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Abstract—Unlike earlier works on rateless codes that mostly
considered finite networks or ignored the traffic dynamics, this
paper focuses on the end-to-end delay performance of rateless
codes in large-scale wireless ad hoc networks with traffic dy-
namics. Specifically, the end-to-end delay is divided into two
parts, namely the packet waiting time before transmission and
the transmission time, whose statistical distributions are given
by exact results as well as simple yet accurate approximations.
This way, the statistics of the end-to-end delay are fully inves-
tigated. The proposed analytical framework and the end-to-end
performance metric help obtain more insights on the role of
scheduling, queueing, and coding scheme in practical networks.
The approximations are verified to be effective and reliable
through simulations. Overall, the results show the significant
benefits of rateless codes relative to the fixed-rate codes in terms
of the end-to-end delay performance.

I. INTRODUCTION

Recently, the rapid development of emerging latency-critical

applications, such as intelligent manufacturing, remote control,

auxiliary driving, and automatic driving, has led to stringent

end-to-end delay requirements [1]. The conventional analysis

is usually based on queueing theory with a collision model

to simplify the physical layer. However, in practical networks,

the effect of the interference cannot be accurately modeled

merely by a collision since it is related to the channel

fluctuations, path loss, as well as the spatial distribution of

the network transceivers. Due to its effective characterization

of the interference in large-scale wireless networks, stochastic

geometry has successfully built a bridge between the queueing

dynamics and the signal transmission in the physical layer.

In this line of research, the delay performance has been

analyzed for various types of wireless networks, such as ad hoc

[3], TDMA/ALOHA-based multihop [4], and heterogenous

cellular networks [5]. However, since they used fixed-rate

codes with constant transmission time, the end-to-end delay

was actually measured by the mean queueing delay and its

statistics have not been explored in depth.

In regard to the transmission delay, rateless coding has re-

ceived a widespread attention as an error correction technique

due to its capability of adapting both the code construction

and the number of parity symbols to time-varying channel

conditions [6], which is expected to improve the signal-to-

interference ratio (SIR) and reduce the transmission delay.

Existing works mostly focus on the benefits of rateless codes

in finite wireless networks, and although the authors in [6]

and [7] have provided the performance analysis of rateless

codes in large-scale ad hoc and cellular networks, the full-

buffer assumption, which neglects the queueing dynamics,

leads to significant deviations from the actual end-to-end delay

performance. In summary, there is so far no comprehensive

investigation of the end-to-end performance of rateless codes

in large-scale wireless networks considering the impact of the

queueing process. We will fill this gap with new analytical

results on the statistics of end-to-end delay in wireless ad hoc

networks with rateless codes and buffers at transmitters.

Combining the tools from stochastic geometry and queueing

theory, we propose an analytical framework with the spatial

distribution and the spatio-temporal traffic of transmitters

following a homogeneous Poisson point process (PPP) [8] and

a Poisson arrival process (PAP), respectively. The end-to-end

delay is divided into two parts: the packet waiting time before

transmission and the transmission time, where the former is

presented by an M/Geo/1 queueing model [9] with random

scheduling and the latter is transformed into the decoding time

of rateless coding for a packet with fixed-size information.

Specifically, we first provide an exact statistical distribution

of the packet waiting time using queueing theory and propose

an accurate approximation via the effective bandwidth concept

[10, 11]. Then we approximate the packet transmission time

by simplifying the behavior of the interferers. Based on the

analysis for the statistics of the two kinds of delay, the

distribution of the end-to-end delay is finally derived. As a

benchmark, the end-to-end delay of fixed-rate codes in ad hoc

network is also quantified. The approximations are validated

to be effective and reliable through simulations, and numerical

results also show the significant benefits of rateless codes

relative to the fixed-rate codes in terms of the end-to-end delay.

II. SYSTEM MODEL

A. Network Model

We consider an interference-limited ad hoc network using

rateless codes, where the (potential) transmitters form a ho-

mogeneous PPP Φ of density λ with unit transmit power.

According to the concept of the frame (or subframe) in 4G and

future 5G networks [12], discrete frames are introduced with

duration Tf . Each transmitter is assumed to have a dedicated

receiver at distance r0 in a random orientation, i.e., the



transceiver pairs form a Poisson bipolar network [8, Def. 5.8].

We consider a receiver at the origin that attempts to receive

from an additional transmitter located at (r0, 0) and it becomes

the typical receiver under expectation over the PPP due to

Slivnyak’s theorem [8, Thm. 8.10]. The standard path loss

model �(x) = |x|−α with exponent α is adopted to represent

the path loss function between transmitter x and the origin.

