagation
loss in wireless medium. To improve wireless energy transfer
(WET) efficiency, energy beamforming has been advocated
in recent research [2], i.e., RF power sources are equipped
with antenna arrays to form directional energy transfer beams
towards devices. Although the integration of RF-based energy
harvesting with beamforming technique may bring about huge
benefits, it complicates the WET system and hence triggers
new problems and challenges.

Clearly, performance evaluation of the directed WET is one
of the most fundamental issues in wirelessly powered networks
under different energy transfer policies, and the quantification
of the harvested energy strongly depends on the spatial dis-
tribution of RF power sources. Since stochastic geometry has
been widely used to model and analyze large-scale wireless
networks, it naturally becomes a popular tool in the WET field.
Regardless of the kind of wireless network being powered, the
main idea behind the majority of existing works is to model
the locations of both the RF sources and RF-powered nodes
as independent homogeneous Poisson point processes, and

investigate the average energy transfer success probability (or,
equivalently, the energized probability of RF-powered nodes).
Then, the energized RF-powered nodes, namely the active
transmitters in the communication phase, are simply assumed
to be formed by independently thinning the Poisson distributed
RF-powered nodes with the energized probability [3–6]. While
such analytical method leads to tractable results, the analytical
insights provided are quite limited since it does not take the
energy correlation, i.e., the spatial correlation of the energy
harvested from RF transmitters, into account. This correlation,
however, plays a critical role in accurately characterizing the
spatial configuration of the active transmitters in the commu-
nication phase which will significantly affect the performance
of wirelessly powered networks [7, 8].

In this paper, we study the spatial correlation of the energy
harvested from a Poisson field of RF power sources through
directional energy transfer techniques. Due to the integration
of energy beamforming, the energy correlation becomes sig-
nificantly more challenging than that in omni-directional WET
scenario, and accordingly, the pair correlation function which
is by far the most commonly used measure to characterize
the spatial correlation in stochastic geometry seems infeasible.
Instead, we establish an analytical framework to characterize
the energy correlation through the energy correlation coeffi-
cient (ECC). To be specific, two energy beamforming policies
are considered: one is that each RF power source randomly
selects the energy beam direction; the other is that each RF-
powered node harvests the energy from the aligned beam
of its nearest RF power source. Using stochastic geometry,
we provide analytical expressions of the ECC for the two
policies. It is revealed that the energy correlation is positive
in both policies and weaken in multipath. Furthermore, we
give asymptotic expressions for the ECC under each policy
with respect to the antenna array size. The results show that
compared with omni-directional WET, the directional WET
reduces the degree of the energy correlation, and different
energy beamforming policies have different effects on the en-
ergy correlation. Overall, this paper provides a new analytical
approach to investigate the energy correlation which does not
require the specification of a point process of RF-powered
nodes and captures the correlation structure directly from the
energy field induced by the power sources.



II. SYSTEM MODEL

A. Network model

We consider a wireless network powered solely by ambient
RF power sources (which include cellular base stations, power
beacons, WiFi hotspots, etc.), where the locations of RF
power sources are modeled as a Poisson point process Φ
of density λ. We assume that each RF power source is
equipped with a uniform linear array (ULA) composed of N
antenna elements to perform directional energy beamforming,
and the RF-powered node has a single antenna. The channel
(power) gain between transmitter x and receiver y is given
by Gxyhxyℓ(x − y), where Gxy is the antenna array gain
determined by the energy beamforming policy, hxy models
the small-scale fading and ℓ(x− y) represents the large-scale
path loss. We assume that the fading coefficient follows a
gamma distribution Gamma(M, 1

M ) (i.e., Nakagami fading),
and all hxy are mutually independent and also independent of
the point process. We consider a bounded path loss law

ℓ(x) =
1

ϵ+ ∥x∥α
, (1)

where ϵ > 0 avoids having singularity at ∥x∥ = 0 and α is
the path loss exponent. To maintain analytical tractability, a
sectorized antenna model [9] is adopted to approximate the
actual antenna pattern, and the antenna gain function is

G(φ) =

{
Gm if |φ| ≤ w

2
Gs otherwise, (2)

where φ ∈ [−π, π) is the angle off the beam direction,
w ∈ (0, 2π] is the half-power beam width, Gm and Gs are
the array gains of the main and side lobes. Assuming a ULA
with half-wavelength antenna spacing, we have Gm = N and
w = 4πG−1

act(Gm/2) with Gact(x) =
sin2(πNpx)
N sin2(πx)

denoting the
actual antenna pattern [10]. To ensure the power constraint
1
2π

∫ 2π

0
G(φ)dφ = 1, we have Gs =

2π−Gmw
2π−w .

