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Abstract—In the analysis of large-scale wirelessly powered
networks, the energy correlation is often ignored for analytical
tractability. Accounting for the energy correlation, this paper
introduces and promotes the Poisson disk process (PDP) as a
model for the active RF-powered nodes that succeed in harvesting
energy. To show that the model leads to tractable results in
several cases of interest, we derive the density and second moment
density of the PDP and find the key property that the PDP can
be fully characterized by its first- and second-order statistics.
Tight bounds for its probability generating functional (PGFL) are
also provided. To show that the model is relevant for wirelessly
powered networks that exhibit positive energy correlation, we
fit the PDP to a given energized point process incorporating
practical energy harvesting factors and derive the information
transmission success probability. It turns out that the resulting
PDP can closely model the distribution of actual energized RF-
powered nodes in terms of the success probability and other
statistics while preserving analytical tractability.

I. INTRODUCTION

As a powerful tool for the performance analysis of wireless
networks, stochastic geometry has naturally been the preferred
choice for modeling and analyzing wirelessly powered net-
works due to its realism in capturing the irregularity of node
locations [1]. The authors in [2] investigated the tradeoffs
between transmit power and density of mobile devices and
wireless power beacons which are modeled as two independent
homogeneous Poisson point processes (PPPs). As an exten-
sion, the work of [3] studied wireless energy harvesting in
an uplink K-tier cellular network, where the locations of the
users and base stations (BSs) were modeled using independent
PPPs. Analytical results on wireless energy harvesting were
also obtained for relay [4], cognitive [5], device-to-device [6],
and millimeter-wave [7] networks in a stochastic geometry-
based framework.

Although many efforts have been made, the research in
this direction mostly focuses on the setting where the active
communication nodes simply form an independent thinning
of the RF-powered nodes, which are independent of the RF
power sources. As a result, the network topology in the energy
transfer phase is independent of that in the communication
phase. This clearly deviates from reality since the energy trans-
fer performance has a fundamental impact on the topology
of the energized RF-powered nodes (i.e., the active commu-
nication nodes) and hence the communication performance.
The connection between the energy and information transfer
fundamentally lies in the spatial correlation of the amount of

energy that can be harvested by RF-powered nodes, namely the
energy correlation. In order to capture the energy correlation
in wirelessly powered networks, a new point process, named
energized point process (EPP), has recently been proposed to
model the energized RF-powered nodes [8]. It is a general
model that can be concretized for any given energy harvesting
model. However, the drawback is that an exact characterization
of the system performance indicators, such as the success
probability and area spectral efficiency, becomes quite chal-
lenging. The only approach so far is to use a homogeneous
PPP or a Poisson cluster process (PCP) to approximate the EPP
[8], which usually leads to either inaccurate or complex-form
analytical results. To our best knowledge, tractable models
that accurately model the wirelessly powered networks with
energy correlation are still unavailable, an issue that needs to
be resolved urgently.

In this paper, we focus on the Poisson disk process (PDP)
where disks are created around nodes (namely the RF trans-
mitters) modeled by a homogeneous PPP and only the RF-
powered nodes located within disks are retained. The PDP is
a simple type of EPP where an RF-powered node succeeds in
harvesting enough energy if and only if there is at least one
RF transmitter within a given distance. As such, it achieves a
good tradeoff between modeling accuracy and tractability.

II. MATHEMATICAL PRELIMINARIES

Here we give a brief overview of some terminology and
mathematical tools from stochastic geometry. Readers are
referred to [1, 9, 10] for further details.

Definition 1 (Germ-grain model [1, Def. 13.1]). Let Φ =
{x1, x2, . . .} be a point process on R2, the germs, and
(S1, S2, . . .) a collection of random non-empty sets, the grains.
Then the union Ξ =

⋃
i∈N

xi + Si is a germ-grain model.

Definition 2 (Boolean model [1, Def. 13.4]). A Boolean
model is a germ-grain model where the germ point process
is a uniform PPP and the grains Si are i.i.d.

Definition 3 (Boolean Cox process on disks [9, Sec. 2.1]).
Let Ξ =

⋃
i∈N

b(yi, R) be a Boolean germ-grain model where

{y1, y2, . . .} is a stationary Poisson point process with inten-
sity β > 0 and b(yi, R) denotes a disk centered at yi with
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Fig. 1. A realization of the PDP with β = 0.01, λI = 0.2, and R = 5.

radius R. Then, let Φ = {x1, x2, . . .} be a Cox process with
random driving measure Λ induced by Ξ as

Λ(dx) =

{
λIdx if x ∈ Ξ
λIIdx if x /∈ Ξ

(1)

where 0 ≤ λI, λII < ∞ and max{λI, λII} > 0. This Cox
process is called Boolean Cox process on disks.