The power fading coefficient associated with transmitter x
in frame k is denoted by hx,k which is assumed to be an

exponential random variable with E(hx,k) = 1 (Rayleigh

fading). In addition, the fading coefficients remain constant

over each frame and are spatially and temporally independent.

Each transmitter is assumed to have a buffer of infinite

capacity to store the generated packets and to apply the first-

input-first-output (FIFO) rule to transmit packets. The packets

at different transmitters are generated according to independent

PAPs with arrival rate ζ (packets per second), and each packet

has K information bits. Specifically, at the beginning of each

frame, each node in Φ independently sends its head-of-line

packet with probability p if its buffer is not empty. During each

transmission, K information bits are encoded by a rateless

code and sent via Gaussian symbols incrementally over the

channel. At the receiver side, the channel output symbols are

collected to decode the K information bits with the rateless

decoder. The parity transmission continues until the transmitter

receives an acknowledgment (ACK) from the receiver or

the frame runs out. When the typical receiver is receiving

signals from its transmitter, all the other active transmitters

are interferers until they receive their ACK and stop their

transmission. Due to the constrained end-to-end latency and

the high reliability achieved through the use of rateless codes

[7], we assume no retransmission mechanism, i.e., if a packet

is not transmitted error-free in one frame, it will be dropped.

B. Delay Characterization

The end-to-end delay of packet transmission is evaluated

in two phases: one is the waiting phase where the packet

waiting time measures the delay between the time when a

packet arrives at the buffer and the time when it starts to

be transmitted; the other is the transmission phase where the

packet transmission time is either the time to successfully

transmit a packet within a frame or the frame length.

1) Packet Waiting Time: Due to the PAP of the packets and

the ALOHA scheme, an M/Geo/1 queueing model with arrival

rate ζ is adopted to characterize the queueing process at each

transmitter, where its service time Tsv follows a geometric

distribution as

P(Tsv = nTf) = (1− p)n−1p, n ≥ 1. (1)

Then the statistics of the sojourn time Tsj of a packet in

the M/Geo/1 queue can be obtained by those of Tsv and the

Pollaczek-Khintchine transform equation [9], which will be

given in the next section. Denote by Tw the waiting time for

a given packet. Since each packet is transmitted from the start

of each frame and the transmission time does not exceed the

current frame length, the packet waiting time is Tw = Tsj−Tf .

2) Packet Transmission Time: Thanks to the adoption of

rateless codes, the packet transmission time is less than the

frame duration unless the packet is dropped. For k ∈ N
+, let

tk be the starting time of the k-th frame, i.e., tk = (k− 1)Tf .

The instantaneous interference at the typical receiver at time

t in frame k is

Ik(t)=
∑
x∈Φ

�(x)hx,kBx,k1Qx,k>0ex,k(t), tk ≤ t < tk+1, (2)

where k denotes the k-th frame, Qx,k is the number of packets

in the queue of transmitter x, Bx,k = 1 with probability p (and

Bx,k = 0 otherwise), ex,k(t) = 1(tk ≤ t ≤ tk+Tx,k) denotes

the active state of transmitter x at time t, and Tx,k is the packet

transmission time between x and its receiver. The nearest-

neighbor decoder is adopted to perform minimum Euclidean

distance decoding merely based on the desired channel gain,

as suggested in [13]. Thus the achievable rate Ck(t) is

Ck(t) = W log2(1 + ˆSIR(t)), (3)

where W denotes the bandwidth for information transmission,
ˆSIR(t) = �(x0)hx0,k/Îk(t) is the time-average received SIR,

and Îk(t) represents the time-average interference at the typ-

ical receiver from tk up to time t, given by

Îk(t) =
1

t− tk

∫ t

tk

Ik(τ)dτ

=
∑
x∈Φ

�(x)hx,kBx,k1Qx,k>0ηx,k(t), tk ≤ t < tk+1, (4)

where

ηx,k(t) =
1

t− tk

∫ t

tk

ex,k(τ)dτ = min
{
1,

Tx,k

t− tk

}
. (5)

Since each interfering transmitter ceases to interfere with other

ongoing transmissions after receiving the ACK signal, Îk(t) is

a monotonically decreasing function of t within each frame,

and thus Ck(t) is monotonically increasing with t. Let T̂k be

the time needed to decode a packet with K information bits

in frame k, we have

T̂k = min{t : K < t · Ck(t)}, (6)

and the packet transmission time follows as Tk =
min{T̂k, Tf}.