B. Wireless Energy Harvesting Model

The correlation coefficient of the harvested energy at two
locations is used to characterize the energy correlation caused
by the specific energy beamforming policy. Due to the motion-
invariance of the PPP, the correlation coefficient merely de-
pends on the inter-point distance, i.e., the distance of two
locations, and accordingly, we focus on the harvested energy
at the origin o and z = (d, 0). Letting E(y) be the harvested
energy at location y, the ECC is given by

χ(d) =
E[E(o)E(z)]− EE(o)EE(z)√

var(E(o))var(E(z))
. (3)

We consider two practical energy beamforming policies and
establish the energy harvesting models as follows.

1) Randomly directed energy transfer (RDET) policy: In
this case, each RF power source randomly selects the beam
direction of the energy transfer link. Hence, for an RF-powered
device located at y, its angle φx(y) off the beam direction of
each RF power source x is randomly and uniformly distributed

in [−π, π), and the antenna array gain G(φx(y)) has the
probability mass function (PMF)

G(φx(y)) =

{
Gm w.p. qm = w

2π
Gs w.p. qs = 1− w

2π .
(4)

Using the linear energy harvesting model, the harvested energy
ER(y) at y from all the RF power sources is

ER(y) =
∑
x∈Φ

G(φx(y))hxyℓ(x− y). (5)

2) Nearest directed energy transfer (NDET) policy: In this
case, each RF-powered device is associated with its nearest
RF power source which aligns the beam direction pointing to
one RF-powered device in its Voronoi cell1. Letting x1 ∈ Φ be
the nearest RF power source to the origin, pointing its beam
to o, then the harvested energy at o is

EN(o) = Gmhx1oℓ(x1) +
∑

x∈Φ\{x1}

G(φx(o))hxoℓ(x). (6)

For the harvested energy at z, we need to consider whether it
has the same nearest RF power source x1. Denote by x2 ∈ Φ
the nearest RF power source to z. If x2 = x1, o and z are both
in the Voronoi cell of x1. Since the time instant considered
in the ECC analysis is when the origin is getting the beam
targeted toward it, the harvested energy at z is

EN(z) = G(φx1(z))hx1zℓ(x1−z)
+
∑

x∈Φ\{x1}

G(φx(z))hxzℓ(x−z), (7)

where G(φx1
(z)) depends on the angle φx1

(z) off the beam
direction of the RF power source x1 (namely the direction
from x1 to o). If x2 ̸= x1, we focus on the case that x2 points
its beam to z and the harvested energy is

EN(z) = Gmhx2zℓ(x2 − z) +
∑

x∈Φ\{x2}

G(φx(z))hxzℓ(x− z). (8)

III. ANALYSIS OF ENERGY CORRELATION COEFFICIENT

In this section, we provide analytical results for the ECC
at two locations and investigate the features of the energy
correlation under RDET and NDET policies, respectively.

A. Analysis of RDET

In this policy, εR(o) and εR(z) are identically distributed
but not independent, and the ECC is given by

χR(d) =
E[ER(o)ER(z)]− E[ER(o)]2

E[ER(o)2]− E[ER(o)]2
. (9)

Although each RF power source randomly selects the beam
direction, the antenna array gains from an RF power source
to two different locations are still correlated with each other,
which affects the calculation of E[ER(o)ER(z)]. As a result,
we first give the PMF of G̃(x, z) = G(φx(o))G(φx(z)) for
an RF power source x in the following lemma.

1If multiple (at least two) RF-powered devices have the same nearest RF
power source, the beam direction could be pointed to different devices in a
time-division manner.



Lemma 1. Given that an RF power source is located at x =
(r cos θ, r sin θ), the PMF of G̃(x, z) is given by

G̃(x, z) =


G2

m w.p. w−min(w,ν)
2π

GmGs w.p. min(w,ν)
π

G2
s w.p. 1− w+min(w,ν)

2π .

(10)

where ν = arccos
(

r−d cos θ√
r2+d2−2rd cos θ

)
denotes the angle be-

tween the directions from x to o and z.
Proof: See Appendix A.

With the help of Lemma 1, we further give the ECC in the
RDET case in the following theorem.

