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Abstract—This paper investigates the spatial correlation of the
energy harvested from a Poisson field of RF power sources.
Specifically, we focus on two energy harvesting models—one
dependent on distance alone and the other with more practical
factors taken into account—with the aim of showing how the
actual point process of nodes that successfully harvest energy
looks visually and characterize the pair correlation functions
for such point process under the two models theoretically. It
turns out that for both models the resulting process of the
energized nodes exhibits positive correlations. Therefore, we
further approximate the point process formed by active RF-
powered nodes with a fitted Poisson cluster process, which is
shown to provide a good approximation of the success probability
in the information transmission. An important conclusion is that
though the Poisson point process has been widely used to model
the spatial configuration of energized nodes, it is inadequate for
modeling the locations of the active RF-powered nodes due to
the positive correlation.

I. INTRODUCTION

As a new enabler for energy harvesting, wireless energy

transfer (WET) is anticipated to have great applications in

future energy constrained wireless communication networks

[1]. This integration of RF-based energy harvesting in commu-

nication networks renders the spatial structure of transmitters

(including the RF sources and the RF-powered nodes) even

more crucial since it not only determines the mutual inter-

ference and the signal-interference-plus-noise ratio (SINR)

performance in conventional communications but also the

energy that can be harvested in WET. As a consequence,

stochastic geometry models for wirelessly powered networks

have recently received widespread attention due to their ca-

pability of capturing the irregularity and variability of the

node configurations in real networks and providing theoretical

insights [2–5].

The Poisson point process (PPP) has been by far the most

popular spatial model for various types of wireless networks.

This is because the PPP model has several convenient features,

such as the independence between points in disjoint regions

and the simple form of the probability generating functional

(PGFL) [6]. Therefore, the PPP model of RF transmitters pro-

vides a tractable analysis for the energy outage probability [2]

as well as its meta distribution in the energy harvesting phase

[7]. As for the information transmission phase, the analysis in

previous works is mostly based on the assumption that the ac-

tive RF-powered nodes, which are the nodes that successfully

harvest energy from a Poisson field of RF transmitters, are

formed by independently thinning the Poisson distributed RF-

powered nodes [3, 5, 7]. That is to say, the active RF-powered

nodes are assumed to form a PPP again. However, this does not

seem realistic since if a node succeeds in harvesting energy,

a nearby node will have a good chance of succeeding also,

and vice versa. In other words, the nodes that successfully

harvest energy from a Poisson field of transmitters are not

mutually independent but spatially correlated. Therefore, it is

important to fully characterize the spatial correlation of the

energy harvested from RF transmitters and the corresponding

effect on the performance of communication systems, which,

to our best knowledge, has not been studied previously.

In this paper, we investigate the impact of energy correlation

in wirelessly powered networks, i.e., the spatial correlation of

nodes that successfully harvest enough energy from a Poisson

field of RF transmitters, or equivalently, how likely a node

at a particular location succeeds in harvesting energy when a

nearby node succeeds. We start with a simple model dependent

on distance alone, where a RF-powered node is active if

and only if there is at least one RF transmitter within a

certain distance, and then extend it to a practical case that

includes more factors. Under the two models, the active RF-

powered nodes in the information transmission phase form a

new point process, named the energized point process (EPP).

To characterize the spatial correlation of the EPP, we derive the

first- and second-order (pair correlation function) statistics for

these two energy harvesting models. It is clearly shown that the

EPPs under both models exhibit positive correlations, which

means “attraction” exists between the locations of active RF-

powered nodes. To show the effect of such spatial correlation

on the communication performance, we further use a fitted

Poisson cluster process (PCP) to approximate the EPP, which

turns out to provide a good approximation of the transmission

success probability.

II. SYSTEM MODEL

We consider a wireless network powered solely by ambient

RF transmitters (which may include cellular base stations,

digital TV towers, WiFi hotspots, etc.), where the locations

of RF transmitters and RF-powered nodes follow two point

processes Φp and Φd, respectively. We first formally define the

EPP, which is formed by the RF-powered nodes that succeed

in harvesting enough energy for subsequent transmission.