III. DELAY ANALYSIS

In this section, we first give an exact analytical expression

and a simple approximation for the complementary cumulative

distribution function (CCDF) of the packet waiting time. As

for the packet transmission time, since an exact calculation for

its CCDF seems infeasible, we then provide an approximation

for it by simplifying the behavior of the interferers.



A. Packet Waiting Time Analysis
Since Tw = Tsj−Tf , P(Tw > b) = P(Tsj > b+Tf) and we

resort to the derivation of the CCDF for Tsj through standard

queueing theory. According to the Pollaczek-Khintchine trans-

form equation for the sojourn time [9, Eq. 5.13], the Laplace-

Stieltjes transform (LST)1 of Tsj is

LTsj(s) =
(1− ε)sLTsv

(s)

s− ζ[1− LTsv(s)]
, (7)

where ε = ζTf/p (ζ < p/Tf to guarantee a finite queueing

delay) is the probability that the buffer is not empty and

LTsv
(s) is the LST of Tsv, given by

LTsv
(s) =

∞∑
n=1

(1− p)n−1pe−snTf =
pe−sTf

1− (1− p)e−sTf
. (8)

Through the inverse transform, the CCDF of Tw is

P(Tw > b) = 1− 1

2πj

γ+j∞∫
γ−j∞

exp(s(b+ Tf))

s
LTsj(s)ds, (9)

where j =
√−1 and γ is a real number so that the path of

integration is in the region of convergence (ROC) of LTsj
(s).

Since the distribution only holds for non-negative Tsj, the ROC

is Re{s} > Re{P0}, where P0 is the solution of equation

exp(−sTf) =
s−ζ

(1−p)s−ζ of s ∈ C with the maximum real part,

which can be solved by numerical approaches. Since s = 0 is

always a solution, the ROC is at most Re{s} > 0.
Although (9) can be evaluated by numerical integration, it

requires a careful selection of γ, the range of the numerical

integration, which depends on the rate of convergence of

the integrand, and its step size. Moreover, the complicated

results provide little insight and impose restrictions on further

analysis. Therefore, in the following, we provide an approxi-

mation to simplify the exact result by means of the effective

bandwidth concept [10, 11].

Theorem 1. The CCDF of the packet waiting time is approx-
imated by

P(Tw > b) ≈ ζTf

p
e−ζ(exp(u∗)−1)(b+Tf )+u∗

, b ≥ 0, (10)

where u∗ > 0 satisfies

ζTf(e
u∗ − 1) + log

(
pe−u∗

+ 1− p
)
= 0. (11)

And
P(Tw = 0) ≈ 1− ζTf

p
e−ζ(exp(u∗)−1)Tf+u∗

. (12)

Proof: See Appendix A.

Note that P(Tw = 0) represents the probability of the event

that a packet arrives at an empty queue and is transmitted

immediately2. Letting W(x) be the Lambert W function,

1Letting FX(x) be the cumulative distribution function (CDF) of the
random variable X , LX(s) denotes the LST of X i.e., LX(s) =∫∞
0 e−sxdFX(x). If F has a derivative f , the LST of X is the standard

Laplace transform.
2In this case, to facilitate the analysis, the waiting time before the next

frame starts is neglected due to the adoption of M/Geo/1 model, in other
words, the packet waiting time in this case is approximated to be zero.

which solves W(x)eW(x) = x, we have u∗ = −ζTf −W(−
ζTfe

−ζTf
)

when p = 1. For p < 1, from Thm. 1, u∗ can

be obtained by solving the equation in (11) via numerical

techniques. However, the numerical approach usually requires

setting an initial range that is provided in the following

corollary. It also establishes the uniqueness for the solution

of (11).

Corollary 1. Letting

uu =
1

ζ

(
− ζ + 1/Tf +

√
(ζ − 1/Tf)2 − 2ζ log(p)/Tf

)
,

ul = log
(−p+

√
p2 − 4(1− p)p/(ζTf)

2(1− p)

)
, (13)

the solution of (11) is unique and lies in (ul, uu) for p < 1.

Proof: Letting f(u) = ζ(eu−1)+ 1
Tf

log
(
pe−u+1−p

)
,

we have f(0) = 0, and its first-order derivative is

f ′(u) = ζeu
(
1− p

ζTf

1

peu + (1− p)e2u

)
, (14)

which changes from negative to positive as u increases.