Theorem 1. Letting ζ(x, z) = E(G̃(x, z)), the ECC of ER(o)
and ER(z) with the RDET policy is given by

χR(d) =
M

M + 1

∫
R2 ζ(x, z)ℓ(x)ℓ(x− z)dx

(G2
mqm +G2

sqs)
∫
R2 ℓ2(x)dx

. (11)

Proof: To derive the energy correlation coefficient χR(z),
EER(o), E[ER(o)2] and E[ER(o)ER(z)] are needed. Firstly,
using the Campbell’s theorem and Ehxo = 1, we have

EER(o) = λ

∫
R2

E[G(φx(o))]ℓ(x)dx
(a)
= λ

∫
R2

ℓ(x)dx, (12)

where step (a) uses the constraint Gmw+Gs(2π−w) = 2π.
Secondly, the second moment of the harvested energy is

E[ER(o)2]
= E

∑
x∈Φ

G2(φx(o))h
2
xoℓ

2(x)

+E
x ̸=y∑
x,y∈Φ

G(φx(o))G(φy(o))hxohyoℓ(x)ℓ(y)

(b)
= λ

M + 1

M

∫
R2

E[G2(φx(o))]ℓ
2(x)dx

+λ2
∫
R2

∫
R2

E[G(φx(o))]ℓ(x)E[G(φy(o))]ℓ(y)dxdy

= λ
(G2

mqm +G2
sqs)(M + 1)

M

∫
R2

ℓ2(x)dx+ E[ER(o)]2, (13)

where step (b) follows from the independence of hxo and hyo,
E[h2xy] = (M + 1)/M , the independence of G(φx(o)) and
G(φy(o))) as well as the second-order product density formula
of the PPP [11].

Lastly, the mean of ER(o)ER(z) is

E[ER(o)ER(z)]
= E

∑
x∈Φ

G(φx(o))G(φx(z))hxoℓ(x)hxzℓ(x− z)

+E
x ̸=y∑
x,y∈Φ

G(φx(o))G(φy(z))hxohyzℓ(x)ℓ(y − z)

(c)
= λ

∫
R2

E[G̃(x, z)]ℓ(x)ℓ(x− z)dx

+λ2
∫
R2

∫
R2

E[G(φx(o))]ℓ(x)E[G(φy(z))]ℓ(y − z)dxdy

= λ

∫
R2

ζ(x, z)ℓ(x)ℓ(x− z)dx+ E[ER(o)]2, (14)

where step (c) follows by similar reasoning as step (b).
From (11), we observe that the ECC is positive and in-

creases with the fading parameter M . Put differently, the
small-scale fading (especially in multipath) reduces the energy
correlation under the RDET policy. Moreover, it is interesting
to explore how the antenna array size N (or, equivalently, the
beamwidth) affects the correlation and what happens when
N → ∞.

Corollary 1. Letting N → ∞, we have χR(d) → 0.

Proof: When N → ∞, we have Gm → ∞ and w → 0.
Furthermore, according to the power constraint, we have Gs <
1. Thus, it is obtained that

G̃(x, z) =

{
GmGs w.p. w

π
G2

s w.p. 1− w
π ,

(15)

and
ζ(x, z) =

w

π
GmGs + (1− w

π
)G2

s . (16)

Then, the energy correlation coefficient can be further ex-
pressed as

χR(d)=
GmGs

w
π +G2

s (1− w
π )

G2
m
w
2π +G2

s (1− w
2π )

M
∫
R2 ℓ(x)ℓ(x− z)dx

(M + 1)
∫
R2 ℓ2(x)dx︸ ︷︷ ︸
A

=A 2wGs +G2
s (π − w)/Gm

Gmw +Gs(2π − w) + (
G2

s

Gm
−Gs)(2π − w)

=A 2wGs +G2
s (π − w)/Gm

2π + (
G2

s

Gm
−Gs)(2π − w)

→ 0. (17)

Remark 1. This corollary shows that the energy correlation
at two locations becomes uncorrelated when N → ∞, which
implies that using the independent thinning method to form the
energized RF-powered devices is only accurate in the extreme
case when the RF power sources are equipped with infinite
antenna arrays.

B. Analysis of NDET

In this policy, each RF power source points the beam to the
powered devices lying in its Voronoi region. As a consequence,
it is possible that two RF-powered nodes have the same
nearest RF power source, which significantly complicates
the theoretical derivations. To simplify it, the total harvested
energy from all RF power sources is approximated by the
harvested energy from the nearest RF power source, resulting
in EN(o) ≈ Gmhx1oℓ(x1) and

EN(z) ≈
{
G(φx1(z))hx1zℓ(x1 − z) if x2 = x1
Gmhx2zℓ(x2 − z) if x2 ̸= x1.