Note that when λI = 0, it reduces to the Swiss cheese model
(also called Poisson hole process [10, 11]); and when λII = 0,
it reduces to the inner-city model [1].

III. THE POISSON DISK PROCESS

A. Definition

Definition 4 (Poisson disk process, PDP). The Poisson disk
process is a Boolean Cox process on disks with λII = 0.

Fig. 1 shows an example realization of the PDP. From the
definition, the PDP Φp can be described by a Boolean model
on disks Ξ =

⋃
y∈Φ1

b(y,R) with two PPPs Φ1 and Φ2 of densi-

ties β and λI, respectively. Hence we have Φp = Φ2 ∩Ξ. The
PDP is a dependent thinning of Φ2 and can be viewed as a Cox
process with intensity field κp(x) = λI1

(
Φ1

(
b(x,R)

)
> 0

)
,

where 1(·) denotes the indicator function and Φ1

(
b(x,R)

)
is

the number of points in Φ1 located in b(x,R).

B. Basic Properties

Since Φp is motion-invariant, its density is a constant and
its second moment density ρ(2)(x, y) = ρ

(2)
mi (u) depends only

on the distance u = ‖x− y‖. For the density of the PDP, we
have λp = λIPp(R), where Pp(R) is the retaining probability
of a point at the origin [9], given by

Pp(R) = 1− exp(−βπR2). (2)

The second moment density is a key statistic that de-
scribes the pairwise correlation of a point process. For the
PPP, ρ(2)(x, y) = λ2, because points are independent. If

ρ(2)(x, y) > λ2, points at distance ‖x− y‖ exhibit clustering,
and if ρ(2)(x, y) < λ2, points exhibit repulsion. In the
following lemma, we give a closed-form expression for the
second moment density of the PDP ρ

(2)
mi (u).

Lemma 1. The second moment density ρ(2)
mi (u) of the PDP is

ρ
(2)
mi (u) = λ2

I

(
1− 2e−βπR

2

+ e−β
(

2πR2−A(R,u)
))
, (3)

where

A(R, u) =

{
2R2 arccos

(
u

2R

)
− u
√
R2− u2

4 if u ≤ 2R

0 otherwise
(4)

is the intersection area of two disks with radius R at distance
u.

Proof: See Appendix A

According to [1, Def. 6.6], the pair correlation function is
given by

gp(u) ,
ρ

(2)
mi (u)

λ2
p

= 1 +
e−2βπR2(

eβA(R,u) − 1
)

(1− e−βπR2)2
. (5)

As expected from the clustered nature of the PDP, gp(u) ≥ 1
for all u ≥ 0. Given the density λp and the pair correlation
function gp(u), we obtain for the PDP that

R =
1

2
min
u>0
{u : gp(u) = 1}, (6)

β =
1

πR2
log

gp(0)

gp(0)− 1
, (7)

λI = λp/gp(0). (8)

Thus, the PDP is fully characterized by its first-order statistic
λp and its second-order statistic gp(u) (or ρ(2)(u))1. This
implies that a suitable PDP can be used to generate point
distributions with any given intensity and pair correlation
function that satisfy certain constraints.

C. Probability generating functional

The PGFL is a key tool in a point process theory, which
has many applications in wireless networks. Most notably, it
can be used to evaluate the Laplace transform of the sum
of all the interfering signal powers emitted from a PDP
field of interferers. In this subsection, we consider the PGFL
conditioning on that there is a point of the process Φp at the
origin but without including the point. Denoting by E!o(·) the
expectation with respect to the reduced Palm measure [1, Def.
8.4.1], the conditional PGFL is defined as

G![v] , E!o
( ∏
x∈Φp

v(x)
)
, (9)

where v is a function: R2 7→ [0, 1] such that 1 − v
has bounded support. For notational convenience, we define

1The Matérn cluster process also has this property but not the Thomas
cluster process [1].



V (R, y) ,
∫
b(y,R)

[1 − v(x)]dx, bc(o, t) , R2 \ b(o, t) and
y0 , arg min{y ∈ Φ1 : ‖y‖}. Next, we derive bounds and
approximation on the conditional PGFL.