A. The Energized Point Process

Definition 1 (Energized point process, EPP). Let Φp and
Φd be two point processes. The energized point process Φe is
defined as

Φe � {x ∈ Φd : E(x,Φp) = 1}, (1)

where E is the energy indicator function describing whether
enough energy can be harvested from Φp at location x.

In this paper, the two point processes Φp and Φd are as-

sumed to be two independent homogeneous PPPs of densities

λp and λd, respectively. The resulting EPP is a dependent

thinning of Φd and can be viewed as a Cox process [6, Def.

3.3] with intensity field κ(x) = λd1(E(x,Φp) = 1), where

1(·) denotes the indicator function.

B. Simplified Energy Harvesting Model (SEHM)

Since the harvested energy depends on the locations of the

nearby RF transmitters, we first consider a simplified model

where a RF-powered node succeeds in harvesting enough

energy if and only if there is at least one RF transmitter within

distance R. This can be formulated as

E(x,Φp) = 1(Φp(b(x,R)) > 0), (2)

where b(x, r) is the disk centered at x of radius r and Φ(B)
is the number of points of the point process Φ falling in B.

C. Practical Energy Harvesting Model (PEHM)

Furthermore, we consider a practical energy harvesting

model that includes more factors, such as channel gains,

random effects in the energy detection and conversion at

the receiver side, etc. The channel (power) gain between

transmitter x and receiver y is given by hxy�(x − y) where

hxy models the small-scale fading and �(x−y) represents the

large-scale path loss. We assume that all fading coefficients

are i.i.d. exponential (Rayleigh fading) with E(hxy) = 1, and

�(x) = ‖x‖−α, where α is the path loss exponent. The transmit

power of RF transmitters is assumed to be one. Using the

energy harvesting model in [8], the harvested energy ε(x,Φp)
at the RF-powered node x can be quantified as

ε(x,Φp) =
νηρ

1 + F

∑
y∈Φp

hyx�(y − x), (3)

where the term ν
1+F captures the randomness in the detection

of the actual harvested energy, F follows an exponential

distribution with parameter ζ, and ν is chosen so that ν
1+F has

an expectation of 1, i.e., ν = 1
−ζeζ Ei(−ζ)

, where Ei is the ex-

ponential integral function defined by Ei(x) = − ∫∞
−x

e−t/tdt.
ρ is the efficiency of the conversion from RF to DC power and

η is the fraction in a time slot for energy harvesting process.

Therefore, in this model, we have

E(x,Φp) = 1(ε(x,Φp) > ξ), (4)

where ξ is the energy threshold.

Fig. 1 shows a comparison between the realizations of

the PEHM-based EPP and PPP with the same density. It is

Fig. 1. Comparison of the EPP (left) and PPP (right). For the EPP, the PEHM
is adopted with default parameter setting. For both point processes, the density
is 0.0922.

TABLE I. Symbols and descriptions

Symbol Description Default
λp The density of RF transmitters PPP 0.1
λd The density of RF-powered nodes PPP 1
α The path loss exponent 4
η The fraction of time for energy harvesting 0.5
R The distance threshold in the simplified model 1
ρ The efficiency of energy harvesting 0.3 [8]
ζ The parameter in the energy harvesting model 0.01 [8]

observed that the spatial distribution of the active RF-powered

nodes exhibits clustering relative to the PPP.

D. Communication Model

We consider that RF-powered nodes adopt a time-switched

“harvest-then-transmit” strategy in each time slot, and RF

transmitters use frequencies outside the data band and hence

cause no interference to the information transmission of RF-

powered nodes. Specifically, in each time slot, each RF-

powered node first uses a fraction η of the time slot to harvest

energy from RF transmitters and then transmit the information

to its corresponding receiver during the remaining 1 − η
fraction of time if the harvested energy satisfies the minimum

requirement for signal transmission. Each RF-powered node

is assumed to merely utilize the instantaneously harvested RF

energy from RF transmitters to supply its operation and to have

a dedicated receiver at distance rd in a random orientation,

i.e., the RF-powered nodes and their receivers form a Poisson

bipolar network [6, Def. 5.8]. Hence, the active RF-powered

nodes and their receivers form a Cox bipolar network. The

transmit power of RF-powered nodes is assumed to be one.

Table I summarizes the notations of the parameters in the

network model with their descriptions, and default values are

given where applicable.