(18)

To characterize the energy correlation, it is necessary to
derive the distance distribution of R2 = ∥x2 − z∥, which is
given in the following lemma. For notational convenience, we
define R ≜

√
r2 + d2 − 2rd cos θ, and



A(r1, r2, d) ≜ π(min{r1, r2})2, d ≤ |r1 − r2|
r21φ1 + r22φ2 − s∆, |r1 − r2| < d < r1 + r2
0, otherwise

(19)

is the intersection area of two disks with radii r1 and r2 at
distance d, where

φ1 = arccos

(
r21 + d2 − r22

2r1d

)
, (20)

φ2 = arccos

(
r22 + d2 − r21

2r2d

)
, (21)

s∆ =
1

2

√
[(r1 + r2)2 − d2][d2 − (r1 − r2)2]. (22)

Lemma 2. Given that the nearest RF power source to the
origin x1 is located at (r cos θ, r sin θ), the two locations z
and o have the same nearest RF power source with probability

ϖ(r, θ) = e−λ(πR
2−A(R,r,d)), (23)

and the unconditional probability is

psame =

∫ π

0

∫ ∞

0

2λre−λπr
2

ϖ(r, θ)drdθ. (24)

Conditioned on x2 ̸= x1, the cumulative distribution function
of the distance R2 is given by

FR2(r2) =

{
1−e−λ(πr22−A(r2,r,d))

1−ϖ(r,θ) r2 ∈ [ψ(r), R]

0 otherwise.
(25)

where ψ(r) = max(0, r − d).
Proof: See Appendix B.

Theorem 2. The ECC of EN(o) and EN(z) with the NDET
policy is approximated as

χN(d) ≈
ξzo − ηoηz√

(κo − η2o)(κz − η2z)
, (26)

where

ηo = πλ

∫ ∞

0

e−πλr

ϵ+ rα/2
dr, (27)

κo = πλ
M + 1

M

∫ ∞

0

e−πλr

(ϵ+ rα/2)2
dr, (28)

ηz =

∫ π

0

∫ ∞

0

2λre−πλr
2

[
ϖ(r, θ)G(r, θ)

ϵ+Rα

+

∫ R

ψ(r)

(1−ϖ(r, θ))
dFR2(r2)

ϵ+ rα2

]
drdθ, (29)

κz =
M + 1

M

∫ π

0

∫ ∞

0

2λre−πλr
2

[
ϖ(r, θ)G2(r, θ)

(ϵ+Rα)2

+

∫ R

ψ(r)

(1−ϖ(r, θ))
dFR2

(r2)

(ϵ+ rα2 )
2

]
drdθ, (30)

ξzo =

∫ π

0

∫ ∞

0

2λre−πλr
2

[
ϖ(r, θ)G(r, θ)

(ϵ+ rα)(ϵ+Rα)

+

∫ R

ψ(r)

(1−ϖ(r, θ))
dFR2(r2)

(ϵ+ rα)(ϵ+ rα2 )

]
drdθ, (31)

G(r, θ) =

{
1 if | arccos( r−z cos(θ)R )| ≤ w

2
Gs/Gm otherwise.

(32)

Proof: Using the contact distance distribution of the PPP
f∥x1∥(r) = 2πλre−πλr

2

[12], it is easy to derive the first- and
second-order moments of the approximate harvested energy at
the origin. For EN(z) in (18), its expectation is derived as

EEN(z) = E[G(φx1(z))hx1zℓ(x1 − z) | x2 = x1]

+E[Gmhx2zℓ(x2 − z) | x2 ̸= x1]

(a)
=

∫ 2π

0

∫ ∞

0

f∥x1∥(r)

2π

ϖ(r, θ)Ḡ(r, θ)

ϵ+ ∥x1 − z∥α
drdθ

+

∫ 2π

0

∫ ∞

0

f∥x1∥(r)

2π
Ex2

[ (1−ϖ(r, θ))Gm

ϵ+ ∥x2 − z∥α
]
drdθ

(b)
=

∫ π

0

∫ ∞

0

f∥x1∥(r)

π

ϖ(r, θ)Ḡ(r, θ)

ϵ+Rα
drdθ

+

∫ π

0

∫ ∞

0

f∥x1∥(r)