Accordingly, it means that f(u) decreases at first and increases

later, and thus the solution of f(u) = 0 is unique for u > 0.

From the monotonicity of f(u), u∗ is larger than the solution

of f ′(u) = 0, and we have a lower bound of u∗ as

ul = log
(−p+

√
p2 − 4(1− p)p/(ζTf)

2(1− p)

)
. (15)

As for an upper bound uu of u∗, we first obtain

f(u) > ζ(u+ u2/2) +
1

Tf
log(pe−u) = g(u), (16)

and uu is the solution of g(u) = 0, given by

uu =
−(ζ − 1/Tf) +

√
(ζ − 1/Tf)2 − 2ζ log(p)/Tf

ζ
. (17)

B. Packet Transmission Time Analysis

Since each transmitter attempts to transmit independently

at the beginning of each frame, the achievable rate and the

packet transmission time are statistically identical in each

frame. Thus, the frame index can be omitted. To characterize

the CCDF of the packet transmission time, we note that T and

T̂ are related as

P(T > b) =

{
P(T̂ > b) b ≤ Tf

0 b > Tf .
(18)

According to (6), we have

P(T̂ > b) = P
(
K > b · C(b)

)
(a)
= 1− E

[
exp

(− θbr
α
0 Î(b)

)]
= 1− LÎ(b)(θbr

α
0 ), (19)

where step (a) follows since hx0
is an exponential distributed

variable, θb = 2
K
bW − 1 and LX(s) = EX(exp(−sX))

is the Laplace transform (LT) of the random variable X .



It should be noted that for the packet transmission time

analysis, the main technical difficulty lies in the interaction

between the interference and the actual transmission time of

rateless codes. To be specific, whether the interference is

strong or weak largely depends on the number and position of

concurrent transmitters, and whether a transmitter is active or

not depends on the actual time for a successful transmission

of rateless codes, which, in turn, is directly influenced by the

interference. Thus, a direct calculation of the exact CCDF of

the packet transmission time seems infeasible and we turn

to an approximation via the independent-interferer approach

[6] where the packet transmission time T̄x of each interfering

transmitter is statistically independent with an identical CCDF

P(T̄ > b). Therefore, the interference at the typical receiver in

this system is decoupled with the actual packet transmission

time, resulting in the following approximation.

Theorem 2. Let μ �
∫ Tf

0
P(T̄ > b)db be the average

packet transmission time of interfering transmitters in the
independent-interferer system and δ � 2

α . Given that the typi-
cal transmitter is active, the CCDF of the packet transmission
time Tii for the typical receiver satisfies

P l
ii(θb) ≤ P(Tii > b) ≤ P u

ii (θb), b ≤ Tf , (20)

where

P u
ii (θb)= 1− exp

(
− πλζTf(min{1, μ

b
})δ πδ

sin(πδ)
θδbr

2
0

)
,(21)

P l
ii(θb)= 1− exp

(
− πλζμ

πδ

sin(πδ)
θδbr

2
0

)
. (22)

Proof: See Appendix B.

From Thm. 2, we can see that the calculation of the

CCDF of Tii requires a known CCDF of T̄ to obtain the

value of μ. A straightforward choice of such T̄ is to use

the packet transmission time of the interferers in a dummy-

interferer system in which the interfering transmitters continue

to transmit “dummy” signal and interfere with other ongoing

transmissions after they have received the ACK. Accordingly

the interference in such system is an upper bound for the actual

one, i.e.,

Î(t) <
∑
x∈Φ

�(x)hxBx1Qx>0 = Idi. (23)

Furthermore, according to (19), we have

P(T̂ > b) < 1− LIdi(θbr
α
0 )

= 1− exp
(
− πλpε

πδ

sin(πδ)
sδ
)
, (24)

where the LT of Idi is obtained in [8, Sec. 5.1.7]. Then μ
can be given by the average packet transmission time of the

typical receiver in the dummy-interferer system, i.e.,

μ = Tf −
∫ Tf

0

exp
(
− πλζTf

πδ

sin(πδ)
θδbr

2
0

)
db. (25)

C. End-to-End Delay Analysis

In this section, we characterize the end-to-end delay per-

formance of rateless codes to show the intrinsic connection

between the packet waiting delay and the packet transmission

delay. To highlight the performance benefits from rateless

codes, we also derive the corresponding results for fixed-rate

codes.
1) Rateless Codes: The end-to-end delay D is the sum of

the packet waiting time Tw and the packet transmission time

T , i.e., D = Tw + T . Thus, when b ≤ Tf , we have

P(D>b) = P(Tw=0)P(T >b)