III. ANALYTICAL RESULTS FOR THE EPP

In this section, we provide analytical results for the first-

and second-order statistics to characterize the properties of

the EPP. Since a translated and rotated version of Φe can be

obtained by translating and rotating Φp and Φd, which are

motion-invariant, Φe is motion-invariant. As a result, the first-

order statistic, i.e., the density, denoted as λe, is obtained by

deriving the success probability ps of the energy harvesting of



the RF-powered node at the origin, i.e., ps = P(E(o,Φp) = 1)
and λe = psλd. For the second-order statistic, the pair corre-

lation function (pcf) g(x, y) [6, Def. 6.6] is usually used to

describe the degree of correlation between two distinct points

in the point process, and for a motion-invariant process, the pcf

depends only on the distance r = ‖x−y‖, i.e., g(x, y) = g(r).
The following theorem gives a general expression of the pcf

for the EPP.

Theorem 1. The pair correlation function of the EPP Φe is

ge(r) =
pjoint(r)

p2s
, (5)

where pjoint(r) = P(E(o,Φp) = 1, E(zr,Φp) = 1) is the
joint success probability that both the two points at locations
zr = (r, 0) and o succeed in energy harvesting and thus are
retained in Φe.

Proof: According to [6, Lemma 6.9], the pcf is given by

g(r) =
1

2πr

d

dr
K(r), (6)

where K(r) is Ripley’s K function [6, Def. 6.8], defined as

K(r) =
1

λ
E
!
oΦ

(
b(o, r)

)
, (7)

where E
!
o denotes the expectation with respect to the reduced

Palm distribution of Φ given that o ∈ Φ. We first calculate

E
!
oΦe

(
b(o, r)

)
, i.e., the mean number of extra points within

distance r of the origin. A point of Φd at location x with

distance u = ‖x‖ is retained in Φe if E(x,Φp) = 1 under the

condition that E(o,Φp) = 1 (because the point at the origin

is already retained in Φe). And the motion-invariance of Φd

makes the condition of E(x,Φp) = 1 equivalent to that with

x = (u, 0). Since the density of the points in Φd at distance

u is 2πλdu, we have

E
!
oΦe

(
b(o, r)

)
= 2πλd

∫ r

0

P(E((u, 0),Φp) = 1 | E(o,Φp) = 1)udu

=
2πλd

ps

∫ r

0

P(E((u, 0),Φp) = 1, E(o,Φp) = 1)udu. (8)

The final result is obtained by substituting (8) and (7) into (6).

A. The SEHM-based EPP

From the simplified model, it is easy to derive the proba-

bility that a point of Φd succeeds in harvesting energy and is

retained, given by

ps = 1− exp(−λpπR
2), (9)

and the density of the EPP is λe = λd(1− e−λpπR
2

).
Letting Vr(R) = b(o,R) ∩ b(zr, R), the event that both

the two points zr and o succeed in energy harvesting is

partitioned into two disjoint events: one is that at least one

RF transmitter falls in Vr(R); the other is that at least one

RF transmitter falls in b(o,R) \ Vr(R) and b(zr, R) \ Vr(R),
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Fig. 2. The pcfs of the SEHM-based EPP with different λp and R.

respectively, conditioning on that no RF transmitter falls in

Vr(R). According to the total probability law, we have

pjoint(r) = 1− e−λpAR(r) + e−λpAR(r)

×
(
1− e−λp(πR

2−AR(r))
)2

= 1− 2e−λpπR
2

+ e−λp

(
2πR2−AR(r)

)
, (10)

where

AR(r) = 2R2 arccos
( r

2R

)
− r

√
R2 − r2

4
(11)

is the intersection area of two disks of radius R at distance r.

Hence the pcf of the SEHM-based EPP is

ge(r) = 1 +
e−2λpπR

2(
eλpAR(r) − 1

)
(1− e−λpπR2

)2
. (12)

Since ge(r) > 1, the EPP exhibits clustering.

Fig. 2 shows how the density of the RF transmitters and the

threshold R affect the correlation between two points in the

EPP. It is observed that a smaller λp or R leads to stronger

clustering, which means the clustering behavior is increasingly

prominent as the ambient RF transmitters become sparse or

the energy correlation region becomes small (or, equivalently,

fewer RF-powered nodes can be retained).