π
ER2

[ (1−ϖ(r, θ))Gm

ϵ+Rα2

]
drdθ

=

∫ π

0

∫ ∞

0

2λre−πλr
2

[
ϖ(r, θ)Ḡ(r, θ)

ϵ+Rα

+

∫ R

ψ(r)

(1−ϖ(r, θ))
GmdFR2(r2)

ϵ+ rα2

]
drdθ, (33)

where step (a) follows that the angle θ of x1 is uniformly
distributed in [0, 2π) and Ḡ(r, θ) is the array gain from x1 to
z when x1 points its beam to o, given by

Ḡ(r, θ) =

{
Gm if | arccos( r−z cos(θ)R )| ≤ w

2
Gs otherwise.

(34)

and step (b) follows from the symmetry of θ ∈ [0, π] and
[π, 2π] and R2 = ∥x2 − z∥.

Similar to the derivation of EEN(z), we can also obtain the
expressions of E[EN(z)2] and E[EN(o)EN(z)]. Substituting the
above results into (3), the final result is obtained.

It is observed that increasing M reduces both κo and κz , and
hence increases the ECC under the NDET policy. Furthermore,
we also investigate what happens to the energy correlation
when N → ∞.

Corollary 2. Letting N → ∞, we have

χN(d) →
ξ̃zo − ηoη̃z√

(κo − η2o)(κ̃z − η̃2z)
, (35)

where

η̃z =

∫ π

0

∫ ∞

0

∫ R

ψ(r)

2λre−πλr
2 (1−ϖ(r, θ))dFR2(r2)

ϵ+ rα2
drdθ,

κ̃z =
2λ(M+1)

M

π∫
0

∞∫
0

R∫
ψ(r)

re−πλr
2

(1−ϖ(r, θ))dFR2(r2)

(ϵ+ rα2 )
2

drdθ,

ξ̃zo =

∫ π

0

∫ ∞

0

∫ R

ψ(r)

2λre−πλr
2 (1−ϖ(r, θ))dFR2(r2)

(ϵ+ rα)(ϵ+ rα2 )
drdθ.

Proof: When N → ∞, we have w → 0 and Gs/Gm → 0,
and the final results are obtained.
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Fig. 1. The ECCs versus the inter-point distance for RDET and NDET. Fig. 2. The ECCs versus the antenna array size for RDET and NDET.

Remark 2. This corollary implies that the correlation of the
harvested energy at two locations does not disappear when
N → ∞, which means the energized point process cannot
be simply approximated by independently thinning the point
process of RF-powered devices.

IV. NUMERICAL RESULTS

In this section, the ECCs are evaluated for the RDET and
NDET policies to illustrate their relation and the effects of
system parameters, where the small-scale channel fading is
ignored (i.e., M → ∞). The default system parameters are
λ = 0.1, α = 4, ϵ = 0.01, and N = 8.

Fig. 1 plots the ECC as a function of the inter-point distance
d with different ϵ for the RDET and NDET. It can be seen that
the approximate analytical results of the NDET policy match
the simulation results well, which confirms the accuracy and
effectiveness of the proposed approximation. From the overall
trend, the ECCs for both policies are positive and decrease
with the increase of d, finally tending to zero for different
parameter settings. The difference is that NDET yields a larger
ECC (i.e., stronger energy correlation) and decreases to zero
with a lower rate than RDET. This comes from the difference
in transmitting directional beams, and the random directed
policy reduces the energy correlation. Moreover, it is observed
that a smaller ϵ leads to a weaker energy correlation between
two locations. The reason is that the nearby RF power sources
usually contribute more energy to RF-powered nodes than the
others, and as ϵ decreases, their contributions become more
dominant to the total energy that can be harvested.

Fig. 2 illustrates the ECC versus the antenna array size
N for different inter-point distances d under the RDET and
NDET policies. For the RDET policy, it is shown that the
ECC decreases with the increase of N . This is because the
amount of the harvested energy highly depends on the main
lobe of the RF power source, and a narrower beam formed
by a larger antenna array decreases the probability that two
RF-powered nodes are covered by the main lobe of the same

RF power source. In other words, narrowing the beamwidth
decreases the energy correlation. Compared with the RDET,
NDET is a more complicated case and its ECC curves are
more interesting and distinctive: 1) for different d, the ECC
does not always change monotonically with N ; 2) each curve
of the NDET converges to the extreme case of N → ∞; 3) the
ECC of d = 0.1 is higher than that of d = 0.5 when N < 100,
and the opposite phenomenon occurs when N > 100. In the
NDET policy, there are two possible cases: one is that the
two RF-powered nodes have the same RF power source, with
the probability of 0.96 and 0.81 for d = 0.1 and d = 0.5,
respectively; and the other is that the two RF-powered nodes
have different nearest RF power sources. Thus, the reason
behind the above observations is that the energy correlation
is dominated by the former or the latter case, which is closely
related with the inter-point distance and antenna array size.