Theorem 1 (Bounds on the conditional PGFL of the PDP).
Let

Ĝ![v] ,
1

Pp(R)

∫
b(o,R)

βe−βπ‖y‖
2−λIV (R,y)dy, (10)

Ǧ![v] ,
1

Pp(R)

∫
b(o,R)

βe−βπ‖x‖
2−λIV (R,x)

× exp
(
− β

∫
bc(o,‖x‖)

1− e−λIV (R,y)dy
)

dx. (11)

The conditional PGFL of the PDP is bounded by Ǧ![v] <
G![v] < Ĝ![v].

Proof: See Appendix B.

Since bc(o,R) ⊂ bc(o, ‖x‖) if x ∈ b(o,R), the lower bound
Ǧ![v] with three nested integrals can be used to obtain an
approximation in a simpler form (two nested integrals) as

Ǧ![v] ≈ 1

Pp(R)
exp
(
− β

∫
bc(o,R)

1− e−λIV (R,y)dy
)

×
∫
b(o,R)

βe−βπ‖y‖
2−λIV (R,y)dy. (12)

Remark 1: To maintain tractability, the overlaps of the
disks in the Boolean model are not considered in deriving
the lower bounds. Thus, the tightness of the lower bounds
greatly depends on the number of disks that cause a point
to be retained, which follows a Poisson distribution with
mean βπR2 [1, Thm. 13.5]. Denoting by Pc the probability
that the typical point is covered by less than two disks, we
have Pc = e−βπR

2

(1 + βπR2). Then, when Pc → 1, i.e.,
βπR2 → 0, the lower bounds get remarkably tight without
losing analytical tractability.

Remark 2: As for the upper bounds, since only the closest
disk to the origin in the Boolean model is considered, thereby
neglecting the effect of the distant points in the PDP, the
tightness of the uppers bounds is mainly determined by the
monotonicity of v(x) with ‖x‖ and the number of points of Φ2

in the closest disk. For instance, when v(x) is monotonically
decreasing with ‖x‖, e.g., when using it to represent path loss,
the upper bounds are also remarkably tight.

IV. SYSTEM MODEL

In this section, we apply the PDP to a wirelessly pow-
ered network. As discussed above, there is spatial correlation
among the amount of harvested energy by RF-powered nodes.
We first formally define the EPP and then establish the key
relationship between the PDP and the EPP.

A. Energized point process

Definition 5 (Energized point process [8]). Let Φf and Φd

be two point processes of RF transmitters and RF-powered

nodes, respectively. Then the energized point process Φe is
defined as a dependent thinning of Φd as

Φe , {x ∈ Φd : E(x,Φf) = 1}, (13)

where E(x,Φf) ∈ {0, 1} is the energy indicator function
describing whether enough energy can be harvested from Φf

at location x.

In this paper, the two point processes Φf and Φd are
assumed to be two independent homogeneous PPPs with
densities λf and λd, respectively. Then the energy indication
function is

E(x,Φf) = 1(ε(x,Φf) > ξ), (14)

where ε(x,Φf) denotes the energy harvested from Φf at
location x and ξ is the energy threshold.

It is assumed that the RF signals merely experience large-
scale path loss, and a linear energy harvesting model is
adopted. Hence, the harvested energy at x is the aggregate
received signal strength from all the RF transmitters in Φf ,
which is given by

ε(x,Φf) =
∑
y∈Φf

`(y − x), (15)

where `(x) , ‖x‖−α is the path loss function with exponent
α for the energy transfer link.

B. PDP Model for EPP

Compare Definitions 4 and 5, and let Φ1 be Φf , β be λf , Φ2

be Φd, and λI be λd. It is easily seen that the PDP behaves like
an EPP but has a simpler structure than the EPP. Thus, it is
intuitive to use the PDP as a tractable model for the active
RF-powered nodes, by establishing a relationship between
the PDP model and a given EPP that incorporates practical
energy harvesting factors. The basic idea is to determine
R by setting P

(
Φf(b(x,R)) > 0)

)
= P

(
ε(x,Φf) > ξ

)
such that λp = λe. Due to the motion-invariance of Φp,
P
(
ε(x,Φf) > ξ

)
= P

(
ε(o,Φf) > ξ

)
, Pe is the energy

harvesting success probability of the RF-powered node at the
origin. Let ϕ(w) , E(ejwε(o,Φf )) be the characteristic function
of the harvested energy at the origin. According to [1, Sec.
5.15], the characteristic function for α > 2 is expressed as

ϕ(w) = exp
(
− λfπΓ(1− δ)wδe−jπδ/2

)
, w ≥ 0, (16)

where j =
√
−1 and δ = 2/α. Using the Gil-Pelaez theorem

[12], we have

Pe =
1

2
+

1

π

∫ ∞
0

=
(
e−jwξϕ(w)

)
w

dw. (17)

Then, according to (2) and P
(
Φf(b(o,R)) > 0)

)
= Pe, we

have

R =

√
1

πλf
ln

1

1− Pe
. (18)



Fig. 2. Comparison of the EPP (left) and the fitted PDP (right) with R = 1.32,
where λf = 0.1, λd = 1, ξ = 0.5, and α = 4.