B. The PEHM-based EPP

Under this model, we first give an asymptotical upper bound

on the density of the EPP, which is then proven to be very

accurate with well controlled and mathematically quantified

gaps.

Theorem 2. Let δ � 2/α, ξ̄ � ζνηρ/ξ and

p̂s(ξ) � 1− exp
(
− πλp

πδ

sin(πδ)
ξ̄δ
)
. (13)

The success probability of the energy harvesting for PEHM is
asymptotically upper bounded as ps � p̂s(ξ), and the density
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Fig. 3. The density of the PEHM-based EPP versus ξ for different λp.

of the EPP follows λe � λdps(ξ), where ’�’ stands for an
asymptotic upper bound, i.e., ∃t > 0 s.t. ps < p̂s(ξ) ∀ζ < t.

Proof: Letting Io =
∑

y∈Φp

hyo�(y), the success probability

of the energy harvesting is given by

ps = P

( νηρ

F + 1
Io ≥ ξ

)

≤ P

(
F ≤ νηρ

ξ
Io

)

= 1− E

[
exp

(
− ξ̄Io

)]

(a)
= 1− exp

(
− πλp

πδ

sin(πδ)
ξ̄δ
)
, (14)

where step (a) uses the Laplace transform of the interference

in Poisson networks [6, Sec. 5.17]. Hence, the density λe of

the EPP Φe is given by

λe = λpps ≤ λpp̂s(ξ). (15)

Next, we explain the accuracy of the above bound. Letting

Y = νηρIo/ξ, we have

ps−p̂s(ξ)

= P(F ≤ Y − 1)− P(F ≤ Y )

= P(F > Y )− P(F > Y − 1)

= EY

[(
e−ζY − e−ζ(Y−1)

)
1Y≥1 +

(
e−ζY − 1

)
1Y <1

]

≥ EY

[(
e−ζ − 1

)
1Y≥1+

(
e−ζ − 1

)
1Y <1

]
= e−ζ − 1. (16)

Since ps ≤ p̂s(ξ), ps is bounded by

p̂s(ξ) + e−ζ − 1 ≤ ps ≤ p̂s(ξ). (17)

Thus ps → p̂s(ξ) as ζ → 0, and ps � p̂s(ξ).
Fig. 3 shows the density of the EPP with the comparison

between the analytical and simulation results. The analytical

bounding result for the density is shown to provide an accurate

approximation to the simulation result. In addition, the density

of the EPP becomes smaller as the increase of ξ or the decrease

of λp, which implies that either the dense deployment of

RF transmitters or the low energy consumption of wireless

powered nodes allows more RF-powered nodes to be active in

the information transmission phase.

The following theorem provides analytical results for

bounding the joint success probability and approximating

the pcf of the EPP. For notational convenience, we define

ψ(t, r, θ) �
√
t2 + r2 − 2rt cos(θ).

Theorem 3. Let

p̂joint(r) � 1− 2 exp
(
− πλp

πδ

sin(πδ)
ξ̄δ
)

+exp
(
− λp

∞∫
0

2π∫
0

χ(t, θ)tdtdθ
)
, (18)

where

χ(t, θ) = 1− 1

(1 + ξ̄t−α)(1 + ξ̄)ψ(t, r, θ)−α
. (19)

The joint success probability of two points within dis-
tance r for PEHM is asymptotically upper bounded as
pjoint(r) � p̂joint(r) and the corresponding pcf follows
ge(r) ≈ p̂joint(r)/p̂

2
s .

Proof: Letting Izr =
∑

y∈Φp

hyzr�(y − zr), we have

pjoint(r) = P(ε(zr) > ξ, ε(o) > ξ)

≤ P

(
Fo ≤ νηρ

ξ
Io, Fzr ≤ νηρ

ξ
Izr

)

= E
[(
1− e−ξ̄Io

)(
1− e−ξ̄Izr

)]
= 1− 2e−πλp

πδ
sin(πδ)

ξ̄δ + E
[
e−ξ̄(Io+Izr )

]
, (20)

where the PGFL of the PPP yields

E
[
e−ξ̄(Io+Izr )

]
= E

[ ∏
x∈Φp

1(
1 + ξ̄�(x)

)(
1 + ξ̄�(x− zr)

)]

= exp
(
− λp

∞∫
0

2π∫
0

χ(t, θ)tdtdθ
)
. (21)

The asymptotic upper bound can be proved with a similar

approach as in the proof of Thm. 2, and the pcf of the EPP is

approximated through Thm. 1.