V. CONCLUSIONS

In this paper, we analyzed the ECC in a wirelessly powered
network where the RF power sources are distributed according
to a PPP and transfer the energy directionally through two
energy beamforming policies. We proved that the energy
harvested from directed RF beams are spatially correlated,
which should be taken into account when analyzing the WET-
enabled communication performance. Besides, we found that
the introduction of the energy beamforming technique weakens
the energy correlation as in the omni-directional case, and
different energy beamforming policies would result in distinct
features of energy correlation, which should be carefully
selected according to the specific kind of RF sources and their
applicable scenes. It is also shown that parameters regarding
to the pathloss and small-scale fading, the inter-point distance
as well as the antenna array size have significant impacts on
the spatial correlated degree of the harvested energy. In the
future, the ECC analysis will play an important role in the
modeling of the WET-enabled communication networks and
the communication performance analysis.
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APPENDIX A
PROOF OF LEMMA 1

Proof: As shown in the left figure of Fig. 3, ν denotes the
angle between the directions from x to o and z, and according
to the cosine law, we have ν = arccos

(
r−d cos θ√

r2+d2−2rd cos θ

)
.

G̃(x, z) depends on the relative angle relationship between ν
and the beam direction. We first consider the case of ν ≥
w and G̃(x, z) can be either G2

s or GmGs. Since the beam
direction is uniformly distributed in [0, 2π], the probability of
merely one direction (either x → z or x → o) lying in the
beam is 2w

2π . Thus, we have

G̃(x, z) =

{
GmGs w.p. w

π
G2

s w.p. 1− w
π .

(36)

For the case of ν < w, the probability of the two directions
(both x → z and x → o) lying in the beam is w−ν

2π , and
then the probability of merely one direction (either x→ z or
x→ o) lying in the beam is 2ν

2π . So we have

G̃(x, z) =

 G2
m w.p. w−ν

2π
GmGs w.p. ν

π
G2

s w.p. 1− w+ν
2π .

(37)

Combining the above two cases, the final result is obtained.

APPENDIX B
PROOF OF LEMMA 2

As shown in the right figure of Fig. 3, x1 is the nearest RF
power source to the origin o and R denotes the distance from
x1 to z. We first derive the probability of o and z having the
same nearest RF power source x1, which is equivalent to the
case that no RF power source is in the shadow region. Then
the corresponding probability of this event is given by

ϖ(r, θ) = e−λ(πR
2−A(R,r,d)), (38)

where πR2 − A(R, r, d) is the area of the shadow region.
The unconditional probability is obtained by using the contact
distance distribution of the PPP f∥x1∥(r) = 2πλre−πλr

2

[12]
and the angle θ of x1 randomly uniformly distributed in
[0, 2π), and we have

psame =

∫ 2π

0

∫ ∞

0

1

2π
f∥x1∥(r)ϖ(r, θ)drdθ

(a)
=

∫ π

0

∫ ∞

0

2λre−πλr
2

ϖ(r, θ)drdθ, (39)

where step (a) follows the symmetry of ϖ(r, θ) over θ ∈ [0, π]
and [π, 2π].

Secondly, conditioned on z having a different nearest RF
power source x2, the cumulative distribution function of the
distance from x2 to z, denoted by R2, is given by

FR2(r2) = P(R2 < r2 | x2 ̸= x1)

x

o

q

n

( ,0)z d=

r

beam
w

o

1x

qr

R

z

2x

2R

Fig. 3. Illustrations for the proofs of Lemma 1 (left) and Lemma 2 (right).

=
P(X )

1− e−λ(πR2−A(R,r,d))
, (40)

where X denotes the event that there is no RF power source
in the region b(z, r2) \ b(z, r2) ∩ b(o, r), and thus we have

P(X ) = 1− e−λ(πr
2
2−A(r2,r,d)). (41)

According to the geometrical relationship, we further obtain
R2 ∈ [max(0, r − d), R].
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