+

∫ b

0+
P(T > b− t)fTw(t)dt+ P(Tw > b), (26)

and when b > Tf ,

P(D > b) =

∫ b

0+
P(T > b− t)fTw

(t)dt+ P(Tw > b), (27)

where fTw
(t) is the probability density function of Tw. Based

on the CCDF of Tw in Thm. 1, we have

fTw(t) ≈
ζ2Tf

p
(eu

∗−1)e−ζ(exp(u∗)−1)(t+Tf )+u∗
, t > 0, (28)

and P(T > t) can be approximated by Thm. 2.
2) Fixed-Rate Codes: When fixed-rate coding is adopted,

each transmitter is active during the entire frame. Thus, the

packet transmission time is constant, i.e., T = Tf , and the

end-to-end delay is D = Tw + Tf . Due to the continuous

transmission in each frame, the interference at the typical

receiver is same as that in the dummy-interference system.

Hence, the end-to-end delay of fixed-rate codes is

P(D > b) =

{
P(Tw > b− Tf) b ≥ Tf

1 b < Tf .
(29)

IV. NUMERICAL RESULTS

In this section, we give some numerical results to demon-

strate the performance of rateless codes discussed above in

wireless ad hoc networks, where λ = 1 × 10−3m−2, r0 = 2
m, α = 4, Tf = 0.1ms, p = 0.5, W = 1MHz, ζ = 400
packets/s, and K = 160 bits are the default values.

Fig. 1 plots the CCDFs of the packet waiting time Tw for

different Tf , p and ζ, where the exact and approximative results

are obtained via the inverse Laplace transform in (9) and Thm.

1, respectively. It is observed that the approximations derived

from the effective bandwidth concept match the exact results

extremely well under different parameter settings, which sub-

stantially enhances the analytical tractability. It is also seen

that the logarithmic form of P(Tw > b) decays linearly as b
increases with the slope ζ(eu

∗ − 1). Consisted with the result

in (12), P(Tw > b) �= 1 as b → 0 since P(Tw = 0) > 0. In

addition, the packet waiting time becomes longer as ζ or Tf

increases or as p decreases. The reason lies in that the packet

waiting time depends on the queue length in the buffer, and

a larger ζ will contribute to the packet backlog in the queue,

while a smaller Tf or a larger p will increase the service rate

and hence the packets leave the queue faster.
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Fig. 2 illustrates the CCDFs of the packet transmission time

T with analytical approximations as well as simulation results

for different node densities λ and link distances between

transceiver r0. It is seen that the upper bound of the packet

transmission time Tii in the independent-interferer system

provides a close approximation to the actual transmission time.

Furthermore, we observe that the approximation accuracy is

higher when the node density is small and is hardly affected

by the link distance. It is because the intermediate quantity of

the average packet transmission time μ of interferers evaluated

through the dummy-interferer approach is closely related to the

node density, and its deviation from the exact result of rateless

codes would become obvious in denser networks. In other

words, the node density plays an important role in determining

the approximation accuracy of the dummy-interferer approach.

Fig. 3 shows the CCDFs of the end-to-end delay D using

rateless codes in comparison with fixed-rate codes. We observe

that rateless coding always achieves a lower end-to-end delay

than fixed-rate coding, demonstrating the benefit of rateless
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Fig. 3. The end-to-end delay distributions for different λ and ζ.

codes in terms of the transmission delay. In addition, as the

node density decreases, the delay advantage of rateless codes

over fixed-rate codes is more significant since the node density

does not affect the transmission time of fixed-rate codes. Since

the end-to-end delay is composed of the packet waiting delay

and the transmission delay, a larger ζ and λ result in a longer

end-to-end delay because the former contributes to the packet

backlog and the latter causes more severe interference.