Fig. 4 illustrates the pcfs of the PEHM-based EPP, where

the simulations are estimated through the inline function pcf in

the R language. It shows that the analytical results in Thm.

3 provide a tight approximation; the small gap between the

analytical and simulated curves vanishes as r increases, and

also with increasing λp. The slightly larger gap for small

λp is a consequence of the fact that for small densities, it

quickly becomes unlikely that a point has a neighbor within

distance r, which makes it harder to accurately estimate the

pcf. Also, the pcf function in R is implemented according



r
0 0.5 1 1.5 2

T
he

 p
ai

r 
co

rr
el

at
io

n 
fu

nc
tio

n

1

2

3

4

5

6

7

8

9

10

Thm. of EPP

Sim. of EPP

The Fitted TCP

λ
p
=1, ξ = 1

λ
p
=0.1, ξ = 0.2

λ
p
=0.1, ξ = 1

λ
p
=0.05, ξ = 1

Fig. 4. The pcfs of the PEHM-based EPP with different λp and ξ.

to the definition in (6), which includes a division by r and

a derivative w.r.t. r, and these operations are not numerically

robust at small r. Furthermore, we observe that all the pcfs are

larger than in the PPP case and decrease with the increase of r,

which again demonstrates the clustering behavior of the active

RF-powered nodes and the correlation becomes weaker with

increasing inter-distance. Moreover, a smaller λp or a larger

ξ leads to a larger pcf for a fixed r, which means that the

correlation between two active RF-powered nodes is stronger

with a smaller λp or a larger ξ. This is because whether a

RF-powered node succeeds in harvesting enough energy is

chiefly determined by its nearby (especially the nearest) RF

transmitters, and it is more likely for different RF-powered

nodes to have the same nearby (nearest) RF transmitters in a

sparse deployment of RF transmitters.

IV. SUCCESS PROBABILITY OF INFORMATION

TRANSMISSION

For the information transmission phase, the properties of

the desired signal and interference highly depend on the spatial

distribution of the active RF-powered nodes, which determines

the transmission success probability. Since the EPP is also a

stationary point process, we condition on that the typical RF-

powered node is located at the origin, i.e. o ∈ Φe, and the

corresponding typical receiver is at z = (rd, 0). Letting Φ!
e =

Φe \ {o} and I(z) =
∑

x∈Φ!
e
�(x − z)hxz be the interference

at the typical receiver, the received signal-to-interference ratio

(SIR) of the typical receiver is given by

SIR =
r−α
d hoz∑

x∈Φ!
e

�(x− z)hxz
, (22)

and the success probability is defined as P (θ) � P(SIR > θ)
where θ is the SIR threshold. With signals subject to Rayleigh

fading, the transmission success probability is the Laplace

transform of I(z) evaluated at s = θrαd , given by

P (θ) = LI(z)(θr
α
d ), (23)

and the Laplace transform of I(z) is

LI(z)(s) = E exp
(
− s

∑
x∈Φ!

e

�(x− z)hxz

)

= EΦ!
e

( ∏
x∈Φ!

e

1

1 + s�(x− z)

)

= E
!
o

( ∏
x∈Φe

1

1 + s�(x− z)

)
, (24)

where E
!
o denotes the expectation with respect to the reduced

Palm distribution of the EPP, given that there is an active RF-

powered node at the origin.

Due to the dependent thinning, an exact calculation of the

success probability under the EPP model seems unfeasible.

Thus next, we resort to approximating it with two common

point processes, i.e., the PPP and PCP, which have explicit

PGFL expressions. The benefits of such approximations is to

provide an accurate yet tractable analysis of the performance

in the information transmission phase in wirelessly powered

networks, which can hardly be obtained by the EPP directly.