1) Special Case: When α = 4, we have

ϕ(w) = exp
(
− λfπ

3/2
√
we−jπ/4

)
, w ≥ 0, (19)

and in this case the energy harvesting success probability
admits a closed-form expression, given by

Pe = 1− 1√
π

Γ
(1

2
,
π3λ2

f

4ξ

)
. (20)

2) Special Case: When α → ∞, we have `(x) → 0 for
‖x‖ > 1 and `(x) → ∞ for ‖x‖ < 1. For the EPP in this
case, only those points with a distance to the RF transmitters
smaller than 1 can be energized. As a result, the EPP converges
to the PDP with R = 1. This observation further justifies the
use of the PDP to characterize the EPP.

Fig. 2 shows a comparison between the realizations of the
EPP and the fitted PDP under the same realization of Φf and
Φd. It is observed that the points retained in the EPP are almost
the same as those retained in the PDP, which demonstrates the
good match between the two point processes.

C. Communication Model

Each energized RF-powered node is assumed to have a
dedicated receiver at distance d in a random orientation.
Hence, the energized RF-powered nodes and their receivers
form a Cox (PDP) bipolar network. The transmit power of RF-
powered nodes is assumed to be one. We further assume that
all power fading coefficients are i.i.d. exponential (Rayleigh
fading) with a mean of one. Due to the stationarity of the
PDP, we condition on that the typical transmitter (active RF-
powered node) is located at the origin, with the corresponding
typical receiver at z = (d, 0). Letting Φop , (Φp | o ∈ Φp)

and Φ!o
p , Φop \ {o}, the received SIR of the typical receiver

is given by

SIR =
`(z)hoz
I !(z)

, (21)

where I !(z) ,
∑
x∈Φ!o

p
`(x− z)hxz is the interference.

V. ANALYSIS OF TRANSMISSION SUCCESS PROBABILITY

In this section, we provide the information transmission
success probability analysis of a wirelessly powered network,
where the locations of the transmitters in the communication

phase (i.e., the energized RF-powered nodes) are modeled by
a PDP. The success probability is defined as P (θ) , P(SIR >
θ) and can be derived through the Laplace transform of the
interference, where θ is the SIR threshold.

Letting LI!(s) be the conditional Laplace transform of I !,
we have

LI!(s) = E!o
[ ∏
x∈Φp

1

1 + s`(x− z)

]
= G!

[ 1

1 + s`(x− z)

]
.

(22)
In the bipolar communication model, since the distance d be-
tween a transmitter-receiver pair is usually set relatively small
(i.e., d� λ

−1/2
p ), we approximate I !(z) with I !(o), resulting

in LI!(s) ≈ G![ 1
1+s`(x) ]. Then the following analytical results

concerning LI!(s) with small d can be significantly simplified.
Let ĽI!(s) and L̂I!(s) be a lower and upper bound on LI!(s),
respectively. Using the polar coordinates, we have

ĽI!(s)
(b)
≈

2πλf

∫ R
0
e−λfπv

2−λdγ(v,R,s)vdv

Pp(R)

×e−2πλf

∫∞
R

(
1−e−λdγ(v,R,s)

)
vdv, (23)

L̂I!(s)=
2πλf

Pp(R)

∫ R

0

e−λfπv
2−λdγ(v,R,s)vdv, (24)

where step (b) is obtained using the simplified approximation
in (12). If v ≤ R, we have

γ(v,R, s) = 2π

R−v∫
0

rdr

1 + s−1rα
+2

R+v∫
R−v

arccos
(
v2+r2−R2

2vr

)
rdr

1 + s−1rα
,

(25)
otherwise,

γ(v,R, s) = 2

∫ R+v

v−R

arccos
(
v2+r2−R2

2vr

)
rdr

1 + s−1rα
. (26)

It is worth noting that the success probability necessarily
tends to zero for θ → ∞ while its upper bound L̂I!