V. CONCLUSIONS

In this paper, we proposed a general framework for the

end-to-end delay analysis of rateless codes in wireless ad hoc

networks where both the spatial distribution of transmitters and

traffic dynamics are incorporated. We investigated the end-to-

end delay by dividing it into two parts, namely, the packet

waiting time and transmission time, and then provided analyt-

ical results including exact expressions and tractable approxi-

mations for their statistical distributions. Through comparison

with Monte Carlo simulations, the approximations turn to be

matching the actual distributions well. Moreover, it is found

that the queueing delay is affected by several parameters, such

as the frame length, the arrival rate of packets, etc., while

the transmission delay is mainly affected by the node density

which has a close influence on the interference and, in turn,

the number of the parity symbols in rateless coding. Given the

statistics of the queueing and transmission delay, the end-to-

end delay of rateless codes is quantified with a comparison

of fixed-rate codes which highlights the significant benefits

in lowering the end-to-end delay, especially when the delay

requirement is less than the frame length.
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APPENDIX A

PROOF OF THEOREM 1

Proof: Using the concept of effective bandwidth and

capacity in [10, 11], the distributions of the steady-state

queue length Q(∞) and the queueing delay Dq(∞) can be

asymptotically approximated. Denote by A(t) and S(t) the

total number of packets reaching and leaving the buffer in

t time instants, respectively. We first obtain the asymptotic

log-moment generating functions of the arrival and service

processes, respectively, given by

ΛA(u) = lim
t→∞

1

t
logE

[
euA(t)

]
= ζ(eu − 1), (30)

and

ΛS(u) = lim
N→∞

1

NTf
logE

[
euS(NTf )

]

=
1

Tf
log(peu + 1− p). (31)

Then, the effective bandwidth of the arrival process is E(u) =
ΛA(u)/u. Accordingly, the violation probabilities of the

steady-state queueing length and the queueing delay under

small threshold can be accurately approximated by

P(Q(∞) > Qth)≈P(Q(∞) > 0) exp(−u∗Qth),

P(Dq(∞) > Dth)≈P(Q(∞) > 0) exp(−u∗E(u∗)Dth), (32)

where P(Q(∞) > 0) = ζTf/p is the probability that the buffer

is not empty, and u∗ > 0 is the decay rate of the tail distribu-

tion of the queue length, satisfying ΛA(u
∗) + ΛS(−u∗) = 0.

From (32), these two violation probabilities are equivalent by

letting Qth = E(u∗)Dth. For a given packet, its sojourn time

is its queueing delay plus its service time, which is equivalent

to the queueing delay of a packet with an extra one before it.

Therefore, the CCDF of the packet waiting time is

P(Tw > b) = P(Tsj > b+ Tf)

≈ P(Q(∞) + 1 > (b+ Tf)E(u∗))

≈ ζTf

p
exp

(− u∗(b+ Tf)E(u∗) + u∗). (33)

APPENDIX B

PROOF OF THEOREM 2

Proof: According to (19), we have

P(Tii > b) = 1− LĪ(b)(θbr
α
0 ), (34)

where Ī(b) =
∑
x∈Φ

�(x)hxBx1Qx>0η̄x(b), 0 < b ≤ Tf and

η̄x(b) = min{1, T̃x/b}. The LT of Ī(b) is given similarly in

[8, Sec. 5.1.7] as

LĪ(b)(s) = E

[ ∏
x∈Φ

(
1− pε+ pεe−s�(x)hxη̄x(b)

)]

= exp
(
− 2πλpε

∫ ∞

0

Eh,η̄(t)

[
1− e−shη̄(b)r−α]

rdr
)

= exp
(
− πλpεE(η̄(b)δ)

πδ

sin(πδ)
sδ
)
, (35)

where E(η̄(b)δ) performs the expectation over the packet trans-

mission time T̄ of the interfering transmitters. By inserting

LĪ(b) into (34), we have

P(Tii > b) = 1− exp
(
− πλpεE(η̄(b)δ)

πδ

sin(πδ)
θδbr

2
0

)
. (36)

Letting g(T̄ ) =
[
min{1, T̄ /b}]δ , we have E(η̄(b)δ) =

E[g(T̄ )]. The concavity of g(T̄ ) can be verified easily by its

2nd derivative

d2g(T̄ )

d2T̄
=

{
δ(δ − 1)T̄ δ−2/bδ T̄ ≤ b
0 b < T̄ ≤ Tf ,

(37)

which shows that g(2)(T̄ ) ≤ 0 for T̄ ∈ [0, Tf ]. Hence, we have

E[g(T̄ )] ≤ g(E(T̄ )) =
[
min{1, μ/b}]δ and E[g(T̄ )] ≥ μ/Tf

due to

g(T̄ ) ≥
(
1− T̄

Tf

)
g(0) +

T̄

Tf
g(Tf) =

T̄

Tf
, (38)

The final results are obtained by substituting the two bounds

of E[g(T̄ )] in (36).
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