1) PPP Approximation: As a baseline model, we first

approximate the EPP with a PPP using the first-order statistic

λs. From Slivnyak’s theorem [6], conditioning on a point at

the origin does not change the distribution of the rest of the

process, and the reduced palm distribution is the same as the

original PPP. Hence, LI(z)(s) is approximated by

LIPPP(s) = exp
(
− λeπ

πδ

sin(πδ)
sδ
)
, (25)

and the success probability is approximated as

P (θ) ≈ exp
(
− λe

π2δ

sin(πδ)
r2dθ

δ
)
. (26)

2) PCP Approximation: From the above discussion, the

points in EPP are clustered. Since PCP also exhibits clustering

and more importantly it leads to tractable results. Thus we

provide another approximation of the EPP with a fitted PCP

(e.g. the Thomas cluster process (TCP)) through matching the

first- and second-order statistics.

First-order statistic matching yields

λe = λlc̄, (27)

where λl is the density of parent points of the cluster process

and c̄ is the average number of points in a cluster. For the

TCP with variance σ2, the pcf is [6, Section 6.4]

gT(r) = 1 +
1

4πλlσ2
exp

(
− r2

4σ2

)
, (28)

where λl and σ are obtained using curve-fitting and c̄ is

then determined using (27). By using the fmincon function

(minimizing the constrained nonlinear multivariable function)

in Matlab, we fit the pcf of the TCP to the approximative

analytical pcf of the EPP for different ζ and λp. The fitting

parameters of the TCP are listed in Table II, and Fig. 4 also

illustrates the fitted pcf curves of the TCP. The results show

that the EPP can be closely approximated by the TCP.



TABLE II. The fitting results for different λp and ζ

λp 0.05 0.1 0.1 1

ξ 1 0.2 1 1

λl 0.0616 0.1437 0.1288 3.0022

σ2 0.1288 0.2807 0.1279 0.1116

c̄ 0.7498 1.3270 0.7011 0.2038
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Fig. 5. The success probability with PPP and PCP approximations.

Through the fitted TCP, I(z) can be approximated by the

interference in Poisson cluster networks. According to Eq. (34)

in [9], we have

LIPCP(s) = exp

{
−λl

∫
R2

[
1− exp(−c̄ν(s, y, z))

]
dy

}

×
∫
R2

exp(−c̄ν(s, y, z))f(y)dy, (29)

where

ν(s, y) =

∫
R2

f(x)

1 + (s�(x− y − z))−1
dx, (30)

and f(x) is the probability density function of the node

distribution around the parent point. For the TCP, we have

f(x) =
1

2πσ2
exp

(
−‖x‖2

2σ2

)
. (31)

Substituting (29) into (23), the success probability is approx-

imated as P (θ) ≈ LIPCP
(θrαd ).

Fig. 5 illustrates the success probabilities with PPP and

TCP approximations for different ξ and λp. The results show

that the EPP-based transmission success probability can be

approximated by the TCP-based results extremely well while

the results in the PPP case have obvious deviations. The

reason lies in the higher-order statistics of the EPP, which

govern the interaction between nodes and strongly affect the

success probability of the information transmission. Therefore,

compared with the PPP, the PCP is a more suitable model for

capturing the actual topology of the energized nodes, due to

the positive energy correlation.

V. CONCLUSIONS

Since the locations of the RF-power sources are a common

source of randomness, the harvested energy is correlated at

nearby RF-powered node locations. This paper focused on

the properties of the point process of nodes that successfully

harvest enough energy from a Poisson field of RF transmitters,

which is the first attempt to capture the energy correlation in

wirelessly powered networks within a stochastic geometry-

based framework. We derived the first- and second-order

statistics for SEHM- and PEHM-based EPPs, respectively.

The results indicate that the energized nodes exhibit clustering

behavior, which is intuitive since if a node succeeds in har-

vesting enough energy, the nodes nearby are likely to succeed

also, and vice versa. Furthermore, we used a fitted PCP to

approximate the EPP, and the corresponding approximation of

the transmission success probability coincides quite exactly

with the simulation curve. Overall, both the analysis and

approximation show that “attraction” exists between the en-

ergized node locations, and the widely used PPP-based model

as well as the results derived from it deviate significantly from

the exact ones.
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