(
θdα

)
tends to e−λdπR

2

. This indicates that the upper bound on the
success probability deviates more from the exact result when θ
gets large. This is mainly due to the fact that the upper bound
of the PGFL Ĝ![v] is obtained by merely considering the points
in Φ2 ∩ b(y0, R) with y0 ∈ Φ1 the nearest point to the origin,
thereby neglecting the contribution from the more distant
points in Φp. To solve this problem, we further approximate
the spatial distribution of the points in Φ2\b(y0, R) with a PPP
with density λp, which results in an accurate approximation
to the Laplace transform of the interference, given in the
following corollary.

Corollary 1. Let γ̃(v,R, s) = 2π
∫∞
R+v

r
1+s−1rα dr and

L̃I!(s) ,
2πλf

Pp(R)

∫ R

0

e−λfπv
2−λdγ(v,R,s)−λpγ̃(v,R,s)vdv, (27)

and the Laplace transform of the interference is approximated
as LI!(s) ≈ L̃I!(s).

Proof: See Appendix C.
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Fig. 3. The validation of the analytical results derived from the PDP. Fig. 4. The success probability of the PDP-based network.

VI. NUMERICAL RESULTS

In this section, we provide the numerical results concerning
the success probability in PDP-modeled wirelessly powered
network with energy correlation. The default values of the
main parameters are β = λf = 0.1, λI = λd = 1, α = 4,
ξ = 1 and d = 0.1 where applicable.

Fig. 3 compares the transmission success probability in
the communication phase using different approaches, where
the simulation result is based on a given EPP incorporating
practical energy harvesting factors. We observe that both
the proposed bounds and the approximation by the PDP
are quite close to the simulation results, demonstrating the
effectiveness and rationality of using the PDP to characterize
the EPP. Furthermore, it can be seen that the PPP-based results
always deviate from the simulations obviously despite of its
simplicity.

Fig. 4 compares the EPP-based simulations and the PDP-
based analytical results for different RF transmitter densities
and energy thresholds. It is observed that the PDP-based
approximation matches with the actual result extremely well
for different parameter setups since it incorporates both strong
interferers nearby and the weak ones far away. The lower
bound is tight for certain parameter settings, e.g., for a small
density of RF transmitters (sparse deployment) or a large
energy threshold (strong clustering behavior). The reason is
that the overlaps among different disks are ignored in the PDP
model, and the larger λf or the smaller ξ (leading to a larger
R), the more likely the overlaps occur.

VII. CONCLUSIONS

Since the energy correlation establishes a dependence be-
tween energy and information transfer, it plays an important
role in the communication phase. Although some prior work
has addressed the energy correlation issue, an exact character-
ization of the communication performance is still unavailable.
Our work is the first to propose a tractable yet accurate model,

named PDP, for the energized RF-powered nodes and focus
on the accurate performance characterization of a wirelessly
powered network with energy correlation.

We first investigated the basic properties of the PDP and
used it as a model for characterizing a given point set of EPP
considering practical energy harvesting factors. Interestingly,
the PDP can be viewed as a kind of EPP but with a simpler
structure, which is fully characterized by its first- and second-
order statistics. Secondly, we provided tight bounds as well as
accurate approximation for its PGFL and its application to the
analysis of the information transmission success probability.
We show that, remarkably, the PDP is superior to the PPP in
balancing the accurate modeling and analytical tractability.
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APPENDIX A
PROOF OF LEMMA 1

Proof: According to the definition of Ripley’s K function
[1, Def. 6.8], we have

λpK(r) =
2π

λp

∫ r

0

ρ
(2)
mi (u)udu, (28)

where λpK(r) is the mean number of points y ∈ Φp that
satisfy 0 ≤ ‖y − x‖ ≤ r given that x ∈ Φp. Hence we have

λpK(r)

=E!o[Φp(b(o, r))]

=E
[ ∑
y∈Φ2

1
(
‖y‖ < r ∩ Φ1

(
b(y,R)

)
> 0
)
| Φ1

(
b(o,R)

)
>0
]

(a)
=λI

∫
b(o,r)

P
(

Φ1

(
b(y,R)

)
> 0 | Φ1

(
b(o,R)

)
> 0
)

dy



=
λ2

I

λp

∫
b(o,r)

P
(

Φ1

(
b(y,R)

)
> 0,Φ1

(
b(o,R)

)
> 0
)

dy, (29)

where step (a) uses Campbell’s theorem. Letting u , ‖y‖,
Vu(R) , b(o,R) ∩ b(y,R) and bc(y,R) , b(y,R) \ Vu(R),
the event {Φ1

(
b(y,R)

)
> 0,Φ1

(
b(o,R)

)
> 0} is partitioned

into two events: one is {Φ1

(
Vu(R)

)
> 0}; the other is

{Φ1

(
bc(o,R)

)
> 0,Φ1

(
bc(y,R)

)
> 0} conditioning on

{Φ1

(
Vu(R)

)
= 0}. According to the total probability law and

polar coordinates, we have

λpK(r) =
2πλ2

I

λp

r∫
0

(
1− 2e−βπR

2

+ e−β(2πR2−A(R,u))
)
udu.

(30)
Comparing (29) and (30), the final result is obtained.

APPENDIX B
PROOF OF THEOREM 1

Proof: According to the Boolean model, we have

G![v] = E!o
( ∏
x∈Φp

v(x)
)

= E!o

[ ∏
x∈Φ2∩Ξ

v(x) | Φ1(b(o,R)) > 0

]
> E!o

( ∏
y∈Φ1

∏
x∈Φ2∩b(y,R)\{o}

v(x) | Φ1(b(o,R)) > 0
)

= EΦ1

[ ∏
y∈Φ1

E!o
Φ2

( ∏
x∈Φ2∩b(y,R)

v(x)
)
| Φ1(b(o,R)) > 0

]
(a)
= EΦ1

[ ∏
y∈Φ1

EΦ2

( ∏
x∈Φ2∩b(y,R)

v(x)
)
| ‖y0‖ < R

]
= EΦ1

[
e−λIV (R,y0)

∏
y∈Φ1\{y0}

e−λIV (R,y) | ‖y0‖ < R
]

(b)
=

2π∫
0

R∫
0

f̃(t)

2π
e−λIV (R,y0)|y0=(t cosψ,t sinψ)

× exp
(
− β

∫
bc(o,t)

1− e−λIV (R,y)dy
)

dtdψ

=

∫
b(o,R)

βe−βπ‖x‖
2−λIV (R,x)

Pp(R)

× exp
(
− β

∫
bc(o,‖x‖)

1− e−λIV (R,y)dy
)

dx, (31)

where step (a) follows from Slivnyak’s theorem applied to Φ2

and bc(o, t) = R2 \ b(o, t) and step (b) follows that f̃(t) =
2πβt
Pp(R)e

−βπt2 is the conditional pdf of ‖y0‖ conditioning on
‖y0‖ < R. Since Φ2 ∩ b(y0, R) ⊂ Φ2 ∩ Ξ, we have

G![v] < E!o
( ∏
x∈Φ2∩b(y0,R)

v(x) | Φ1(b(o,R)) > 0
)

= Ey0
[
EΦ2

( ∏
x∈Φ2∩b(y0,R)

v(x)
)
| ‖y0‖ < R

]
= Ey0

[
e−λIV (R,y0) | ‖y0‖ < R

]

=

∫ ∞
0

∫ 2π

0

f̃(t)

2π
e−λIV (R,y0) |y0=t(cosψ,sinψ) dtdψ

=

∫
b(o,R)

βe−βπ‖y‖
2−λIV (R,y)

Pp(R)
dy. (32)

APPENDIX C
PROOF OF COROLLARY 1

Proof: To capture the effect from the interfering nodes
outside the closest ball b(y0, R), we adopt a PPP denoted by
Φout with density λp to approximate the spatial distribution
of these nodes. Letting Ψp = Φop ∩ b(y0, R) we have

LI!(s) ≈ E!o

[ ∏
x∈Ψp

1

1 + s`(x)

∏
x∈Φout

1

1 + s`(x)

]

=
2πλf

Pp(R)

∫ R

0

e−λfπv
2

ve
−λd

∫
b(y0,R)

1− 1
1+s`(x)

dx

× exp
(
− λp

∫
bc(y0,R)

1− 1

1 + s`(x)
dx
)

dv

(a)
≈ 2πλf

Pp(R)

∫ R

0

e−λfπv
2

ve
−λd

∫
b(y0,R)

1

1+s−1`−1(x)
dx

× exp
(
− λp

∫
bc(o,v+R)

1

1 + s−1`−1(x)
dx
)

dv, (33)

where step (a) follows from the fact bc(o, v+R) ⊂ bc(y0, R).
The final result is obtained by using polar coordinates.
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